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CHAPTER I

INTRODUCTION

1.1 Principles of Compton Camera Systems

A gamma-ray mainly interacts with matter through three types of interaction

mechanism: photoelectric absorption, Compton scattering, and pair production. In

a Compton scattering event as illustrated in Fig. 1.1, the gamma-ray transfers part

of its energy to an electron and is scattered at an angle θ with respect to its initial

direction.

Incident gamma-

ray with energy E0

Scattered photon 

with energy E’

Recoil electron

φ

θ

Figure 1.1: A gamma-ray Compton scattered by an electron.

Assuming the initial electron is free and at rest, according to the conservation laws

of energy and momentum, the relationship between the scattered photon energy E ′

and the scattering angle θ can be derived as

E ′ =
E0

1 + (E0/mec2)(1 − cos θ)
(1.1)

1
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in which mec
2 is the rest mass energy of an electron.

Eq. 1.1 also reveals that the scattered photon energy E ′ and the scattering angle

θ are in one-to-one correspondence (bijective). Therefore, if the incident gamma-ray

energy is known, the scattering angle θ can be determined uniquely based on the

energy loss in the first scattering. If the scattered photon interacts with the detector

by a photoelectric absorption or another Compton scattering, the positions of the two

interactions can give the direction of the scattered photon. As a result, the direction

of the incident gamma-ray can be constrained on the surface of a back-projection

cone as shown in Fig. 1.2. With sufficient number of back-projection cones, the

image of the gamma-ray source can be reconstructed.

*

First Scattering

Second Scattering or 

Photon Absorption

θ

Ω

E1

E2

Figure 1.2: If a gamma-ray interacts at least twice in the detector, the direction of the incident
gamma-ray can be constrained on the surface of a cone. The half angle is determined
by the energy losses, the cone vertex is placed at the first interaction position, and the
cone axis is defined by the first and the second interaction positions.

The recoil electron from a Compton scattering or a photoelectric absorption nor-

mally travels a few hundred microns before being fully stopped in a solid state de-

tector. The measured position is the weighted centroid of this electron track unless

the detector has electron tracking capability. Therefore, the measured electron posi-

tions are not exactly the interaction positions. However, in 3-dimensional position-

sensitive cadmium zinc telluride (CdZnTe) detectors, the range of a recoil electron at
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several hundred keV is far smaller than the position resolution, and the interaction

positions are normally approximated by the measured electron positions.

Fig. 1.3 shows the various gamma-ray interaction cross sections in CdZnTe. When

the gamma-ray energy is below 200 keV, photoelectric absorption is the most domi-

nant interaction. When the gamma-ray energy is higher than 10 MeV, most interac-

tions are pair productions. Compton scattering dominates from 300 keV to several

MeV, which is the gamma-ray imaging energy range of the 3-D CdZnTe detector.

Figure 1.3: Interaction cross sections for gamma-ray with energy between 0.01 MeV and 10 MeV
in CdZnTe detector.

1.2 History of Compton Camera Development

Among the various portions of the electromagnetic spectrum, the gamma-ray is

one of the most difficult part to image due to its particle behavior, its high pene-

tration power and complicated interactions with matter. Despite these challenges,
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photon-emission imaging systems have generated great interest in the fields of nuclear

medicine and astrophysics for many decades, and enormous efforts have been exerted

to image the gamma-ray emission distribution. Various imaging systems have been

developed, including Single Photon Emission Computed Tomography (SPECT)[1],

Positron Emission Tomography (PET)[2], coded aperture cameras[3], rotating mod-

ulation collimators (RMC)[4], and Compton cameras[5, 6]. Among these gamma-ray

imaging systems, Compton cameras are attractive because they do not require colli-

mators and hold the promise of high detection efficiency.

Using Compton scatters to obtain directional information of the incident gamma-

rays was proposed by Schönfelder et al.[7] in the early 1970s, and the instruments

were carried on balloon flights to take measurements of the atmospheric gamma-rays.

Soon thereafter, Todd proposed that the Compton imaging device for medical appli-

cations be used as an alternative to the mechanically collimated imaging system[8].

In the early 1980s, Singh and Doria developed the first Compton camera system

for medical imaging[5, 6]. In 1991, NASA launched the Compton Gamma-Ray Ob-

servatory (CGRO), on which COMPTEL is one of the four telescopes covering an

unprecedented electromagnetic spectrum from 30 keV to 30 GeV[9]. COMPTEL,

which was designed with a sensitivity range from 1 MeV to 30 MeV, was a demon-

strated success. It showed that a large-portion of gamma-ray emission between 1

MeV and 30 MeV was from our galaxy[10].

These early developments of Compton imaging systems were characterized by the

employment of scintillators as both the front and the back detectors. With the devel-

opment of semiconductor radiation detectors during 1980s and 1990s, many Compton

camera systems followed the scheme proposed by Singh, which used semiconductor

detectors as the front-plane detector and scintillator detectors as the back-plane
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detector. In 1993, Martin et al. proposed a ring Compton scatter camera which

consisted of a 4 × 4 array of HPGe detectors and a ring array of cylindrical NaI(Tl)

scintillators[11].

In 1988, Kamae et al. developed a Compton imager by replacing the HPGe

detectors in Singh’s design with many layers of Si strip detectors[12]. The Si strip

detectors were surrounded by a cylindrical CsI(Tl) scintillator. Two years later,

Dogan, Wehe and Knoll proposed to reconstruct the image using multiple scattered

gamma-rays[13] based on Kamae’s design. In 1998, LeBlanc et al. built a prototype

Compton camera system, C-SPRINT, for nuclear medicine as a Compton SPECT[14,

15]. Instead of using Si strip detectors, C-SPRINT consisted of 3 cm × 3 cm × 0.1

cm Si pad detector modules that were pixellated into 22 × 22 arrays. The results

showed that, in terms of noise equivalent sensitivity, the advantage of the C-SPRINT

over a mechanically collimated SPECT system was limited at the low energy end,

such as the 140 keV gamma-rays from 99mTc, but it outperformed a mechanically

collimated SPECT system at higher energies such as the 392 keV gamma-rays from

113mIn[16].

In 1989, Piercey et al. built the first Compton telescope with HPGe detectors for

both the front and back planes[17]. Piercey used a single HPGe detector as the front

detector and an array of four HPGe detectors as the back plane. In 1994, McKisson et

al. reported the results of a Compton camera that used two HPGe detector arrays for

both the front and back planes[18]. Two years later, Phlips et al. replaced the HPGe

detector arrays by two double-sided HPGe strip detectors[19]. The front detector was

a 25 × 25 strip detector with 2 mm pitch, and the back detector was a 5 × 5 detector

with 9 mm pitch. In 2001, Schmid et al. proposed a Compton camera by employing a

single large volume segmented coaxial HPGe detector[20]. The position information
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was obtained by the outer contacts and digital pulse-shape analysis. By using a single

crystal to detect both the Compton scattering and the photo-electric absorption, the

separation between the front and back planes was eliminated, resulting in efficiency

being increased by one order of magnitude. However, due to the large preamplifier

noise, the experiments could not locate the source position. In 2005, with the same

design as Schmid’s, Niedermayr obtained about 5◦ angular resolution at 662 keV with

a relative efficiency of 0.3%[21]. In 2002, Wulf et al. demonstrated that the depth

information of a HPGe double-sided strip detector could be obtained by measuring

the timing difference between the cathode and anode signals. Thus a Compton

camera could be realized by using a single HPGe double-sided strip detector[22]. In

the following year, Wulf et al. designed a Compton imaging system with two HPGe

double-sided strip detectors and demonstrated that the source location could be

reconstructed by the three-Compton technique even if gamma-rays did not deposit

full energy in the detectors[23].

In recent years, silicon detectors have become popular as the front detector be-

cause Doppler broadening is less severe in silicon due to its low atomic number.

Silicon detectors are also more appealing than germanium detectors because of the

less critical cooling requirement. In 2004, Wulf et al. built a Compton camera us-

ing three layers of double-sided silicon strip detectors. Each silicon detector had

an active volume of 57 mm × 57 mm × 2 mm, and had 64 strips on each side. The

Compton camera showed an angular resolution of 3.3◦ at 662 keV[24]. If the incident

gamma-ray interacts three or more times in the detectors, by employing the concept

of three-Compton telescope proposed by Kroeger[25], the incident gamma-ray energy

can be determined even if the gamma-ray is not fully absorbed. Multi-layer detector

arrays are currently under development[26].
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In 2005, Burks et al. from the Lawrence Livermore National Laboratory (LLNL)

developed a Compton telescope using a double-sided silicon strip detector and a

double-sided germanium strip detector. The two detectors are parallel, aligned on

their center axis and separated by 6 cm. An angular resolution of 3◦ to 4◦ was

reported in the energy range from 150 keV to 3 MeV[27].

In 2001, Du et al. from the University of Michigan used CdZnTe as the detectors

in a Compton camera for the first time[28]. The CdZnTe detectors used in Du’s

work measured the 3-D position information of single gamma-ray interactions in the

detector. Since a Compton camera needs at least two gamma-ray interactions, two 1

cm3 3-D position-sensitive CdZnTe detectors were used in Du’s experiment. The two

CdZnTe detectors were separated by 5 cm, which limited the intrinsic efficiency at

511 keV to be only 1.5×10−4. The measured angular resolution was 5.2◦ at 662 keV.

Three years later, with the improved design of the application-specific integrated

circuit (ASIC), the 3-D position information of multiple gamma-ray interactions in

a single detector can be obtained by measuring the electron drift time[29]. This

advance greatly improved the gamma-ray detection efficiency because about 60%

of the photopeak events are multiple interaction events at 662 keV in a 15 mm ×

15mm×10mm detector. This new capability enabled Lehner and He to demonstrate

Compton imaging using a single 3-D position-sensitive CdZnTe detector[30]. Because

there is no requirement for mechanical collimators, a single 3-D CdZnTe detector

can have a field of view (FOV) of 4π. Since there is no separation between the

first and the second detector, and Compton scatters with all scattering angles can

be detected, the imaging efficiency is three orders of magnitude higher than the

previous two-detector CdZnTe system. The measured intrinsic imaging efficiency

was 1.86%, and the measured angular resolution was 17◦ at 662 keV using a single
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15 mm × 15 mm × 10 mm CdZnTe detector.

There are other Compton camera designs that are usually referred to as Ad-

vanced Compton Telescopes, and are mostly designed for astrophysics applications.

Those Compton telescopes are characterized by the capability of tracking the re-

coil electrons. Examples of this type of Compton telescopes include the TIGRE

experiment at the University of California, Riverside[31], the LXeGRIT project at

Columbia University[32], and the MeV gamma-ray imaging detector developed at

Kyoto University[33]. In these telescopes, silicon strip detectors, liquid xenon or

gaseous time projection chambers (TPC) are used to track the recoil electrons. Be-

cause in a Compton scattering event, the incident gamma-ray, the scattered photon

and the recoil electron must be on the same plane, the incident photon direction

can be limited on a small portion of the back-projection cone by knowing the recoil

electron direction, thus the angular resolution is improved.

1.3 Objectives of This Work

The 3-D position-sensitive CdZnTe detector is a novel instrument which can pro-

vide the energy and the position information of multiple gamma-ray interactions

within a single detector. With this capability, many characteristics of the incident

gamma-rays can be studied from the Compton scattering events. These charac-

teristics include direction, distance, and polarization information. Because of the

characteristics of Compton scattering, the system response function of multiple pixel

events is not only a function of the incident gamma-ray energy, but it is also a func-

tion of the incident gamma-ray direction. Therefore, the distribution of the incident

gamma-rays can be deconvolved in spectral and spatial domains simultaneously, and

the deconvolved result represents the distribution of the incident gamma-rays before
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they hit the detector.

The main objective of this work is to develop fast and real-time Compton imag-

ing algorithms for 3-D position-sensitive semiconductor gamma-ray spectrometers,

and to study the various characteristics of the incident gamma-rays based on the

measured Compton scattering events. Chapter II introduces the principles and per-

formances of the 3-D position-sensitive CdZnTe detectors. Because of the detector

limitations, it is not possible to give the order of multiple interactions. For image re-

construction algorithms such as the simple back-projection algorithm and the filtered

back-projection algorithm, sequence reconstruction is necessary and is discussed in

Chapter III. Chapter IV analyzes the factors that contribute to the angular uncer-

tainties of the imager, and models the angular uncertainties caused by individual

factors. Chapter V describes different image reconstruction algorithms applied in

this work, including the 3-D imaging technique which can estimate the source-to-

detector distance when the source is in the vicinity of the detector. Chapter VI

introduces a novel energy-imaging integrated deconvolution method, which decon-

volves the measurement in both the spectral and the spatial domains. The proposed

method provides the distribution of the incident gamma-rays as a function of both

the energy and the direction. Chapter VII describes a method of measuring the

polarization information of the incident gamma-rays, and the method is verified by

experiment results. Finally, summary and future research interests are discussed in

Chapter VIII.



CHAPTER II

3-D POSITION-SENSITIVE CdZnTe DETECTORS

Room temperature semiconductor radiation detectors, such as CdZnTe and HgI2,

are very attractive in many applications. They are usually characterized by high

Z, high density, large band gap, and low average ionization energy per electron-hole

pair. These properties enable these detectors to have high efficiency, to be operated

at room temperature, and to have the potential to achieve high energy resolution.

However, the charge carrier transport properties of these semiconductor materials

are not as good as those in silicon or germanium. The trapping of charge carriers,

especially holes, has limited the thickness of the detectors to a few millimeters for

a long time. Although crystal growth techniques have been improved, the material

non-uniformity is still a limiting factor of the detector size.

Single polarity charge sensing techniques became popular in developments of room

temperature semiconductor detectors because the measured signals depend only on

the movement of electrons. The elimination of signal dependence on the slow-moving,

easily-trapped holes enables the detectors to be made in thicknesses over 10 mm.

In addition, 3-D position-sensing technique overcomes the electron trapping and

material non-uniformity problems by correcting the signal amplitudes as a function

of the 3-D gamma-ray interaction position. As a result, excellent energy resolution

10
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can be achieved.

This chapter first reviews the Shockley-Ramo Theorem, which describes the in-

duced charge on an electrode by motion of charge carriers. Based on the Shockley-

Ramo Theorem, various single polarity charge sensing techniques are discussed. The

3-D position-sensitive CdZnTe detector is described and the current limitations of

the detector system are discussed.

2.1 The Shockley-Ramo Theorem

When a gamma-ray interacts with a detector through one of the three major

interactions, an electron or an electron-positron pair is created. The electron or

positron loses its energy by ionizing the detector material. In a semiconductor de-

tector, electron-hole pairs are created by the ionization process. The number of

electron-hole pairs is proportional to the energy loss of the gamma-ray in the de-

tector. Therefore, by measuring a signal which is proportional to the number of

electron-hole pairs, the initial energy loss of the gamma-ray can be obtained.

To read out the signal, an electric field is applied across the semiconductor detector

to drive electrons towards the anode and holes towards the cathode. The movement

of the charge carriers introduces a signal on the electrodes. The Shockley-Ramo

Theorem provides a way to calculate the induced signal due to the motion of moving

charge carriers[34].

The Shockley-Ramo Theorem states that the change of the induced charge ΔQL

on an electrode L by the movement of charge q from position xi to position xf is

ΔQL =

∫ xf

xi

qE0 · dx = −q[ϕ0(xf ) − ϕ0(xi)] (2.1)

in which E0 and ϕ0 are respectively the weighting field and the weighting potential,

which are defined as the electric field and the potential under the conditions that
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electrode L is at unit potential, all other electrodes are at zero potential, and all

space charges are removed. The weighting potential is a unitless quantity.

From Eq. 2.1, we can see that the change of the induced charge on electrode L

is only determined by the starting and stopping positions of the charge carriers, and

is independent of the actual electric field and the space charges. The actual electric

field only determines the speed and the trajectory of moving charge carriers. Eq. 2.1

provides an easy way to calculate the induced charge on any specific electrode even

in a complicated electrode configuration.

The weighting potential can be determined by solving Poisson’s equation

∇2ϕ0 = − ρ

ε0

(2.2)

in which ρ is the space charge density and ε0 is the permittivity.

Because the weighting potential is calculated under the condition that all space

charges are removed, Eq. 2.2 becomes Laplace’s equation

∇2ϕ0 = 0 (2.3)

For a complicated electrode design such as coplanar grid or pixellated anode, Eq.

2.3 can be solved numerically by electromagnetic field simulation software packages

such as Maxwell 3D from Ansoft.

2.2 Single Polarity Charge Sensing

In gas detectors, ions are much less mobile than electrons. Similarly, in room

temperature semiconductor detectors, the hole mobility is much smaller than the

electron mobility, and the hole trapping problem is much more severe. Therefore, it

is desirable to design an electrode configuration in which the signal from one of the

electrodes depends only on the movement of electrons. This approach is called single

polarity charge sensing.
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2.2.1 Frisch Grids in Gas Detectors

As early as 1944, Frisch first implemented a single polarity charge sensing tech-

nique in gas detectors[35]. In a planar gas detector configuration, a grounded Frisch

grid is placed very close to the anode as shown in Fig. 2.1. The weighting potential

of the anode is calculated by setting the anode potential to unity and the potential

of the cathode and the Frisch grid to zero. As a result, the weighting potential re-

mains zero between the cathode and the Frisch grid, and linearly rises to 1 from the

Frisch grid to the anode. According to the Shockley-Ramo Theorem, the movement

of electrons and ions between the cathode and the Frisch grid introduces no signal

on the anode. Only when electrons pass the Frisch grid and drift towards the anode,

the induced charge on the anode will rise from zero to the total charge carried by

those electrons. Therefore, the output pulse amplitude is only proportional to the

total number of electrons, and is totally independent of the movement of ions.

Incident gamma-ray

Cathode Anode

Frisch Grid

Weighting 

Potential

1

Distance

Cathode Anode

Figure 2.1: Frisch grid detector and the weighting potential distribution of its anode.
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2.2.2 Coplanar Grids

The Frisch grid technique was successful in gas detectors. However, it is imprac-

tical to imbed a metal grid in a semiconductor crystal. In 1994, Luke realized that

single polarity sensing could be implemented on semiconductor detectors by apply-

ing coplanar grid electrodes on the anode[36, 37]. The electrode configuration is

illustrated in Fig. 2.2. The anode surface is applied with a pair of coplanar grid

electrodes which are two groups of alternating strips. A small voltage difference is

applied between the two electrodes so that the electrons always drift towards the one

with higher potential. The anode receiving electrons is referred to as the collecting

anode, and the other anode is referred to as the non-collecting anode. The cathode

voltage is much higher than the voltage between the two anode electrodes so that

the electric field is still uniform in most of the detector volume.

Incident gamma-ray

Cathode

Collecting anode

Non-collecting anode
(a) (b)

Figure 2.2: Electrodes configuration on coplanar grid detectors. (a) Cross-sectional view of the
detector. (b) Anode pattern.

Fig. 2.3 illustrates the weighting potential distribution of each electrode along

a line which is perpendicular to the electrode surfaces and intersects one of the

collecting anode strips at its center, as shown by the dotted line in Fig. 2.2(a).
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This line also resembles the actual trajectories of electrons. From the weighting

potentials, we can see that when electrons are away from the anode surface, they

induce identical charges on the collecting and non-collecting anodes because of the

symmetry between the two electrodes. As electrons approach the collecting anode,

the weighting potential of the collecting anode quickly rises to one, and the weighting

potential of the non-collecting anode quickly drops to zero. The weighting potential

difference between the collecting anode and the non-collecting anode is also shown

in Fig. 2.1. We can see that the shape of the weighting potential difference is very

similar to that of the Frisch grid gas chamber as shown in Fig. 2.2. Therefore, if the

signal is read out by subtracting the non-collecting anode signal from the collecting

anode signal, the readout signal is only proportional to the number of collected

electrons, and single polarity charge sensing is implemented.

Weighting 

Potential

1

Depth

Cathode Anode

φC

φCA

φNA

φCA-φNA

Figure 2.3: Weighting potentials of each electrode in coplanar grid detectors.

2.2.3 Pixellated Anode

Pixellated anode arrays can provide two-dimensional position information of gamma-

ray interactions, which is required in imaging applications. Soon after Luke proposed

the coplanar grid anode design, it was found that the pixellated anode readout signal
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can be made relatively insensitive to the hole movement by carefully selecting the

pixel size[38]. Therefore, detectors with pixellated anode arrays are single polarity

charge sensing devices.

Fig. 2.4 illustrates the weighting potential in a detector with a pixellated anode

array. The detector is 15mm×15mm×10mm in dimension and employs an 11×11

pixel anode array on one 15 mm× 15 mm surface as shown in Fig. 2.5. The depth is

along a line which is perpendicular to the electrode surfaces and intersects the center

of the central pixel anode. As shown in Fig. 2.4, the weighting potential stays very

low when the depth is away from the anode, and increases quickly to one when the

depth is close to the anode. Therefore, as electrons drift towards the pixel anode,

the induced charge on the collecting pixel remains small when the electrons are far

away, and increases quickly when the electrons are in the vicinity of the collecting

anode.

Figure 2.4: Weighting potential in a detector with a pixellated anode array.

From the shape of the weighting potential, it can be seen that interactions on
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the cathode side introduce larger signals than interactions close to the anode side.

However, the electron trapping has the opposite effect. The electron loss is higher

if the electron travel distance is longer. Therefore, by carefully selecting the anode

pixel size and the operating bias voltage, the electron trapping problem and the

slowly rising weighting potential can compensate with each other, thus the energy

resolution can be improved.

2.2.4 3-D Position Sensing

Although the readout signal by applying single polarity charge sensing techniques

is only proportional to the number of collected electrons, the signal amplitude still

depends on the gamma-ray interaction depth due to the electron trapping problem.

The number of collected electrons will be smaller if the gamma-ray interaction occurs

at the cathode side since the travel length of the electrons is longer. For coplanar

grid anode designs, one method to compensate the electron trapping is to apply a

relative gain when subtracting the non-collecting anode signal from the collecting

anode signal(ϕ = ϕCA − G · ϕNA, G < 1). In this way, the signal of a gamma-ray

interaction at the cathode side is higher due to the weighting potential, thus the

electron trapping effect can be compensated.

For pixellated anode designs, although the shape of the weighting potential miti-

gates the effect of the electron trapping problem, the pixel size and the cathode bias

voltage need to be carefully chosen to optimally compensate the electron trapping.

However, since the electron transport properties (mobility μe and lifetime τe) can

vary from detector to detector, it is impractical to optimize the pixel size for every

detector. Even if the pixel size is fixed, there is only one optimal bias voltage under

which the electron trapping can be fully compensated, and that optimal bias voltage

is usually different from the actual operating bias voltage. Since electron trapping is
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depth dependent, He et al. proposed a method to correct the signal as a function of

interaction depth by using the cathode to anode (C/A) ratio[39, 40].

As shown in Fig. 2.3, the cathode weighting potential is a linear function of the

interaction depth. Base on the fact that the μτ product of holes is usually much

lower than the μτ product of electrons in compound semiconductors, holes can be

regarded as stationary during the collecting period of electrons. As a result, the

cathode signal amplitude is only proportional to the number of electrons and the

interaction depth. Since the anode signal amplitude is proportional to the number

of electrons, the C/A ratio

Vc

Va

∝ ne0 · Z
ne0

= Z (2.4)

is proportional to the interaction depth. In Eq. 2.4, n is the number of electrons,

and Z is the distance from the interaction position to the anode.

The depth sensing technique was first applied to coplanar grid detectors as an

alternative method to the relative gain method. However, it can also be applied to

pixellated anode detectors. Together with the 2-D position sensing capability asso-

ciated with the pixellated anode array, this technique can provide the 3-D position

information of gamma-ray interactions in the detector[41].

The spectroscopic performance of a 3-D position sensitive semiconductor detector

is superior due to the following two reasons. The first reason is that the pulse

amplitude can be corrected as a function of the gamma-ray interaction position,

therefore the variation of the pulse amplitude due to charge trapping and material

non-uniformity can be minimized to the extent of the position resolution[42, 43]. The

second reason is that the electronic noise is minimized because the leakage current

and capacitance between the cathode and the anode are shared among all pixel

anodes. Zhang et al. demonstrated that the 3D spectral response can be used to
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study the possible defects in the detector, including electron trapping, variation in

ionization energy, surface defect and variation in weighting potential[44]. In addition

to the superb energy resolution, the 3-D position sensing capability is critical in

gamma-ray imaging applications.

2.3 3-D Position-Sensitive CdZnTe Detector

The 3-D position sensing technique was applied to CdZnTe detectors by He et

al. in 1998. The 3-D position-sensitive CdZnTe detector is illustrated in Fig. 2.5.

The actual size of the detector is 15 mm × 15 mm × 10 mm. The anode surface is

pixellated into an 11× 11 array. The pixel pitch is 1.27 mm× 1.27 mm, which makes

the effective volume of the peripheral pixels larger than the central pixels. In order

to direct those electrons underneath the anode gap to the anode pixels, a steering

grid with a bias slightly lower than the anodes is placed between the anode pixels.

The first design used the C/A ratio to obtain the interaction depth if the incident

gamma-ray deposits all or part of its energy in a single interaction. However, if the

incident gamma-ray interacts more than once in the detector, the ratio between the

cathode signal and the summed anode signal

Vc

Va1 + Va2
∝ n1e0Z1 + n2e0Z2

n1e0 + n2e0
=
n1Z1 + n2Z2

n1 + n2
(2.5)

can only give the centroid depth.

To obtain the individual depth of multiple interactions, the drift time of electrons

is measured. As soon as electrons begin to move, they introduce a signal on the

cathode. However, the anode signals remain small until electrons arrive within one

pitch away from the anode surface as shown in Fig. 2.6. By applying a triggering

threshold and measuring the time difference between the cathode trigger and the

anode triggers, the drift time of each electron cloud from the interaction position
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Figure 2.5: 3-D position-sensitive CdZnTe detector.

to the pixel anode can be measured. Assuming the electric field and the electron

mobility are uniform across the detector, the electron drift velocity is a constant. As

a result, the measured electron drift time can be used to estimate the interaction

depth.

2.3.1 Hardware

The detector crystal was grown by eV Products, Inc. using the high-pressure

Bridgman method. On one 15mm×15mm surface, the anode pixels and the steering

grid were deposited using photolithography techniques. On the other 15mm×15mm

side, the cathode covers the entire surface. The anode surface was glued to a ceramic

plate, in which the anode pixels are wired to the four edges of the ceramic plate on

the opposite side, as shown in Fig. 2.7.

The detector is supported by a polyvinyl chloride(PVC) mount and is placed in

a hole of a hybrid board shown in Fig. 2.8, which has four VAS/TAT application

specific integrated circuit(ASIC) chips. Each ASIC chip contains 32 channels, so
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Figure 2.6: Depth sensing by measuring electron drift time for multiple interaction events.

there are 128 channels all together, among which 4 special channels are reserved

for the cathode and anode grid signals. In actual measurements, only one cathode

channel is used. The redundancy is due to the fragility of the cathode preamplifiers on

the ASIC. The gold fingers on the ceramic plate are connected to the hybrid board

through wirebonding. The ASIC hybrid board is connected to a controller card,

which acts as an interface between the hybrid board and a data acquisition(DAQ)

card in a computer.

Each channel in the ASIC contains a VAS circuit and a TAT circuit, as shown

in Fig. 2.9. The VAS is used to measure the signal amplitudes and has a fixed

shaping time of 1 μs. The TAT has a much faster shaping time of 75 ns and has a

time-to-amplitude converter (TAC) to measure the electron drift time. The TAT also

provides the trigger for the system. If the signal from a TAT shaper exceeds a preset

threshold, a trigger is generated for the corresponding channel. The system can be
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(a) (b)

(c)

Figure 2.7: A 15 mm × 15 mm × 10 mm 3-D position-sensitive CdZnTe detector. (a) The cathode
side. (b) The ceramic plate glued to the anode side. (c) A broken detector shows the
anode structure and the ceramic plate facing the detector anode.

triggered by either the cathode or any of the anodes. The threshold for the cathode

can be adjusted through a rheostat on the controller card, while the anode threshold

can be adjusted through software. The threshold levels for all anode channels can

be adjusted channel by channel.

If a gamma-ray deposits its energy in the detector through one or more interac-

tions, as shown in Fig. 2.5, normally the cathode signal will first pass the trigger

threshold of the cathode channel and therefore triggers the whole system. The signal

from the cathode is sent to the VAS channel and its amplitude is held there. The

signals from the anode pixels then trigger their corresponding TAT channels one

after another, and are held in their corresponding VAS channels. After a fixed delay
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Figure 2.8: A 3-D CdZnTe detector mounted to a hybrid board.

from the first trigger, all the 128 ASIC channels (including both VAS and TAT) are

read out by the controller card sequentially, and the signals are digitized by the DAQ

card in the computer. The delay time between the first trigger and the read out is

long enough for all electrons to be collected. The total time for all 128 channels to

be read out is about 500μs, which limits the highest count rate of the system to be

2000cps.

2.3.2 Performance

After the data is collected, the interaction depth can be obtained by the C/A

ratio or the electron drift time, and the energy can be corrected as a function of the

interaction depth. To obtain the correction data, the detector needs to be calibrated

before use. Fig. 2.10 shows the depth separated spectra of one anode. As shown

in the figure, the photopeak position varies at different depths due to the weighting
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Figure 2.9: Illustration of the VAS channel and the TAT channel.

potential and the electron trapping. A gain factor can be obtained from the spectra

for each depth and the energy deposited in the detector can be corrected.

After proper calibration procedures, the 3-D position sensitive CdZnTe detector

can provide excellent energy spectra with full width half maximum (FWHM) below

1% at 662 keV for single-pixel events, and below 1.5% at 662 keV for two-pixel

events[29, 45].

The position resolutions in the lateral directions are determined by the anode

pixel size. In the 15 mm × 15 mm × 10 mm detector, the pixel size is about 1.3 mm.

The depth information for single-pixel events can be obtained from either the C/A

ratio or the electron drift time. Due to the poor timing resolution, the C/A ratio

is always used to derive the interaction depth for single-pixel events, and the depth

uncertainty is estimated to be 0.25 mm. For multi-pixel events, the depth information

can only be determined by the electron drift time. To take advantage of the better

depth resolution of the C/A ratio, a second order fit of the relationship between

the electron drift time and the C/A ratio is generated from the single-pixel events

during the calibration process. For multi-pixel events, the electron drift time is first
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Figure 2.10: Depth separated spectra for single-pixel photopeak events at 662 keV.

converted into the corresponding C/A ratio, and the signal amplitude is corrected

using the C/A ratio. The depth uncertainty for multi-pixel events is estimated to be

0.4 mm based on the timing resolution of 30ns FWHM of the TAT3[45].

Fig. 2.11 shows the timing spectra separated by the depth obtained by C/A ratio.

The total span of the timing spectrum is about 200 channels, which corresponds to

the total time required for electrons to drift from the cathode to the anode. At each

depth, the FWHM of the timing spectrum is about 8 channels, which confirms the

depth uncertainty obtained by the electron drift time is about 8/200 × 10 mm =

0.4 mm. Fig. 2.12 shows the relationship between the timing spectra peak centroid

and the depth by the C/A ratio. A linear fit reveals there is non-linearity between

the drift time and the C/A ratio. This is because there are non-linear factors in
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Figure 2.11: Timing spectra separated by C/A ratio for single-pixel photopeak events at 662 keV.

both the C/A ratio and the drift time as a function of the interaction depth. Those

non-linear factors include the slowly rising weighting potential, electron trapping,

hole movement and the triggering threshold. A second order fit accounts for most of

the non-linearity.

2.3.3 Demonstration of the 3-D Position-Sensing Technique by Muon Tracks

Muon tracks were observed for the first time in a single semiconductor detector

as a demonstration of the 3-D position-sensing capability.

The upper atmosphere of the earth is bombarded continuously by high energy

cosmic rays which can carry energies up to 1020 eV. A high energy cosmic ray

interacts with the upper atmosphere and creates a cascade of various consequential

particles, which is known as the Extensive Air Shower (EAS). When this cascade

reaches the ground, the most numerous particles are muons, which have an average

energy of about 4 GeV[46]. Like electrons, muons are leptons with unit negative
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Figure 2.12: Timing spectra peak centroid vs. depth by C/A ratio.

charges. The mass of a muon is 206.768 times the mass of an electron.

The specific energy loss (-dE/dx) of a relativistic charged particle in a certain

material approaches a constant as the energy of the charged particle increases. Those

relativistic charged particles are also referred to as “minimum ionizing particles”.

Muons at sea level with 4 GeV average energy fall into this category. Those muons

can easily penetrate the 15 mm× 15 mm× 10 mm CdZnTe detector and leave tracks

of electron hole pairs by ionization.

For minimum ionizing particles, the energy loss in a material is roughly propor-

tional to the density of the material. The sea level cosmic ray muons deposit 5.92

MeV/cm in CsI[47] and 4.8 MeV/cm in NaI[48]. According to the mass densities of

CsI, NaI, and CdZnTe, the specific energy loss of sea level muons in CdZnTe material

can be estimated to be 7.6 MeV/cm. The muons have enough energy to penetrate

the whole detector, thus about 10 MeV energy is deposited across the detector in one
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event. The highest energy gamma-rays from the natural background are the 2.614

MeV photons from the decay of 208Tl, which is a daughter product in the decay chain

of 232Th existing in soil or concrete. Therefore, a high cathode threshold can sep-

arate the muon tracks from most of the natural gamma-ray background. Fig. 2.13

shows four muon tracks observed in a 3-D position-sensitive CdZnTe detector. Each

cube stands for an energy deposition under a pixel. The volume of each cube rep-

resents the position uncertainty of the detector, and the color represents the energy

deposited under the pixel.

Figure 2.13: Some muon tracks observed in a 3-D position-sensitive CdZnTe detector.

For horizontal detectors, the muon flux at sea level is empirically estimated to be

around 1 cm−2min−1. The overall angular distribution is proportional to cos2 θ, in

which θ is the angle between the muon direction and the zenith.

The 3-D CdZnTe detector has a dimension of 15 mm × 15 mm × 10 mm. The
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expected count rate of muons entering the detector from the top surface is therefore

2.25 min−1, which is smaller than the measured count rate of 4.2 min−1. However,

muons can also enter the detector from the four sides, as shown by the first muon

track in Fig. 2.13. By using the cos2 θ approximation, the ratio of the count rates

for muons to enter a vertical detector and a horizontal detector can be estimated by

φ⊥
φ‖

=

∫ ∫
2π

cos2 θ sin θ sinϕdΩ∫ ∫
π
cos2 θ cos θdΩ

=
1

4
(2.6)

Therefore, the count rate of the muons entering the detector from the four sides

is 1/4 × 4 × 1.5 cm2 × 1 cm−2min−1 = 1.5 min−1. The total expected count rate is

therefore about 3.75 min−1, which is quite close to the measured rate.

The difference between the expected and the measured count rate can be caused

by other high energy electromagnetic components in cosmic ray air showers such as

electrons, positrons and photons. Those components are created by the decay of

muons and sensitively depend on altitude.

2.4 Detector System Limitations

2.4.1 Anode Threshold

Although the anode triggering threshold can be adjusted channel by channel, the

variations in the baseline and noise of each channel make the actual anode triggering

amplitudes nonuniform. The current VAS3.1/TAT3 system has an anode triggering

threshold of about 30 keV[45].

2.4.2 ASIC Dynamic Range

The VAS3.1/TAT3 ASIC has a dynamic range up to 1.6 MeV for each anode

channel. For higher energy gamma-rays, the photons can still deposit all their energy

in multiple pixel events. As a result, the detector system is capable of imaging

gamma-rays with energy higher than the dynamic range of the ASIC[49]. However,
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the dynamic range lowers the efficiency of imaging high energy gamma-rays because

all energy depositions are required to be below the dynamic range. New ASIC under

development will have a dynamic range of up to 3 MeV.

2.4.3 Charge Sharing between Neighboring Pixels

Electrons generated by a single gamma-ray interaction can be collected by two

neighboring pixels. The charge sharing between two pixels is mainly due to the

finite electron cloud size, the diffusion of electrons, and the x-ray emission following

a photoelectric absorption. Larger pixel size can help to decrease the fraction of

charge sharing events and requires fewer ASIC channels. On the other hand, a

smaller pixel can provide better spectroscopic performance because it is better for

single polarity charge sensing, and it has lower noise due to lower anode leakage

current and capacitance. Moreover, a smaller pixel has better position resolution

and can lower the probability of multiple interactions occurring under the same

pixel. Du et al. estimated that in a 1 cm thick CdZnTe detector biased at -2000

V, the probabilities for a single interaction to be recorded as a multi-pixel event at

662 keV are 0.45 and 0.17 at pixel size of 0.5 mm and 1.5 mm, respectively[50]. Du

et al. also suggested the pixel size to be 1.1 mm to maximize the probability of

independently recording each gamma-ray interaction in the 3-D CdZnTe detector.

In Compton imaging, charge sharing events are not desired because they are not

truly Compton scattered events although they are recorded as multi-pixel events.

However, the charge sharing events can be distinguished from Compton scattered

events by the relative positions of the two energy depositions. If the electron cloud

generated by a single energy deposition is collected by two pixels, the two pixels

must be neighboring to each other. Because the electrons collected by the two pixels

are from the same energy deposition, they should reach the anode pixels at the same
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time. Therefore, the depths of the two pixels in a charge sharing event should be

very close to each other.

A Monte-Carlo simulation using Geant4[51] was performed to study the relative

position distribution of two-pixel events. Unless otherwise specified, all Geant4 sim-

ulations presented in this work use a 662 keV gamma-ray flood source illuminating

a 15 mm× 15 mm× 10 mm CdZnTe detector from the 15 mm× 15 mm cathode side,

and the electrode configuration is as shown in Fig. 2.5.

Fig. 2.14(a) and 2.14(b) respectively show the depth difference distributions for

neighboring and non-neighboring two-pixel events. In the simulation, the factors

causing charge sharing are not included. These factors include the electron cloud size,

the x-ray emission following a photoelectric absorption, and the electron diffusion.

If the two pixels are not neighboring to each other, there is no charge sharing. As

a result, the measurement agrees well with the simulation. However, if the two

pixels are neighboring to each other, the measurement shows that a much larger

amount of the two-pixel events have depth differences less than 2 mm, while the

measurement agrees with the simulation when the depth difference is greater than

2 mm. By excluding those neighboring two-pixel events with depth difference less

than 2 mm, most charge sharing events can be eliminated. Although by doing so

some true Compton scattered events are also excluded, the imaging performance is

not affected too much because those events have poor angular resolution due to the

small separation between the two interaction positions.

2.4.4 Multiple Interactions under One Pixel

Due to the finite size of the anode pixels, it is possible that the incident gamma-ray

interacts two or more times under the same pixel. Because the current system can

only provide one trigger from one pixel, the multiple interactions are recorded as a
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single interaction. For single pixel events, the depth is obtained by C/A ratio, which

is proportional to the centroid depth of the two interactions. However, for multiple

pixel events, the depth is obtained by the electron drift time. Since the anode pixel

is triggered by the first group of electrons arriving at the anode, the measured depth

is the interaction closer to the anode side. Because the other group of electrons away

from the anode side suffer more trapping, the corrected energy is smaller than the

true total energy deposited. As a result, for those multiple pixel events with two or

more interactions under the same pixel, both the energy and position information

are incorrect.

Table 2.1 shows the simulation results of multiple interactions under one pixel at

662 keV. In the Geant4 simulation, x-ray emissions are not included since those x-

rays deposit their energy very close to the initial photoelectric absorption positions.

As we can see, about 20% of the photopeak events have multiple interactions under

the same pixel. This number increases as the gamma-ray energy and detector pixel

size increase.

Table 2.1: Simulated Multiple Interactions under One Pixel Anode at 662 keV (Pixel Sharing)

Photopeak Percentage of

Efficiency Pixel Sharing Events

Single-pixel 4.77% 19.0%

Two-pixel 4.55% 19.9%

Three-pixel 1.61% 20.2%

Four-pixel 0.23% 20.5%

Total 11.2% 19.6%

Fig. 2.15 shows the depth difference distribution of the pixel sharing photopeak

events. The quick drop of the distribution as the depth difference increases can be

explained by the fact that the solid angle under the same pixel decreases quickly as

the distance increases. Therefore, as the scattered photon travels longer distance,
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it is more likely to leave the pixel volume. The average distance is about 0.6 mm,

which is only slightly larger than the depth uncertainty measured by the electron

drift time. As a result, although as many as 20% of the photopeak events have

multiple interactions under the same pixel, the effect introduced by those events to

energy correction and Compton imaging is very small.
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(a) Neighboring two-pixel events.

(b) Non-neighboring two-pixel events.

Figure 2.14: Depth difference distribution of neighboring and non-neighboring two-pixel photopeak
events at 662 keV.
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Figure 2.15: Depth difference distribution between two interactions under the same pixel.



CHAPTER III

SEQUENCE RECONSTRUCTION

Because of the small size of 3-D position-sensitive CdZnTe detectors, the sep-

aration distance between interactions is short. The poor timing resolution of the

detector does not allow direct time-of-flight measurement to determine the interac-

tion sequence. As a result, if an N -pixel event is recorded, there are N ! possible

sequences. The sequence reconstruction is to select the most probable sequence

among all the possible sequences. For image reconstruction algorithms such as the

simple back-projection algorithm or the filtered back-projection algorithm, the se-

quence reconstruction is helpful to improve the signal-to-noise ratio and the image

resolution. As this work is mostly focused on imaging with two-pixel events, only the

sequence reconstruction methods for two-pixel events are discussed. If a gamma-ray

does not deposit all its energy in a two-pixel event, the incident gamma-ray energy

can only be assumed to be the sum of the two deposited energies if the initial energy

is unknown. In this case, the reconstructed back-projection cone does not pass the

source direction even with the correct sequence. As a result, the sequence reconstruc-

tion is less important for partial energy deposition events. Therefore, this chapter

only discusses the sequence reconstruction methods for full-energy two-pixel events.

36
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3.1 Simple Comparison Method

Although the measurement can not give the interaction sequence, the kinematics

of Compton scattering can provide some information to determine the correct se-

quence. From the Compton scattering formula of Eq. 1.1, we know that the energy

deposited in a Compton scattering event is maximum when the scattering angle is

at 180◦. The maximum deposited energy in the first scattering is

max(E1) = E0 −E ′|θ=180◦ =
E0

1 +mec2/(2E0)
(3.1)

in which E1 is the energy deposited in a Compton scattering event.

In gamma-ray spectroscopy, max(E1) is the Compton edge in a typical gamma-

ray spectrum. A gamma-ray can not deposit more energy than the Compton edge in

a Compton scattering. In other words, the first interaction of a two-pixel event must

be a Compton scattering and its energy deposition must be less than the Compton

edge. Therefore, if one of the energy depositions in a two-pixel event is greater

than the Compton edge, the sequence can be determined by setting the other energy

deposition as the first interaction. This is called the Compton edge test.

Lehner proposed a sequence reconstruction method for two-pixel events by simply

comparing the energies deposited[30, 49]. When the incident gamma-ray energy is

above 400 keV, the interaction with the higher energy deposition was selected as the

first interaction. After that, the Compton edge test is applied. If the sequence fails

the Compton edge test, either the sequence order is incorrect or the full energy is not

deposited in the two interactions. In both cases, this event is rejected. As we can

see, although this method can eliminate some partial-energy events, it also rejects

some full-energy events which could be correctly identified because the Compton

edge test denies one possible sequence and leaves the other sequence as the only
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choice. Therefore, in this study, the sequence reconstruction is performed by doing

the Compton edge test before the energy comparison. By this way, the probability

of correctly identifying the sequence of a two-pixel event is maximized.

When the incident gamma-ray energy is below mec
2/2, the Compton edge is less

than E0/2 from Eq. 3.1. As a result, if the second interaction is a photoelectric

absorption and the full energy of the incident gamma-ray is deposited, the energy

deposition of the first interaction, which is a Compton scattering, is always less than

E0/2, and the energy deposition of the second interaction, which is a photoelectric

absorption, is always greater than E0/2. Therefore, the sequences of incident gamma-

rays with energy less than mec
2/2 can be always correctly reconstructed by selecting

the smaller energy deposition as the first interaction.

For incident gamma-rays with energy greater than mec
2/2, there is possibility

that both interactions deposit energies less than the Compton edge for full-energy

deposition events. In fact, only those events with scattering angles less than ω1 can

be identified by the Compton edge test, where ω1 is defined by

cosω1 = 1 − (mec
2)2

2E2
0

(3.2)

Another angle ω2, at which the incident gamma-ray deposits half of its energy in

the Compton scattering, is defined by

cosω2 = 1 − mec
2

E0
(3.3)

For incident gamma-rays with energy greater than mec
2/2, we have the relation-

ship of 0 < ω1 < ω2 < π. We can divide the two-pixel events into three groups:

1. Events with scattering angles between 0 and ω1. These events can always be

identified by the Compton edge test. The energy deposition in the first interac-

tion is less than the second interaction.
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2. Events with scattering angles between ω1 and ω2. The energy deposition in the

first interaction is the lower of the two.

3. Events with scattering angles between ω2 and π. The energy deposition in the

second interaction is the lower.

Geant4 simulations were run to study the fractions of full-energy two-pixel events

in the three groups as a function of the incident gamma-ray energy. The result

is shown in Fig. 3.1. In the simulations, the incident gamma-ray directions were

randomly simulated in a parallel beam with radius of 1.2 cm, which is large enough

for the beam to cover the whole detector from any direction. The direction of the

beam is uniformly sampled in 4π. As a result, the numbers in Fig. 3.1 do not

represent the intrinsic photopeak efficiencies of two-pixel events. For pixel sharing

events, the pixel with the first interaction was set as the first pixel. Since there are

multiple interactions under the same pixel, it is possible that the energy deposition

under the first pixel is larger than the Compton edge. These events do not belong

to any of the three groups and will be incorrectly sequenced. As a result, the sum

of the counts of the three groups is slightly smaller than the total number of counts.

As we can see in Fig. 3.1, when the incident gamma-ray energy is less than

mec
2/2, almost all two-pixel events can be correctly sequenced by the Compton edge

test. When the gamma-ray energy is greater than mec
2/2, for those events in group

2 and group 3, which can not be sequenced by the Compton edge test, group 3 has

more counts than group 2 at all energies. This means that for those events that can

not be identified by the Compton edge test, the probability for the first interaction to

deposit more energy is always higher than the second interaction, and this probability

increases as the incident gamma-ray energy increases.

The simple comparison method is therefore stated as
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Figure 3.1: Fractions of full-energy two-pixel events in the three different groups as a function of
the incident gamma-ray energy.

1. If one of the two interactions deposits more energy than the Compton edge, the

interaction with the smaller energy deposition is selected as the first interaction.

2. Otherwise, the interaction with the larger energy deposition is selected as the

first interaction.

With this method, all the events in group 1 and group 3 are correctly sequenced,

and the events in group 2 are incorrectly sequenced. The overall efficiency of the

simple comparison method is shown in Fig. 3.2. The method is the least efficient at

energy around 400 keV. The high efficiency at the low energy end is because most

of the events can be correctly sequenced by the Compton edge test. The higher

efficiency at the high energy end is because more events deposit higher energies in

the first interaction.

The results shown in Fig. 3.1 is for a 15 mm × 15 mm × 10 mm 3-D CdZnTe

detector. If the size of the detector increases, the factions of the two-pixel events in
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Figure 3.2: Fraction of simulated full-energy two-pixel events which are correctly sequenced by the
simple comparison method and the deterministic method.

the three groups can change. In a real detector, the measured Compton scattering

angle distribution usually differs from the prediction given by the Klein-Nishina

formula (see Section 5.2.4). Because the back scattered photons have less energy

than the forward scattered photons, those back scattered photons are easier to be

captured. Therefore, the measured scattering angle distribution favors those large

angle scattering events. As the detector size increases, more small angle scattering

events will be captured and the measured scattering angle distribution will be closer

to the prediction given by the Klein-Nishina formula. However, as shown in Fig. 3.3,

even with the theoretical prediction given by the Klein-Nishina formula, a Compton

scattering is more probable to fall in group 3 than group 2. As a result, the simple

comparison method can also be applied to a CdZnTe detector larger than 15 mm ×
15 mm × 10 mm.
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Figure 3.3: Klein-Nishina cross section in the three different groups as a function of the incident
gamma-ray energy. When the incident gamma-ray energy is less than mec

2/2, all
scattering events fall in group 1, which can be correctly sequenced by the Compton
edge test.

3.2 Deterministic Method

The deterministic method simply chooses the sequence with the higher probabil-

ity. Kroeger described a deterministic method to determine the sequence of three

measured interactions[25]. For two-pixel events, the deterministic method is even

simpler. The probability for a incident photon to create a two-pixel event with

sequence of (E1, r1) → (E2, r2) can be expressed as

Pr{An incident photon creates a two-pixel event with sequence of (E1, r1) → (E2, r2)}
= Pr{The incident photon reaches r1}

·Pr{The incident photon is scattered and deposits E1}

·Pr{The scattered photon reaches r2}
·Pr{The scattered photon is photoelectric absorbed} (3.4)



43

The system response function developed in Chap. VI gives the probability of

each sequence. Specifically, Eq. 6.28 gives the probability for a incident photon

to deposit its full energy in a two-pixel event. The deterministic method uses Eq.

6.28 to calculate the probability of each sequence and chooses the sequence with the

higher probability. The efficiency of the deterministic method is shown in Fig. 3.2.

Although the deterministic method is considered to be a better method because it

uses a more complete model than the simple comparison method, it can be seen that

the efficiencies of the two methods are almost identical at all energies. While the sim-

ple comparison method only uses the information provided by the deposited energies

in the two interactions, the deterministic method takes advantage of the interaction

position information as well. In other words, the simple comparison method only

accounts for the scattering and absorption probabilities in Eq. 3.4, but the deter-

ministic method also accounts for the attenuation probabilities. Because of the small

size of the detector, there is not much difference between the attenuation probabil-

ities for both sequences, especially for gamma-rays with energy of several hundred

keVs. For example, if E1 = 400 keV, E2 = 800 keV, and |r1 − r2| = 5 mm, the ratio

between the attenuation probabilities of the two sequences is only 1.13. Considering

that for a 15mm×15mm×10mm CdZnTe detector, the average separation distance

between two-pixel events is only a few milimeters, the actual contribution of the po-

sition information to the sequence determination is even smaller. The deterministic

method is expected to have a better performance for larger detectors.

3.3 Deterministic Method with Known Source Direction

The above discussion of the sequence reconstruction methods is based on the

assumption that there is no a priori information about the source direction. As a
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fact, the probability of Eq. 3.4 is the sum of the system response function (Eq.

6.28) over all source directions. However, since the system response function gives

the probability of a gamma-ray from a specific direction to create the measured

two-pixel event, the deterministic method performs better if the direction of the

incident photons is known. The method examines the angle between the known

source direction and the back-projection cone of each sequence, and gives more weight

to the sequence with the back-projection cone closer to the source direction.

The efficiency of the deterministic method with known source direction is also

shown in Fig. 3.2. It can be seen that the efficiency is improved over almost all the

energy range.

(E1, r1)

(E2, r2)

θ1

θ2

Back-projection cone of 

the correct sequence

Back-projection cone of 

the incorrect sequence

Figure 3.4: The two back-projection cones of a two-pixel event. The correct sequence is (E1, r1) →
(E2, r2). In far field imaging, the two back-projection cones overlap with each other
when θ1 + θ2 = 180◦.

As illustrated in Fig. 3.4, when the calculated scattering angles of the two possible

sequences add up to 180◦ exactly, the two back-projection cones are identical if the

separation between the two interactions can be neglected (far field imaging). In this

case, the known source direction does not help in determining which sequence is

more probable. The average difference between θ1 + θ2 and 180◦ as a function of the
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incident gamma-ray energy is calculated by simulations, and the result is shown in

Fig. 3.5. As we can see, the difference between θ1 + θ2 and 180◦ is the smallest when

the incident gamma-ray energy is around 511keV. Therefore, the a priori knowledge

of the source direction has the least effect in improving the sequence identification

around 511 keV.

Figure 3.5: The average difference between θ1 + θ2 and 180◦, E(|θ1 + θ2 − 180◦|), is calculated by
simulations. The full energy two-pixel events that can not be identified by the Compton
edge test were used. When the gamma-ray energy is below mec

2/2, all full energy two-
pixel events can be correctly identified by energy depositions.

If there is a priori knowledge that the source is a point source, a quick simple

back-projection can be first applied to identify the source direction, which can be

used to improve the sequencing efficiency in the next image reconstruction. However,

if there are other sources at different directions, the sequencing efficiency for gamma-

rays from those sources is artificially degraded. Therefore, this method should be

used with great care in practice.

In summary, the deterministic method shows little advantage over the simple com-

parison method when the detector size is small. Therefore, the simple comparison

method is used throughout this work whenever the sequence reconstruction is neces-
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sary. With larger detector size or detector arrays, the deterministic method will be

more efficient at identifying the correct sequence.



CHAPTER IV

ANGULAR UNCERTAINTIES

Compton imaging requires the intersection of many back-projection rings to form

the source image. The imaging concept itself already introduces an uncertainty in

the reconstructed image because only a small portion of each back-projection ring

passes through the true source location. This effect is usually referred to as “Comp-

ton ring effect”, which can be removed by applying certain reconstruction algorithms

such as Filtered Back-Projection algorithm(FBP). In addition to the Compton ring

effect intrinsic to Compton imagers, there are other factors causing the uncertainty in

the reconstructed image due to the imperfection of the detector system and natures

of Compton scattering. Those factors include the position and the energy uncer-

tainties of the detector, Doppler broadening, and coherent(or Rayleigh) scattering.

This chapter discusses those factors and compares their contributions to the angular

resolution of the reconstructed image.

4.1 Angular Resolution Measurement

Because of the detector uncertainties, the back-projection cone reconstructed from

the measured data often does not pass the actual source direction. A Compton cam-

era’s angular resolution is usually described in terms of the Angular Resolution Mea-

surement(ARM), which is the angle between the reconstructed back-projection cone

47
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and the actual source direction. Sometimes the ARM is also referred to as Angular

Resolution Metric. As shown in Fig. 4.1, a gamma-ray from the source deposits en-

ergy E1 at position r1 in a Compton scattering, and deposits energy E2 at position

r2. Because of the position and the energy uncertainties, the measurement gives the

values of (E1m, r1m) and (E2m, r2m) respectively. As a result, the back-projection

cone does not pass the true source direction. The ARM is the difference between θr

and θe, in which, θr is calculated from the measured interaction positions and the

true source location, and θe is calculated from the measured energy depositions by

the Compton scattering formula. θr and θe can be obtained by

θr = cos−1 (r1m − r0) · (r2m − r1m)

|r1m − r0||r2m − r1m| (4.1)

and

θe = cos−1

(
1 +

mec
2

E1m + E2m
− mec

2

E2m

)
(4.2)

Source

θe

θr

(E1, r1)

(E2, r2)

(E0, r0)

(E1m, r1m)

(E2m, r2m)

ARM=θr-θe

Figure 4.1: The Angular Resolution Measurement.

There are two assumptions in Eq. 4.2. The first assumption is that the incident

gamma-ray energy is unknown, and the second assumption is that the gamma-ray

deposits all its energy in the two interactions. If the incident gamma-ray energy is
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known, the Compton scattering angle will then be independent of E2m. The two

assumptions applied to Eq. 4.2 are adopted throughout this chapter.

4.2 Factors Contributing to the ARM

There are several factors contributing to the ARM, including the position and the

energy uncertainties of the detector, Doppler broadening, and coherent scattering.

Geant4[51] simulations were run to study their contributions to the ARM. In the

simulations, a point source was placed 50 cm away from the cathode. Each ARM

contribution factor was included into the simulations separately, so that those factors

can be studied individually.

In the study of the ARM distribution caused by a certain factor, the ARM dis-

tribution varies in different event groups. For example, if the distances between the

two interaction positions are different, the ARM distribution caused by the position

uncertainties can be different. Different scattering angles can also result in differ-

ent ARM distributions when considering the energy uncertainty and the Doppler

broadening effect. In actual reconstruction, the angular resolution can be improved

by selecting those events with large distance separation or with certain scattering

angle at the expense of efficiency. In this section, only the overall ARM distribu-

tions are studied to estimate the most dominating factors in determining the angular

resolution of a single 15 mm × 15 mm × 10 mm 3-D CdZnTe detector.

4.2.1 Detector Position Uncertainties

Because of the finite size of the anode pixels and the finite timing resolution,

the 3-D position-sensitive CdZnTe detector has position uncertainties of 1.3 mm in

lateral coordinates and 0.4 mm FWHM in depth for multiple-pixel events[45]. In

the simulation, if a gamma-ray deposits energy under a pixel, the pixel center was
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used as the lateral position of the interaction. A Gaussian uncertainty with 0.4 mm

FWHM was added to the actual interaction depth to give the measured interaction

depth. The true deposited energies were used to calculated the Compton scattering

angle. The ARM distribution of two-pixel photopeak events at 662 keV is shown in

Fig. 4.2. The standard deviation of the ARM distribution is 12.4◦.

Figure 4.2: The ARM distribution of two-pixel photopeak events at 662 keV due to the detector
position uncertainties.

It can be seen that the ARM distribution does not strictly follow a Gaussian

distribution, and there is some asymmetry in the distribution. The non-gaussian

shape is mostly due to the fact that this distribution is the superposition of the

ARM distributions from the events with different distance separations.

4.2.2 Detector Energy Uncertainties

In most gamma-ray detectors, the overall energy resolution can be modeled by the

quadrature sum of the electronic noise, the statistical fluctuation, and other noises,
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as shown by

FWHM2
overall = FWHM2

noise + FWHM2
statistical + FWHM2

drift + · · · (4.3)

The statistical fluctuation in semiconductors is usually modeled as[52]

FWHMstatistical = 2.35
√
F · E ·W (4.4)

in which, F is the Fano factor, E is the gamma-ray energy, and W is the average

ionization energy. In CdZnTe, W is typically 5 eV.

In semiconductor materials, the Fano factor is usually less than one, and the mea-

sured value for CdZnTe is around 0.1[53]. However, in the 3-D position-sensitive

CdZnTe detector, many other statistical factors can contribute to the energy resolu-

tion, such as the depth uncertainty and electron trapping. As a result, the measured

energy resolution depends more on the statistical contributions. Therefore, although

the variance in the number of generated charge carriers is only 0.1 of the Poisson

predicted variance, the overall signal variance due to statistics is high. To account

for this effect, based on the measured resolutions at different gamma-ray energies, a

Fano factor of unity was assumed in the simulations. The electronic noise was set to

5 keV based on the measurement results. Therefore, the FWHM at energy E is

FWHMoverall =
√

25 + 2.352F · E ·W (keV ) (4.5)

which corresponds to about 1% FWHM at 662 keV as observed in experiments.

Fig. 4.3 shows the ARM distribution caused by the detector energy uncertainty.

The ARM distribution has a standard deviation of 2.03◦. The non-Gaussian shape

is also evident in the distribution. Similar to the reason causing the non-Gaussian

shape in the ARM distribution in Fig. 4.2, the non-Gaussian shape is due to the

different ARM variances in events with different scattering angles. Fig. 4.4 shows the
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Figure 4.3: The ARM distribution of two-pixel photopeak events at 662 keV due to the detector
energy uncertainty.

ARM distribution of those events with scattering angles of 90◦±2.5◦. It can be seen

that for those events with fixed scattering angle, a Gaussian model can describe the

ARM distribution very well. However, since events with different scattering angles

have different ARM distributions, the superimposed total ARM distribution exhibits

a non-Gaussian shape. For individual events, a Gaussian model is adequate to model

the angular uncertainty.

4.2.3 Doppler Broadening

The Compton scattering formula (Eq. 1.1) is based on the assumption that the

initial electron is at rest. In reality, electrons in atoms have momenta, which intro-

duce uncertainties in the scatters. As a result, the energy of the scattered photon

at a specific scattering angle shows some distribution around the value predicted by

the Compton scattering formula. The effect is called Doppler broadening.

In the Geant simulations, the Penelope model[54] was applied to take into ac-
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Figure 4.4: The ARM distribution of two-pixel photopeak events at 662 keV due to the detector
energy uncertainty. The scattering angles of those events are within 90◦ ± 2.5◦.

count Doppler broadening and the binding energy of electrons. In the Penelope

model, scatters with bound electrons are only allowed when the transferred energy

is greater than the ionization energy of the electrons. The binding effect affects the

ARM distribution very little because it only impacts those scatters with very small

scattering angles, which are only a small portion of the total cross section. Therefore,

the ARM distribution simulated by the Penelope model is mainly due to the Doppler

broadening effect. Fig. 4.5 shows the simulated ARM distribution due to Doppler

broadening. The distribution shows a standard deviation of 8.43◦.

Doppler broadening is related to the distribution of the electron momentum, which

is broader in materials with high atomic numbers. As a result, Doppler broadening

is the most severe in high Z materials. This is the reason why researchers prefer

silicon as the first detector in designs of high resolution Compton cameras, although

efficiency is sacrificed. In CdZnTe detector, due to the relative high atomic number,
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Figure 4.5: The ARM distribution of two-pixel photopeak events at 662 keV due to Doppler broad-
ening.

Doppler broadening can be an important factor limiting the angular resolution.

4.2.4 Coherent Scattering

In a coherent scattering (also known as Rayleigh or Thomson scattering), the

incident photon interacts with the whole atom in a way that the photon changes its

direction without losing its energy. If a coherent scattering occurs before the first

Compton scattering or between the Compton scattering and the photoelectric ab-

sorption, the reconstruction cone will be displaced. Fig. 1.3 indicates that in CdZnTe

detectors, coherent scattering is more important than Compton scattering when the

gamma-ray energy is below 100 keV. But as the gamma-ray energy increases, the co-

herent scattering cross section decreases quickly. In the imaging energy range from

300 keV to several MeV for the CdZnTe detector, coherent scattering is unlikely

to happen before the first interaction. However, the incident gamma-rays can be

Compton scattered into lower energies, at which coherent scattering becomes more
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common. Meanwhile, the photoelectric effect also becomes important at low energies

and its cross section is usually one order of magnitude higher than that of coherent

scattering. Therefore, only a small portion of the scattered photons will be coher-

ent scattered before being photoelectric absorbed. Fig. 4.6 shows the fraction of

two-pixel photopeak events in which a coherent scattering occurs before the incident

gamma-ray is fully absorbed. At 662 keV, only about 3.5% two-pixel photopeak

events involve coherent scattering.

Figure 4.6: Percentage of two-pixel photopeak events that are coherent scattered before the gamma-
rays are fully stopped.

Fig. 4.7 shows the ARM distribution of those two-pixel photopeak events which

involve coherent scattering at 662 keV. The standard deviation of the distribution is

9.76◦. However, those coherent scattered events are only a small fraction of the total

events. For those events that are not coherent scattered, the ARM is zero since no

other ARM contribution factors are considered. The overall standard deviation of
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the ARM distribution including all events is only 1.84◦.

Figure 4.7: The ARM distribution of two-pixel photopeak events at 662 keV that are coherent
scattered before the gamma-rays are fully stopped.

4.2.5 Comparison of the Factors Contributing to the ARM

The standard deviations of the ARM distributions due to the above four factors

are shown in Fig. 4.8. Only two-pixel full-energy deposition events are considered.

Although pair production becomes possible when the gamma-ray energy is greater

than 1.022 MeV, it does not affect the results presented in Fig. 4.8 due to the fact

that if a pair production occurs and the full energy is deposited, the event must be

an at least three-pixel event.

It can be seen that the main contributors to the ARM distribution are the position

uncertainties and Doppler broadening effect. The energy uncertainty and coherent

scattering only have a trivial effect. Fig. 4.8 also shows that when the gamma-

ray energy is above 500 keV, almost all the ARM uncertainties caused by different

factors settle down to constants, which means the increase of the energy does not help
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Figure 4.8: The standard deviations of the overall ARM distributions at different incident gamma-
ray energies.

to improve the angular uncertainty. For higher energy gamma-rays, the scattered

photons can travel more distance thus the ARM uncertainty caused by the position

uncertainties seems to be improved. However, due to the small size of the detector,

increasing gamma-ray energy does not necessarily mean an increase of the average

distance between the two interactions. Therefore, the energy increase does not help

to improve the ARM uncertainty caused by the position uncertainties.

However, the ARM is only one of the many aspects determining the final angular

resolution of the image. In the simulations described in this section, the correct

interaction sequences are used. In reality, due to the poor timing resolution of the

system, the interaction sequence has ambiguity and must be determined based on

the energy information. As the incident gamma-ray energy increases, the interaction

sequence can be more accurately identified. Moreover, the Compton ring effect can be

different at different energies since the scattering angle distribution could be different.
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Therefore, the final angular resolution of the reconstructed image still depends on

the incident gamma-ray energy. The ARM distribution helps to determine the width

and shape of the back-projection rings.

The ARM distribution studied in this section is the overall ARM distribution of all

two-pixel full-energy events in a single 15mm×15mm×10mm 3-D CdZnTe detector.

If the detector system configuration is changed, the overall ARM distribution will

also be changed. The ARM distribution caused by the position uncertainties depends

on the separation between the two interactions, and the ARM distributions caused

by other factors depend on the scattering angle.

In image reconstruction processes, the ARM distribution must be modeled so that

it can be calculated event by event. The models can be established either numerically

or analytically. Numerical solutions obtained by simulations can be daunting due to

the large number of possible measurement outputs. Moreover, analytical models are

tempting because they can be applied to different detector configurations. The next

section discusses analytical models for different ARM contributors.

4.3 Modeling of Angular Uncertainties

Fig. 4.8 indicates the main contributors of the angular resolution are the position

uncertainties and Doppler broadening. The effect of energy uncertainty is large at the

low energy end. In this section, the modeling of angular uncertainties caused by the

position uncertainties, Doppler broadening and energy uncertainty is discussed. The

overall angular uncertainty is the superposition of the angular uncertainties caused

by different ARM contributors. If all the angular uncertainties are Gaussian, the

overall angular uncertainty is the quadrature sum of the individual angular uncer-

tainties. For a specific event, only Doppler broadening introduces a non-Gaussian
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angular uncertainty. In this work, for simplicity, the angular uncertainty caused by

Doppler broadening is modeled by a Gaussian distribution with the calculated stan-

dard deviation considering that Doppler broadening is not the most dominant factor

in determining the angular uncertainty comparing with the position uncertainties.

4.3.1 Detector Position Uncertainties

The position uncertainties are the dominating factors in determining the angular

uncertainty of the current system. The position uncertainties are about 1.3 mm in

the lateral coordinates due to the pixellation on the detector anode surface, and 0.4

mm in depth due to the timing resolution[45].

Because the gamma-ray interaction positions determine the axis of the back-

projection cone, the position uncertainties introduce an uncertainty in the cone axis

direction. Because of the difference in the position uncertainties in x, y, and z direc-

tions, the uncertainty in the cone axis direction can vary at different directions. As

a result, the angular uncertainty can vary at different points on the back-projection

cone. It is impractical to precalculate the shape of the back-projection cone by sim-

ulations since there are too many possible position combinations. In this model,

the angular uncertainties in the azimuthal and polar directions are calculated by

means of error propagation, and the angular uncertainty in any arbitrary direction

is approximated by the uncertainties in those two directions.

The azimuthal angle θ and the polar angle ϕ can be calculated from the first two

interaction positions (x1, y1, z1) and (x2, y2, z2) as

θ = tan−1 z2 − z1√
(x2 − x1)2 + (y2 − y1)2

(4.6)

and

ϕ = tan−1 y2 − y1

x2 − x1
(4.7)
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By means of error propagation, the uncertainties in the azimuthal and polar angles

can be calculated as

σ2
ϕ =

1

(x2 − x1)2 + (y2 − y1)2
· p

2

6
(4.8)

and

σ2
θ =

[(z2 − z1)
2 · p2/6 + 2 [(x2 − x1)

2 + (y2 − y1)
2] (Δz)2]

[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]2
(4.9)

in which, p is the pixel size of the detector, and Δz is the depth uncertainty.

However, the directions of the azimuthal angle ϕ and the polar angle θ are usually

not orthogonal. We define another angular uncertainty σϕ′ , as shown in Fig. 4.9, to

be the angular uncertainty of the axis in the azimuthal direction before it is projected

onto the x-y plane. σϕ′ can be calculated by

σϕ′ = 2 tan−1(tan
σϕ

2
sin θ) (4.10)

The uncertainty in the direction of the cone axis is then determined by the uncer-

tainties in two orthogonal angular directions, which are σϕ′ and σθ. Assuming the

spread of the back-projection cone at a specific direction β is Gaussian, the standard

deviation is approximated by

σ(β) = σθ cos2 β + σϕ′ sin2 β (4.11)

This angular uncertainty model was compared with simulations, and it was found

that this model is a good approximation. There is some distortion in the approx-

imation in Eq. 4.11, but it is only noticeable when the two interaction points are

very close to each other or the scattering angle is very large or small. In reality,

those events usually have poor angular resolution and are not very helpful to image

reconstruction. The drawback of this model is that it needs to calculate angle β pixel

by pixel, therefore costs more computation time.
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Figure 4.9: Angular uncertainty caused by the detector position uncertainties.

4.3.2 Doppler Broadening

Suppose that a single electron bound in an atom shell i has momentum p. This

momentum has a distribution ρi(p) ≡ |ψi(p)|, in which ψi(p) is the wave function

of the electron in the momentum representation.

Define the momentum transfer vector q ≡ �k − �k′, in which �k and �k′ are

respectively the momenta of the incident and scattered photons. The magnitude of

q is

q =
1

c

√
E2

0 + E ′2 − 2E0E ′ cos θ (4.12)

in which c is the speed of light, E0 and E ′ are the energies of the incident and

scattered photons, and θ is the scattering angle.

The projection of the initial electron momentum p on the direction of the scat-
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tering vector −q is defined as

pz ≡ −p · q
q

=
E0E

′(1 − cos θ) −mec
2(E0 − E ′)

c2q
(4.13)

Eq. 4.13 gives a relationship among pz, E
′ and θ. If pz is known, Eq. 4.13 can

be used to precisely calculate the energy of the scattered photon as a function of

the scattering angle. In fact, if pz = 0, Eq. 4.13 reduces to the Compton scattering

formula of Eq. 1.1. In a real atom, pz has a distribution defined by

Ji(pz) ≡
∫ ∫

ρi(p)dpxdpy (4.14)

in which Ji(pz) is referred to as the one-electron Compton profile.

The atomic Compton profile is given by the sum of all electrons, i.e.

J(pz) =
∑

i

fiJi(pz) (4.15)

in which fi is the number of electrons in atomic shell i.

As a result, if the scattering angle is known, the energy of the scattered photon has

a broadening due to the distribution of pz. The Compton differential cross section is

represented by a double differential equation obtained from the relativistic impulse

approximation(IA) by Ribberfors[55]. Brusa simplified the equation by some first

order approximations to[56]

d2σ

dE ′dΩ
=
r2
e

2

(
EC

E0

)2 (
EC

E0

+
E0

EC

− sin2 θ

)
J(pz)

dpz

dE ′ (4.16)

in which re is the classical electron radius, EC is the scattered photon energy at

scattering angle θ if the initial electron is at rest (Eq. 1.1). dpz

dE′ can be obtained by

taking the derivative of Eq. 4.13, i.e.

dpz

dE ′ =
mec

cq

(
E0

EC

+
E0 cos θ − E ′

cq
· pz

mec

)
(4.17)
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The Compton profile can be obtained either by numerical Hartree-Fock profiles

tabulated by Biggs[57] or by analytical profiles proposed by Brusa[56]. The relative

differences between the numerical and analytical profiles are normally less than 5%

except for large pz where the probability J(pz) is very small. In this study, the

analytical profiles are used, and the one-electron Compton profiles are approximated

by[56]

Ji(pz) =
√

2Ji,0

(√
2

2
+
√

2Ji,0|pz|
)

exp

⎡
⎣1

2
−

(√
2

2
+
√

2Ji,0|pz|
)2

⎤
⎦ (4.18)

in which Ji,0 is the value of the profile at pz = 0 obtained from the tables of Hartree-

Fock Compton profiles published by Biggs.

In Eq. 4.16, the double differential Compton cross section can be rewritten as

d2σ

dE ′dθ
=

∫
d2σ

dE ′dΩ
sin θdϕ = 2π sin θ

d2σ

dE ′dΩ

= π sin θr2
e

(
EC

E0

)2 (
EC

E0
+
E0

EC
− sin2 θ

)
J(pz)

dpz

dE ′ (4.19)

As a result, we can calculate the double differential Compton cross section as a

function of the scattering angle θ and the scattered photon energy E ′, as shown in

Fig. 4.10. The bright trace shows the relationship of E ′ and θ with no Doppler

broadening, i.e., the Compton scattering formula of Eq. 1.1. The blurring represents

the degree of Doppler broadening.

From Fig. 4.10, we can see that the uncertainty in the scattering angle is large

for small E ′, which means the Doppler broadening effect is more severe at large

scattering angles. Fig. 4.11 shows the scattering angle distributions at different

scattered photon energies. The incident gamma-ray energy is 662 keV. It is evident

that the scattering angle distributions are not Gaussian, which makes it difficult to

include Doppler broadening in the system response function.
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Figure 4.10: Double differential Compton cross section in Cd0.9Zn0.1Te. The incident photon energy
is 662 keV. The color bar on the right represents the values of the double differential
Compton cross section, which has units of barn · MeV−1 · Sr−1.

Fig. 4.12 shows the standard deviations in the ARM distributions due to Doppler

broadening at different scatting angles calculated from both the Compton double

differential cross section of Eq. 4.19 and Geant simulations. The theoretical values

and the simulation results agree very well except at small scattering angles. This

is caused by the fact that in the Geant Penelope model, Compton scattering is

allowed only when the energy of the scattered electron is higher than the ionization

energy of the electron. Therefore, small angle scatterings can only happen with those

electrons in the outer shells, where the electron momentum has less uncertainty. As

a result, the Geant simulations give less uncertainties in the ARM distributions at

small scattering angles.

Eq. 4.19 indicates that the degree of Doppler broadening depends on two factors,

which are the incident gamma-ray energy and the Compton profile determined by
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Figure 4.11: Scattering angle distributions at different energies of the scattered photon with 662
keV incident photon energy.

the detector material. The Doppler broadening effect is greater for lower energy

gamma-rays and in materials with higher atomic numbers.

4.3.3 Detector Energy Uncertainties

The scattering angle is obtained from the measured energies by Eq. 4.2. The

uncertainties in the measured energies will introduce an uncertainty in the calculated

scattering angle, which is the half angle of the back-projection cone. The uncertainty

in the scattering angle can be obtained by applying error propagation to Eq. 4.2. By

doing so, the assumptions of unknown incident gamma-ray energy and full-energy

deposition are implied. The scattering angle uncertainty of a two-pixel event is

calculated to be

Δθe =
mec

2

(E1m + E2m)2E2
2m sin θe

√
E4

2mΔE2
1m + (E2

1m + 2E1mE2m)2ΔE2
2m (4.20)
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Figure 4.12: Standard deviations in the ARM distributions due to Doppler broadening at different
scattering angles with 662 keV incident photon energy.

If N(N > 2) interactions are recorded, Eq. 4.2 should be modified as

θe = cos−1

(
1 +

mec
2∑N

i=1Eim

− mec
2∑N

i=2Eim

)
(4.21)

As a result, the angular uncertainty caused by uncertainties in E1m, E2m, . . . , ENm

is

Δθe =
mec

2

E2
0m(E0m − E1m)2 sin θe

√√√√(E0m −E1m)4ΔE2
1m + (E2

1m − 2E0mE1m)2

N∑
i=2

ΔE2
im

(4.22)

in which E0m =
∑N

i=1Eim.

Fig. 4.13 shows the standard deviations in the ARM distributions due to the

energy uncertainty at different scatting angles calculated from both Eq. 4.20 and

Geant simulations. Because there is a sin θe on the denominator in Eq. 4.20, the

angular uncertainty is large for both small and large scattering angles. Eq. 4.20

agrees with the Geant simulations very well except at large scattering angles. That
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Figure 4.13: Standard deviations in ARM distributions due to the energy uncertainty at different
scattering angles with 662 keV incident photon energy.

is because for the backscattered events, the uncertainties in the measured energies can

make the energy deposition of the Compton scattering be greater than the Compton

edge, and Eq. 4.2 becomes unsolvable. Those events are discarded by the Geant

simulations, which results smaller angular uncertainties for the backscattered events.



CHAPTER V

IMAGE RECONSTRUCTION

Like many x-ray/gamma-ray imaging systems, such as CT/SPECT/PET and

coded aperture imaging systems, the measured data of a Compton imager does not

directly represent the source image. Certain algorithms must be applied to recon-

struct the image. In this chapter, three different algorithms are discussed, including

the simple back-projection algorithm, the filtered back-projection algorithm, and

the list-mode maximum likelihood expectation maximization (MLEM) algorithm.

Because the simple back-projection algorithm and the filtered back-projection algo-

rithm can be operated event by event, the image reconstruction can be performed in

real-time. The real-time imaging was implemented on a single 3-D CdZnTe detector

for the first time. The 3-D imaging capability of the 3-D CdZnTe detector is also

demonstrated.

5.1 The Simple Back-Projection Algorithm

From each sequenced multi-interaction event, the incident gamma-ray direction

can be constrained on the surface of a cone, of which the axis is defined by the po-

sitions of the first two interactions, and the half angle is defined by the deposited

energies. The most straightforward method to reconstruct the image is to simply

back-project these cones to the imaging space, which is the 4π sphere around the

68
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detector. The width of the back-projection cone is determined by the angular un-

certainty discussed in Chapter IV. Since each cone passes the incident gamma-ray

direction, the source can be enhanced and be distinguished from the background.

Fig. 5.1 shows the simple back-projected image of a point source at 662 keV. Only

two pixel events are used in the reconstruction. The angular resolution is about 50◦.

Figure 5.1: Simple back-projection image of a point 137Cs source placed at the side of the detector.

The simple back-projection algorithm was applied to image the gamma-ray back-

ground in the laboratory. The image was reconstructed by those events in the 609

keV photopeak of 214Bi, which is a daughter product in the 238U decay chain. Be-

cause the uranium source in the lab is mostly from the concrete, the image actually

shows the concrete distribution. The simple back-projection image is shown in Fig.

5.2. There was a big window in the lab where the measurement was taken, and no

concrete was present in the direction of the window. The window is clearly shown in

the image by the cold area. The count rate was very low, and only about 1200 two-

pixel events were measured in 32 hours. Therefore, although the image appears to

show some details in the 214Bi distribution, those “details” are mostly due to statis-

tics and are not trustable. It was the first time that the gamma-ray background was
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imaged by a single 3-D CdZnTe detector.

Figure 5.2: Simple back-projection image of the 214Bi 609 keV photopeak. The image shows the
concrete distribution, and the cold area on the left represents a window in the lab.

5.2 The Filtered Back-Projection Algorithm

Although the simple back-projection algorithm is fast and straightforward, its an-

gular resolution is usually very poor. Algorithms such as the filtered back-projection

algorithm widely used in computer tomography (CT) image reconstruction can pro-

vide better image resolution. However, due to the principle difference between Comp-

ton cameras and CT systems, the filtered back-projection algorithm using a linear

ramp filter in CT systems can not be directly applied to Compton cameras. Unlike

CT systems, the imaging space of a 3-D CdZnTe detector is the 4π sphere, of which

the Fourier space is the spherical harmonics. The filter for a Compton camera is

also different from CT systems because the point spread functions (PSF) of the two

systems are formed in different ways. Due to this reason, most image reconstruct

algorithms for Compton cameras are iterative methods[5, 58]. However, iterative

algorithms are usually computationally intensive and their convergence points are

often very different from the true source distribution because of the poor statistics.
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In situations when reconstruction speed is critical and good angular resolution is

required, direct image reconstruction algorithms such as the filtered back-projection

algorithm are desired.

In 1994, Cree and Bones[59] developed a direct reconstruction algorithm by severely

limiting the scattering direction to be perpendicular to the detector array. In 1998,

Basko et al.[60] established an analytical inversion method from cone surface projec-

tions using the spherical harmonics without considering the distribution of possible

scattering angles. Two years later, Parra[61] developed an analytical inversion al-

gorithm for the complete data set of all possible scattering angles based on the

Klein-Nishina formula[62]. In practice, as Tomitani and Hirasawa[63] pointed out,

an actual Compton camera is unlikely to provide a data set with a full range of

scattering angles due to the limitation in the detector system configuration and the

difficulty in detecting small-angle scattering events. Tomitani further proposed an

algorithm for limited angle Compton camera data set. Although the 3-D CdZnTe

detector can detect the Compton scattering events of all scattering angles, the detec-

tion efficiency varies at different scattering angles. This is partly due to the variation

in the path length of the detection material at different scattering directions, and

partly due to the change of the scattered photon energy at different scattering an-

gles. Therefore, the measured scattering angle distribution will be different from the

theoretical predition of the Klein-Nishina formula. In this study, a deconvolution

algorithm using the spherical harmonics is developed. The point spread function

is obtained by both theoretical calculation based on the Klein-Nishina formula and

Monte Carlo simulations. The results show that the simulated point spread function

performs better than the theoretical PSF.
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5.2.1 Spherical Harmonics

Similar to the Fourier transform between the Cartesian space and the Fourier

series, an arbitrary function f(Ω) defined on the 4π sphere can be transformed into

the spherical harmonics by

Fm
l =

∫
S2

dΩf(Ω)Y m∗
l (Ω) (5.1)

The inverse transform is given by

f(Ω) =

+∞∑
l=0

m=l∑
m=−l

Fm
l Y

m
l (Ω) (5.2)

Here, Y m
l (Ω) are the spherical harmonics on the 4π sphere and Y m∗

l (Ω) are the

complex conjugate spherical harmonics

Y m
l (θ, ϕ) =

√
(2l + 1)

4π
· (l −m)!

(l +m)!
Pm

l (cos θ)eimφ (5.3)

in which Pm
l (cos θ) are the associated Legendre polynomials.

5.2.2 Spherical Deconvolution

Even with perfect detector performance, such as perfect energy and position res-

olution, the summation image of the cone-beam projections for a point source is still

blurred because only a small portion of the cone passes the true source location. This

blurring is also referred to as the “Compton ring effect”. The summation image of a

point-like source is the point spread function of the detector system.

For a given source distribution g(Ω), the summation image g′( Ω′) of the cone-

beam projections is a convolution of the source distribution g(Ω) with the point

spread function of the detector system. Since the point spread function is azimuthal

symmetric, we can write it as h(cosω). The convolution process can be written as

g′( Ω′) =

∫
S2

dΩg(Ω)h(cosω) (5.4)
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in which ω is the angle between Ω and Ω′.

According to the spherical convolution theorem[64], Eq. 5.4 can be rewritten as

G′m
l =

√
4π

2l + 1
Gm

l H
0
l (5.5)

where G′m
l , Gm

l and H0
l are the transformations of g′( Ω′), g(Ω) and h(cosω) in the

spherical harmonics domain, respectively.

Since h(cosω) is azimuthal symmetric, its spherical harmonics coefficients are all

zeros if m �= 0, and when m = 0, the spherical harmonics coefficients are

H0
l =

∫
S2

dΩh(cosω)Y 0∗
l (Ω)

=

∫
S2

dΩh(cosω)

√
2l + 1

4π
P 0

l (cosω)

=
√
π(2l + 1)

∫
d(cosω)h(cosω)P 0

l (cosω) (5.6)

For a arbitrary function defined on [−1, 1] such as h(cosω), it can also be expanded

into the sum of the Legendre polynomials, i.e.

h(cosω) =

+∞∑
l=0

HlPl(cosω) (5.7)

The coefficients are defined by

Hl =
2l + 1

2

∫
d(cosω)h(cosω)Pl(cosω) (5.8)

By comparing Eq. 5.6 and Eq. 5.8, we find

H0
l =

√
4π

2l + 1
Hl (5.9)

After replacing H0
l in Eq. 5.5 with Eq. 5.9, the spherical harmonics coefficients

of the source image can be calculated as

Gm
l =

(2l + 1)G′m
l

4πHl
(5.10)
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For a known point spread function h(cosω), its Legendre polynomials can be

precalculated. To deconvolve the point spread function h(cosω) from the summation

image of cone-beam projections g′( Ω′), we need to first transform the summation

image into the spherical harmonics domain to obtain G′m
l , then by Eq. 5.10, the

spherical harmonics coefficients of the source image Gm
l can be computed. The

source image g(Ω) is obtained by the inverse transform of the coefficients Gm
l into

the 4π sphere space. This is analogous to the deconvolution procedures in Cartesian

coordinates. Because it is difficult to get an analytical expression of the summation

image g′( Ω′), the transforms between the 4π-sphere and the spherical harmonics are

performed numerically by the SpharmonicKit package[65].

Since Eq. 5.5 is the spherical harmonics representation of Eq. 5.4, comparing Eq.

5.10 with Eq. 5.5, the deconvolution formula can be obtained as

g(Ω) =

∫
S2

d Ω′g′( Ω′)h̃(cosω) (5.11)

in which h̃(cosω) is a function with spherical harmonics coefficients of

H̃0
l =

(
2l + 1

4π

) 3
2

· 1

Hl
(5.12)

The Legendre polynomial coefficients of h̃(cosω) are

H̃l =

(
2l + 1

4π

)2

· 1

Hl
(5.13)

The summation image g′( Ω′) is the sum of many cone-beam projections from

individual events, as we do the reconstruction in list mode (Fig. 5.3). For a specific

event i, the projection of the cone beam on the unit sphere is a ring defined by the

cone axis direction Ωi, and the cone half angle ωi. This ring is the projection image

g′i( Ω′) of event i. The summation can be written as

g′( Ω′) =
N∑

i=1

g′i( Ω′) (5.14)
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Figure 5.3: Summation of cone-beam projections on the unit sphere

According to the linear property of the spherical convolution, Eq. 5.11 can be

rewritten as

g(Ω) =
N∑

i=1

∫
S2

dΩ′g′i( Ω′)h̃(cosω) (5.15)

which means the filtering can be done event-by-event, which makes real-time imaging

possible. The price is the requirement of doing the Fourier transform on the 4π-sphere

for each event, which increases the computational cost. However, we notice that

g′i( Ω′) is a function which is azimuthal symmetric around the cone axis Ωi. Therefore,

if the Fourier transform is performed in a 4π coordinate system with its z direction

defined as the cone axis Ωi, only Legendre polynomial expansion is required, and the

computational cost can be reduced. Because the spherical convolution is rotation

invariant, we can rotate the filtering coordinate system of each event to the original

4π imaging sphere without altering the filtering result. With the help of the fast

Fourier transform algorithms on the 4π-sphere developed in recent years[64, 66, 65],

the computational cost is minimized.
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5.2.3 Filter Design from Theoretical Calculation

5.2.3.1 Filter of Perfect Detectors

The point spread function h(cosω) is mostly caused by the Compton ring ef-

fect. To apply the deconvolution process of Eq. 5.10, the point spread function (or

the filter) must be precalculated. To derive the theoretical point spread function,

we assume that the detector has perfect energy and position resolutions, there is

no Doppler broadening, the interaction sequence is given by the simple comparison

method described in Chapter III, and the detector is large enough that all scat-

tered photons are detected. The last assumption ensures that the scattering angle

distribution follows the Klein-Nishina formula.

The differential scattering cross section of Compton scattering per atom is given

by the Klein-Nishina formula:

dσ

dΩ
=
Zr2

e

2

(
EC

E0

)2 (
EC

E0

+
E0

EC

− sin2 θ

)
(5.16)

in which Z is the atomic number of the scattering medium, re is the classical electron

radius, and EC is the scattered photon energy at scattering angle θ. In fact, Eq. 5.16

can be obtained by integrating the double differential equation of Eq. 4.16 over E ′.

Since dΩ = sin θdϕdθ, Eq. 5.16 can be rewritten as

dσ

dθ
= πZr2

e

(
EC

E0

)2 (
EC

E0

+
E0

EC

− sin2 θ

)
sin θ (5.17)

Suppose a mono-energetic source irradiates an idealized detector from above.

When the detector detects an event with scattering angle θ, the cone-beam projec-

tion will generate a ring with half angle θ on the unit 4π-sphere. Since the detector

is perfect, the reconstructed cone always passes the true source location, which is at

the zenith of the 4π sphere. When many rings are reconstructed on the sphere, the

back-projection summation image is formed, which is also the point spread function



77

of the Compton camera. Since the system is symmetric around z axis, the point

spread function thus is only related to the polar angle ω. Therefore, the point spread

function is also written as a function of a single variable, h(cosω). Fig. 5.4 shows

the contribution of a cone back-projection to the point spread function.

z

ω

Ω
��

O

A

B

α

θ

O'

Figure 5.4: The contribution of a cone-beam projection with cone axis �Ω and half angle θ to the
PSF

The values assigned to different pixels on the projection ring should be uniform,

since the gamma-ray could come from any direction on that ring, provided that the

incident gamma-ray is not polarized. If we assume that each event carries the same

amount of information, the sum of the values on each back-projection ring should be

normalized. Since the perimeter of each ring is proportional to sin θ, the values on

each ring should be proportional to 1/ sin θ. If a back-projection ring with half angle

θ intersects a ring on the unit sphere with half angle ω at angle α as shown in Fig.

5.4, the contribution of this ring to the point spread function from ω to ω + dω is

proportional to dα/ sin θ. Therefore, the sum of the point spread function between ω
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and ω + dω is proportional to the integral of all possible scattering angles, as shown

by

h(cosω) sinωdω =

∫ π

0

dθK(θ) sin θ
dα

sin θ
(5.18)

in which K(θ) is the Klein-Nishina cross section formula and K(θ) sin θ is propor-

tional to the probability density function of the scattering angle θ. K(θ) sin θ is given

by the differential cross section in Eq. 5.17.

As a result, the contribution of cone-beam projections to the point spread function

at angle ω can be evaluated by

h(cosω) =

∫ π

0

dθK(θ)
1

sinω
· dα
dω

(5.19)

In triangle ABO′, |AB| = 2 sin ω
2
, and |O′A| = |O′B| = sin θ. The law of cosine

gives

|AB|2 = |O′A|2 + |O′B|2 − 2 |O′A| |O′B| cosα (5.20)

Therefore, the geometrical relationship between α, ω and θ is obtained as

cosα = 1 − 2 sin2 ω
2

sin2 θ
(5.21)

As a result, Eq. 5.19 becomes

h(cosω) =

∫ π

0

dθK(θ)
1

sinω
· cos ω

2√
cos2 ω

2
− cos2 θ

(5.22)

We notice when the scattering angle θ is smaller than ω/2 or greater than π−ω/2,

the back-projection cone does not contribute to the point spread function at ω, and

the integral in Eq. 5.22 can be rewritten as

h(cosω) =
1

2 sin ω
2

∫ π−ω/2

ω/2

dθK(θ)√
cos2 ω

2
− cos2 θ

(5.23)

This result differs from Parra’s result with a term of sin θ in the integral. This

is because of the fact that Parra assumed that each point on all back-projection
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rings has the same value, while we assume that each back-projection ring contains

the same amount of information. Therefore, in our calculation, the values on the

back-projection rings are proportional to 1/ sin θ. This difference should not affect

the final reconstructed image because although there is a 1/ sin θ difference in the

PSFs, the 1/ sin θ difference is also present in the back-projection rings. As a result,

the filtered images by both methods are identical.

5.2.3.2 Filter of detectors with limited detection angles

Tomitani pointed out that in real Compton cameras, the distribution of the scat-

tering angle is always limited[63]. In our 3-D position sensitive CdZnTe detectors,

this is especially true because of the sequence reconstruction algorithm. For events

with scattering angle between η1 and η2 (η1 < η2), the point spread function can be

obtained by replacing K(θ) with K ′(θ) in Eq. 5.23, in which K ′(θ) is defined as

K ′(θ) =

⎧⎪⎨
⎪⎩

K(θ) θ ∈ (η1, η2)

0 otherwise

(5.24)

In 3-D position-sensitive CdZnTe detectors, the sequence of interactions in a

multiple-pixel event must be reconstructed based on energy depositions. For sim-

plicity, only two-pixel full-energy deposition events are considered. There are two

possible interaction sequences for each two-pixel event (Fig. 5.5). The simple com-

parison sequence reconstruction algorithm performs the Compton edge test first.

Those events with an energy deposition greater than the Compton edge must de-

posit the smaller amount of energy first. For other events, although both sequences

are possible, the interaction with higher energy deposition is selected as the first

interaction since the possibility of these events is higher[30].
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θ1

θ2

E1

E2

E0

E0

Figure 5.5: Two possible sequences in a two-pixel event. θ1 and θ2 are the two possible scatter
angles.

Two angles, ω1 and ω2, are defined as

cosω1 = 1 − (mec
2)2

2E2
0

(5.25)

and

cosω2 = 1 − mec
2

E0
(5.26)

From the definition, 0 < ω1 < ω2 < π when E0 > mec
2/2. When the scattering

angle is between 0 and ω1, the energy deposition of the second interaction must be

higher than the Compton edge. Therefore, the reversed sequence is physically impos-

sible, and the sequence can always be correctly reconstructed by choosing the smaller

energy deposition as the first interaction. ω2 is the scattering angle when the scat-

tered photon energy equals the scattered electron energy. When the scattering angle

is between ω1 and ω2, the first interaction deposits less energy than the second one,

therefore the sequence is incorrectly determined by the simple-comparison algorithm.

For events with scattering angle between ω2 and π, the first interaction deposits more

energy than the second one and their sequences are correctly reconstructed.

When the energy of the incident gamma-ray is less than mec
2/2, cosω1 and cosω2

are less than -1. This means that the first interaction always deposits less energy

than the second one and the sequence can always be correctly reconstructed if the
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strategy of the sequence reconstruction algorithm is reversed for this energy range. In

this case, scattering events with all scattering angles can be correctly sequenced, and

the point spread function is represented by Eq. 5.23. The following discussion will

only focus on scattering events with initial gamma-ray energy greater than mec
2/2.

Suppose the correct sequence is E1 → E2, then we have

cos θ1 = 1 +
mec

2

E0
− mec

2

E2
(5.27)

and

cos θ2 = 1 +
mec

2

E0
− mec

2

E1
= 1 +

mec
2

E0
− mec

2

E0 −E2
(5.28)

in which θ1 is the true scattering angle, and θ2 is the calculated scattering angle

given the wrong sequence. From Eq. 5.27 and Eq. 5.28 we get

cos θ2 = 1 − 1

γ2(1 − cos θ1)
(5.29)

in which γ = E0/mec
2 is the ratio of the initial gamma-ray energy and the rest mass

energy of an electron.

For events which can be correctly sequenced by our algorithm, i.e., events with

scattering angle in region [0, ω1] or [ω2, π], their contribution to the point spread

function can be calculated by

hcorrect(cosω) =
1

2 sin ω
2

∫ π−ω/2

ω/2

dθK ′(θ)√
cos2 ω

2
− cos2 θ

(5.30)

in which,

K ′(θ) =

⎧⎪⎨
⎪⎩

K(θ) θ ∈ (0, ω1) ∪ (ω2, π)

0 otherwise

(5.31)

For events with scattering angle in region [ω1, ω2], the sequence will be incorrectly

reconstructed, therefore the back-projection cones do not pass the source location,

and their contribution to the point spread function will be different.
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The sequences corresponding to the two possible scatter angles are opposite, so

when calculating the contribution of the incorrectly sequenced events to the point

spread function, the angle between the cone and the E2E1 vector Ω is π − θ2. The

reconstructed cone based on an incorrectly sequenced event will not pass the true

source position, unless θ1 + θ2 exactly equals to 180◦. The contribution of an incor-

rectly sequenced event to the point spread function is shown in Fig. 5.6. As a result,

Eq. 5.23 is not valid anymore. The PSF of the incorrectly sequenced events should

be recalculated from Eq. 5.19.

z

Ω

ω

π-θ
2

θ
1

α

O

O'

A

B

Figure 5.6: The contribution of an incorrectly sequenced event to the PSF. The event generates a
cone-beam projection with cone axis �Ω and half angle π − θ2

In triangle ABO′, |AB| = 2 sin(ω/2), |AO′| = sin θ1, and |BO′| = sin θ2. By the

law of cosine, the geometry relationship of Eq. 5.32 is obtained

cosα =
sin2 θ1 + sin2 θ2 − 4 sin2 ω

2

2 sin θ1 sin θ2
(5.32)
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As a result,

dα

dω
=

2 sinω√
4 sin2 θ1 sin2 θ2 −

(
sin2 θ1 + sin2 θ2 − 4 sin2 ω

2

)2
(5.33)

in which,

sin2 θ2 =
2

γ2(1 − cos θ1)
− 1

γ4(1 − cos θ1)2

Since θ1 is the true scatter angle, θ1 = θ. The contribution of those events with

scattering angles between ω1 and ω2 to the point spread function is

hincorrect(cosω) =

∫ ω2

ω1

dθK(θ)
1

sinω
· dα
dω

=

∫ ω2

ω1

2K ′′(θ)dθ√
4 sin2 θf(θ) − [

sin2 θ + f(θ) − 4 sin2 ω
2

]2
(5.34)

where f(θ) and K ′′(θ) are defined as

f(θ) =
2

γ2(1 − cos θ)
− 1

γ4(1 − cos θ)2
(5.35)

and

K ′′(θ) =

⎧⎪⎨
⎪⎩

K(θ) θ ∈ (ω1, ω2)

0 otherwise

(5.36)

The overall PSF for incident photons with energy greater than mec
2/2 now can

be written as

h(cosω) = hcorrect(cosω) + hincorrect(cosω)

=
1

2 sin ω
2

∫ π−ω/2

ω/2

dθK ′(θ)√
cos2 ω

2
− cos2 θ

+

∫ ω2

ω1

2K ′′(θ)dθ√
4 sin2 θf(θ) − [

sin2 θ + f(θ) − 4 sin2 ω
2

]2
(5.37)

in which ω1, ω2, K
′(θ), K ′′(θ) and f(θ) are defined in Eq. 5.25, Eq. 5.26, Eq. 5.31,

Eq. 5.36, and Eq. 5.35 respectively.
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The overall analytical point spread function and its Legendre polynomial coeffi-

cients of 3-D position sensitive CdZnTe detectors at 662 keV are shown in Fig. 5.7.

As we can see, the Legendre polynomial expansion coefficients become almost con-

stant at high orders. This is due to the fact that the point spread function of Eq.

5.37 is infinite when ω = 0, which makes the point spread function similar to a delta

function.

Figure 5.7: The upper figure shows the PSF of all two-pixel events at 662 keV with sequence
reconstruction algorithm applied. Due to the azimuthal symmetry of the PSF, the
Fourier transform of the PSF into the spherical harmonics domain can be simplified to
the Legendre polynomial expansion. The bottom figure shows the Legendre polynomial
coefficients.

5.2.4 Filter Design from Monte Carlo Simulations

In a real detector system, the measured scattering angle distribution usually does

not follow the Klein-Nishina formula, because the detection efficiency varies for events

with different scattering angles. Scattered photons at smaller scattering angles have

higher energy than back-scattered photons, thus they are more likely to escape the
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detector. In other words, the actual scattering angle distribution favors large scat-

tering angles comparing with the theoretical prediction of the Klein-Nishina formula.

Fig. 5.8 shows the difference of the scattering angle distributions between the pre-

diction by the Klein-Nishina formula and Geant simulations.

Figure 5.8: The simulation shows that the actual scattering angle distribution of 662 keV gamma
rays in a 3-D CdZnTe detector is different from the theoretical prediction based on the
Klein-Nishina formula, thus the actual PSF should be different from Eq. 5.23.

Therefore, the theoretical prediction of the point spread function using the Klein-

Nishina formula cannot be applied directly on an actual Compton camera. Monte

Carlo simulations using Geant4 packages were performed to provide the point spread

function of a 15 mm × 15 mm × 10 mm 3-D CdZnTe detector. In the simulations,

charge sharing problem between neighboring pixel anodes caused by the finite initial

electron cloud size and the diffusion of electrons were not modeled. The detector was

idealized with perfect depth and energy resolution. The anode of the detector was

still divided into an 11 × 11 pixel array to account for the pixellation effect. A 662
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keV gamma-ray source was placed 20 cm away from the side of the detector, and only

two-pixel full-energy deposition events were recorded. These two-pixel events with

correct sequences were reconstructed using the simple back-projection algorithm to

generate the point spread function image. The information carried by each event

was set to be the same, i.e., the contribution of each event to the summation image

was normalized. The reconstructed point spread function from the simulated data is

shown in Fig. 5.9.

Figure 5.9: Simulated PSF. A 662 keV gamma-ray source was placed at the side of the detector,
and only two-pixel full-energy deposition events were reconstructed.

Fig. 5.10 shows the simulated point spread function and its Legendre polynomial

coefficients. The scale in Fig. 5.10 differs from the scale in Fig. 5.7 because the

PSF in Fig. 5.7 is calculated directly from Eq. 5.37 while the PSF in Fig. 5.10

is from the simple back-projection image, which depends on how many events are

used. By comparing the Legendre polynomial coefficients in Fig. 5.7 and Fig. 5.10

we can see that the PSF from the simulated data has much lower values for high-

frequency components than the PSF from the theoretical calculation. This is because

the pixellation of the detector blurs the simple back-projection image and suppresses
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the high-frequency components.

Figure 5.10: The upper figure shows the simulated PSF and the actual PSF used in the recon-
struction. The incident gamma-ray energy is at 662 keV. The coefficients of the
Legendre polynomials are shown in the bottom figure. The PSFs are for a single
15 mm × 15 mm × 10 mm 3D CdZnTe detector.

As shown in Fig. 5.10, the Legendre polynomial coefficients vanish quickly as the

order increases. According to the deconvolution equation of Eq. 5.10, the Legendre

polynomial coefficients of the PSF appear on the denominator. As a result, a low

pass filter is usually required to avoid instability problem. However, a low pass filter

with bandwidth D limits the angular resolution to π/D. If the bandwidth is too low,

the system cannot achieve good angular resolution. As an alternative solution, the

coefficients of the PSF for orders greater than 15 were set to be constant which equals

the value at the order of 15, as shown in Fig. 5.10. The number of 15 is selected

based on the observation that the algorithm performs the best at this number. The

maximum order is set to 180, but could be lowered to save computation time. The

actual PSF used in the reconstruction and its Legendre polynomial expansion is
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also shown in Fig. 5.10. As can be seen, the actual applied PSF differs from the

simulated PSF only when the angle is small. The pulse in the actual applied PSF at

small angles is introduced by the constant Legendre polynomial coefficients at high

orders. However, the actual applied PSF and the simulated PSF agree very well at

large angles. As a result, most of the tail in the simple back-projection image can be

deconvolved by the actual applied PSF, while an artifact similar to a sinc function will

be introduced at small angles. However, because the width of the artifact is much

smaller than the achievable angular resolution of the 3D CdZnTe detector (only

a few degrees as shown in Fig. 5.10), this artifact will be overwhelmed by other

angular uncertainties (such as the uncertainties caused by the position uncertainties

and Doppler broadening) and is not noticeable in the final reconstructed image. By

this treatment, the system can achieve better angular resolution while avoiding the

instability problem.

5.2.5 Performance

The filtered back-projection algorithm was applied to both simulated and mea-

sured data using the theoretical PSF of Fig. 5.7 and the simulated PSF of Fig. 5.10

separately. Only two-pixel events with full-energy deposition were used. Neighbor-

ing pixel events with depth separation less than 2 mm were excluded since in real

measurements, those events are most likely to be charge sharing events.

In the Geant4 simulation, five 662 keV point sources were placed in a cross shape

at the side of the detector. The distance between the center source and the detector

was 25 cm, and the distances between the center source and the four corner sources

were 10 cm. The detector was modeled with a 5 keV FWHM electronic noise, and

average ionization energy of 5 eV for each electron-hole pair, a Fano factor of 1, and

a depth resolution of 1 mm FWHM. About 32,000 two-pixel full-energy events were
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used in the reconstruction. The reconstructed images are shown in Fig. 5.11, which

also includes a simple back-projection image for comparison. Evidently, the filtered

back-projection image using the simulated PSF has the best angular resolution.

(a) (b) (c)

Figure 5.11: Reconstructed images of the simulated data with five Cs-137 point sources. (a). Sim-
ple back-projection. The five sources can not be distinguished. (b). Filtered back-
projection with the theoretical PSF shown in Fig. 5.7. The five sources can be distin-
guished. (c). Filtered back-projection with the simulated PSF shown in Fig. 5.10. It
has better angular resolution than the image reconstructed with the theoretical PSF.

In the measurement, two 10μCi Cs-137 sources were placed 15 degrees apart and

10 cm away from one side of the detector. About 40,000 two-pixel full-energy events

were used in the reconstruction. The reconstructed images are shown in Fig. 5.12.

It can be seen from Fig. 5.12 that the reconstructed image using the theoretical PSF

can barely distinguish the two sources, while the two sources are well resolved using

the simulated PSF.

The angular resolution of a point Cs-137 source by the filtered back-projection

algorithm is about 19◦ and 25◦ in the azimuthal and lateral directions, respectively.

Because of the linear property of the filtered back-projection algorithm, the re-

construction can be done event-by-event. Currently, remote real-time imaging with

the filtered back-projection algorithm has been implemented on a single 3-D CdZnTe

detector.

When calculating the PSF from simulated data, it is desired to get the PSF as
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(a) (b) (c)

Figure 5.12: Reconstructed images of the measured data with two Cs-137 sources separated by 15
degrees. (a). Simple back-projection of the reconstruction cones. The two sources can
not be distinguished. (b). Filtered back-projection with the theoretical PSF shown in
Fig. 5.7. The two sources can barely be distinguished. (c). Filtered back-projection
with the simulated PSF shown in Fig. 5.10. The two sources can be distinguished
clearly.

close as the true PSF of the system. Factors that can affect the PSF include the

scattering angle distribution, Doppler broadening, the detector position and energy

uncertainties, and the sequence reconstruction. In the calculated PSF of Fig. 5.10,

only the scattering angle distribution, Doppler broadening, and the detector pixella-

tion were included. Because the energy and depth resolution can vary for different

detectors, and different sequence reconstruction algorithms might be developed and

applied, other factors were not included.

In both the measurement and the simulation, the sources were at 662 keV and

placed at the side of the detector. The PSF was calculated based on the simulation

result with this configuration. If the source is at different locations, the distribution

of the scattering angle might be different, thus the PSF can be changed. However,

since the asymmetry in the geometry is not significant for a 15mm×15mm×10mm

CdZnTe detector, the PSF of a point source at the side can still be applied to other

source locations. For a detector configuration with large asymmetry, simulations

should be performed to obtain the PSFs at different source locations. Different PSFs
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at different energies also need to be calculated from separate simulations, which could

require a large amount of work. For each source location at each energy, the PSF

can be described by a few coefficients of the Legendre polynomials. Therefore, it

does not require a huge database to store a complete set of PSFs.

5.3 The List-Mode Maximum Likelihood Expectation Maximization Al-
gorithm

5.3.1 The MLEM Algorithm for Photon-Emission Imaging Systems

The image reconstruction can be considered as a parameter estimation problem,

in which method of maximum likelihood is widely used. The gamma-ray source

distribution is regarded as the parameters to be estimated in this problem, and

the maximum likelihood estimation of the source distribution is the one with the

maximum probability to generate the measured data, i.e.

f̂ = arg max
f≥0

Pr[g|f ] (5.38)

in which, g = {g1, g2, . . . , gI} is the measurement, and gi stands for the number of

counts measured as event i, f = {f1, f2, . . . , fJ} is the source distribution that we

want to estimate. We put a constrain here that the estimates f̂ must be positive.

Most of the gamma-ray imaging systems can be simplified by a linear model illus-

trated in Fig. 5.13. The imaging space J is divided into J pixels, and is transformed

by the system response function T to generate the measured data, which is defined

in the measurement space I. The element tij in the system response function T is

the probability that a photon emitted from pixel j creates a recorded event i. The

imaging space J in our application is the 4π directional space. A event i in the mea-

surement space includes both the position and the energy information of a measured

multi-pixel event.
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Figure 5.13: A linear imaging system.

With enough statistics and the linear model, the problem is simplified to I simul-

taneous equations:

Tf = g (5.39)

Basically, the above problem is similar to the transmission tomography problem[67]

and it is tempting for one to solve the problem with the well-established algorithms

developed for transmission tomography[68, 69]. However, as Shepp pointed out[70],

the attempts to solve Eq. 5.39 would be futile mostly due to the low count rates

intrinsic to photon-emission imaging systems. The statistical noise will be amplified

if one tries to solve 5.39 directly. The maximum likelihood method tries to solve Eq.

5.39 from a statistical point of view and can provide a much less noisy solution. To

find the maximum likelihood solution of the problem, the likelihood of observing g

given f must be derived first.

In the following discussion, we assume that the data is collected for a given time,

which is also referred to as preset time assumption. Another assumption about the

data collection time is preset counts, which means that the measurement is stopped

when a certain number of counts is reached. The main difference between these two

assumptions is that the total number of measured events is a random variable for
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preset time, while it is a constant for preset counts.

Under the preset time assumption, the number of photons emitted from each pixel

in J is a Poisson random variable. fj then represents the mean value of that Poisson

random variable.

For each photon emitted from a specific pixel j, it has a probability tij to be

recorded as event i. From counting statistics we know that the number of photons

emitted from pixel j and recorded as event i is also a Poisson random variable with

mean value of tijfj. Since the numbers of photons emitted from different pixels

are independent of each other, and since the sum of independent Poisson random

variables is still Poisson, the total number of photons recorded as event i is a Poisson

random variable with mean value of

ḡi =
J∑

j=1

tijfj (5.40)

Therefore, the probability to observe gi counts as event i is

Pr[gi|f ] = exp(−ḡi)
(ḡi)

gi

gi!
(5.41)

In most detector systems, g1, g2, . . . , gI are independent random variables. As a

result, the probability to observe measurement g given the source distribution f is

Pr[g|f ] =
I∏

i=1

Pr[gi|f ] =
I∏

i=1

exp(−ḡi)
(ḡi)

gi

gi!
(5.42)

As we can see, the likelihood is a function of the source distribution f . Since the

likelihood function is positive definite, to simplify the problem, we can maximize

the logarithmic likelihood instead of maximizing Eq. 5.42 directly. The logarithmic

likelihood is

L(g|f) = ln Pr(g|f) =

I∑
i=1

[−ḡi + gi ln(ḡi) − ln(gi!)]

=
I∑

i=1

[
−

J∑
j=1

tijfj + gi ln(
J∑

j=1

tijfj) − ln(gi!)

]
(5.43)
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To maximize the log likelihood, the most straightforward way is to take its deriva-

tive and let it be zero, i.e.

∂L(g|f)
∂fj

= −
I∑

i=1

tij +

I∑
i=1

gitij∑J
j′=1 tij′fj′

= 0 (5.44)

The sum of
∑I

i=1 tij is the probability that a photon emitted from pixel j is

detected as any event i, i.e., the probability that the photon is detected at all. This

sum represents the sensitivity of the detector system to the photons emitted from

pixel j, and is denoted sj. sj is also referred to as the sensitivity image. Therefore,

Eq. 5.44 becomes

∂L(g|f)
∂fj

= −sj +
I∑

i=1

gitij∑J
j′=1 tij′fj′

= 0 (5.45)

If f is a local maximum point of function L(g|f), it must satisfy Eq. 5.45. How-

ever, Eq. 5.45 is not a linear equation and is extremely difficult to be solved directly.

A popular method to maximize the log likelihood function of Eq. 5.43 is the ex-

pectation maximization algorithm[71, 70], which requires iterative calculations. In

each iteration, the algorithm consists of two steps which are called the expectation

step and the maximization step. In the photon emission imaging applications, the

expectation step calculates the expected value of the source distribution given the

measurement g and the previous estimation of the source distribution f̂k. Then the

maximum likelihood estimation of the source distribution is calculated based on this

expected value.

For a photon detected as event i, it can come from many pixels in the imaging

space J . Given the kth estimation of the source distribution, the probability for the

photon to be emitted from pixel j is

Pr[j|i] =
tij f̂

k
j∑J

j′=1 tij′ f̂
k
j′

(5.46)
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The measurement gives gi counts as event i. For each of those gi events, it has

the probability defined by Eq. 5.46 to originate from pixel j. Therefore, within all

of those gi events, nij , which is the number of photons that were emitted from pixel

j, follows a multinomial distribution of

Pr[nij|gi, f̂
k] =

gi!

nij !(gi − nij)!
Pr[j|i]nij(1 − Pr[j|i])gi−nij (5.47)

The mean value of nij is

E[nij |gi, f̂
k] = giPr[j|i] (5.48)

The mean value of the total number of photons that were emitted from pixel j

and detected by the detector is

E[nj |g, f̂k] =

I∑
i=1

E[nij |gi, f̂
k] =

I∑
i=1

gi

tij f̂
k
j∑J

j=1 tij f̂
k
j

= f̂k
j

I∑
i=1

gitij∑J
j=1 tij f̂

k
j

(5.49)

The above equation is the mean value of nj given the measurement and the

previous estimation of the source. We can consider Eq. 5.49 as an observation

of the number of photons that were emitted from pixel j and detected. Since nj is

a Poisson random variable, the maximum likelihood estimation of its mean value is

just its observed value, i.e.

ˆ̄nj = f̂k
j

I∑
i=1

gitij∑J
j′=1 tij′ f̂

k
j′

(5.50)

As defined, n̄j is the average number of detected photons, and fj is the average

number of emitted photons. Therefore, the next estimation of fj is

f̂k+1
j =

ˆ̄nj

sj
=
f̂k

j

sj

I∑
i=1

gitij∑J
j′=1 tij′ f̂

k
j′

(5.51)

The above iterative equation is the MLEM algorithm for photon emission imaging

applications. However, Eq. 5.51 is not the only form of the MLEM algorithm
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for photon-emission imaging problems. Depending on different approaches in the

expectation and maximization steps, the MLEM algorithm could appear in different

forms[72].

5.3.2 Properties of the MLEM algorithm

5.3.2.1 Conservation of counts

From Eq. 5.51, we can get

J∑
j=1

f̂k+1
j sj =

J∑
j=1

f̂k
j

I∑
i=1

gitij∑J
j′=1 tij′ f̂

k
j′

=

I∑
i=1

∑J
j=1 f̂

k
j gitij∑J

j′=1 tij′ f̂
k
j′

=

I∑
i=1

gi (5.52)

which means that no matter what the start image is, the sum of the estimation of

the detected photons is preserved to be the total number of measured photons.

5.3.2.2 Positivity

If the start image is positive (fk
j > 0 for all j), it can be seen from Eq. 5.51

that fk+1
j > 0 unless gitij = 0 for all i. The next estimation fk+1

j is zero only when

gitij = 0 for all i. In this case, if there are events measured as event i (gi �= 0), tij

must be zero. This means that the probability for a photon from pixel j to create

any of the measured events is zero. In other words, the measurement does not detect

any event that is possibly from pixel j. Reasonably, in this case, the activity from

pixel j should be estimated to be zero. Otherwise, the next estimation of the source

is always positive.
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5.3.2.3 Convergence

Dempster proved that the EM algorithm has the property of

L(g|fk+1) ≥ L(g|fk) (5.53)

which ensures the convergence of the algorithm[71]. The equality holds only when

fk+1 = fk.

Eq. 5.53 alone can not guarantee the algorithm converges to a maximum point

of the log likelihood function. However, it can be proven that if f̂ is the convergence

point, f̂ is also a maximum point[70, 73, 74, 75], given the condition that all com-

ponents of the initial guess f0 are positive. This property can be illustrated by the

following not-so-strict argument.

If Eq. 5.51 converges, which implies the difference between fk+1 and fk is infinitely

small given k is large enough, and if fk+1
j �= 0 for all j, from Eq. 5.45 we will have

∂L(g|f)
∂fj

= 0. It means that if the MLEM method converges, the solution must be at

a local maximum or minimum point of the log likelihood function.

A sufficient and necessary condition for the log likelihood function L(g|f) of Eq.

5.43 to be concave is that the matrix of second derivatives of L(g|f) is negative

semidefinite[76]. This condition requires that for an arbitrary nonzero vector f ′, we

have
J∑

j1=1

J∑
j2=1

f ′
j1
f ′

j2

∂2L(g|f)
∂fj1∂fj2

≤ 0 (5.54)

From Eq. 5.45, we have

∂2L(g|f)
∂fj1∂fj2

= −
I∑

i=1

gitij1tij2[∑J
j′=1 tij′fj′

]2 (5.55)
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Therefore, the left part in Eq. 5.54 is

J∑
j1=1

J∑
j2=1

f ′
j1
f ′

j2

∂2L(g|f)
∂fj1∂fj2

= −
J∑

j1=1

J∑
j2=1

f ′
j1
f ′

j2

I∑
i=1

gitij1tij2[∑J
j′=1 tij′fj′

]2

= −
I∑

i=1

gi

[∑J
j′=1 tij′f

′
j′

]2

[∑J
j′=1 tij′fj′

]2 (5.56)

From the above equation it can be seen that the sufficient and necessary condition

of Eq. 5.54 for L(g|f) to be concave holds. As a result, there is no minimum point for

L(g|f), and all maxima of L(g|f) are global maxima. Therefore, it can be concluded

that if Eq. 5.51 converges, the solution is a global maximum point.

5.3.2.4 Uniqueness of the MLEM solution

The concavity of the log likelihood function does not imply the uniqueness of the

maximum points. In fact, the non-uniqueness of the maximum points can occur if

and only if Eq. 5.56 equals zero, which implies there exists a non-zero f ′ that for

each i, we have √
gi∑J

j′=1 tij′fj′

J∑
j′=1

tij′f
′
j′ = 0 (5.57)

Such f ′ exists if and only if the I vectors

√
gi

λi
{ti1, ti2, . . . , tiJ} (5.58)

span the J-dimensional Euclidean space. In the above equation, λi =
∑J

j′=1 tij′fj′,

which is the average number of counts detected as event i given the source f . In
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other words, the rank of the matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
g1

λ1
t11

√
g1

λ1
t12

√
g1

λ1
t13 . . .

√
g1

λ1
t1J

√
g2

λ2
t21

√
g2

λ2
t22

√
g2

λ2
t23 . . .

√
g2

λ2
t2J

√
g3

λ3
t31

√
g3

λ3
t32

√
g3

λ3
t33 . . .

√
g3

λ3
t3J

. . . . . . . . . . . . . . .
√

gI

λI
tI1

√
gI

λI
tI2

√
gI

λI
tI3 . . .

√
gI

λI
tIJ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.59)

should be equal to or greater than J for the maximum point to be unique. Therefore,

a necessary condition for the maximum point to be unique is that the total number

of possible measurement outputs I is equal to or greater than the number of pixels

J .

The total number of the measured events m can be obtained by summing gi over

all i, m =
∑I

i=1 gi. The number of the non-zero components in the measurement

g is less than or equal to m. Therefore, the rank of the matrix 5.59 is less than or

equal to m. As a result, another necessary condition for the maximum point to be

unique is that the total number of the measured events is equal to or greater than

the number of pixels J .

5.3.3 The List-Mode MLEM Algorithm

In the MLEM algorithm’s general equation of Eq. 5.51, it is required to sum

over all the possible measurement output i. In a single 3-D CdZnTe detector, if the

depth is separated into 10 bins and the energy is represented by 1 keV per channel,

for a system with dynamic range of 1 MeV, it requires 121 × 10 × 1000 ≈ 106 bins

to store a single gamma-ray interaction. For a two-pixel events, the number of the

required bins becomes 1012, which is far beyond the memory limitation in modern

computers. Instead of impractically storing the measurement result into binned data,

an alternative way is to store the measured attributes of each event in a list. This
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data storage mode is called list mode[77]. In list mode, the measurement can be

represented by a set of ordered events, {i1, i2, . . . , iM}.
In reality, the number of measured events is far less than the total number of

bins. Therefore, the measurement g is a very sparse vector with elements mostly

zeros and ones. The list mode MLEM algorithm can be easily obtained by replacing

gi in Eq. 5.51 by ones for those measured events. As a result, the sum over all

possible measurement output becomes the sum over all measured events, i.e.

f̂k+1
j =

f̂k
j

sj

M∑
i=1

tij∑J
j′=1 tij′ f̂

k
j′

(5.60)

The log likelihood of list-mode data is[77]

Llist(g|f) = − ln(M !) −
J∑

j=1

sjfj +
M∑
i=1

ln(
J∑

j=1

tijfj) (5.61)

5.3.4 Performance

The list-mode MLEM algorithm was first applied to the single 3-D CdZnTe de-

tector by Lehner[30]. In Lehner’s work, the sequence reconstruction was applied to

each event and the events with smaller angular uncertainties were given more weight

to accelerate the convergence speed. Although the sequence reconstruction and the

weighting method seem to be able to achieve better angular resolution, neither of

them was applied in the MLEM algorithm in this work. The sequence reconstruction

algorithm selects one of the sequences with the higher probability, and discards the

other sequence which could still be physically possible. Both sequences are part of

the system response function and should be included in the complete system response

function model. The weighting method tries to take advantage of those events with

better angular resolution. However, this method is equivalent to applying weighting

factors on the system response function. Applying the sequence reconstruction algo-

rithm or the weighting method is equivalent to using an incomplete system response
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function in the MLEM algorithm and might introduce artifacts or biases in the re-

constructed image. The system response function used in this work includes both

possible sequences, and no weighting factor is applied to each event. The system

response function model is described in Section 6.2.1.

Both simulated and measured data described in Section 5.2.5 were reconstructed

by the list-mode MLEM algorithm. Fig. 5.14 and Fig. 5.15 show the reconstructed

images of the MLEM algorithm. For comparison, the simple back-projection and the

filtered back-projection images are also shown.

(a) (b) (c)

Figure 5.14: Reconstructed images of the simulated data with five Cs-137 point sources. (a). Simple
back-projection. (b). Filtered back-projection with the simulated PSF shown in Fig.
5.10. (c). MLEM reconstructed image after 24 iterations.

It can be seen from Fig. 5.14 and Fig. 5.15 that the MLEM reconstructed images

are better than the filtered back-projection images in terms of the signal-to-noise

ratio and angular resolution. For a single Cs-137 point source, the angular resolution

of the reconstructed image at the 24th iteration is about 10◦ and 14◦ in the azimuthal

and lateral directions, respectively.

For the simulated data with five Cs-137 point sources, the convergence speed is

shown in Fig. 5.16. The log likelihood is calculated by Eq. 5.61 .The difference
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(a) (b) (c)

Figure 5.15: Reconstructed images of the measured data with two Cs-137 point sources separated
by 15 degrees. (a). Simple back-projection. (b). Filtered back-projection with the
simulated PSF shown in Fig. 5.10. (c). MLEM reconstructed image after 24 iterations.

between two images is defined as

D =

J∑
j

∣∣∣f̂k+1
j − f̂k

j

∣∣∣ (5.62)

It can be seen that the log likelihood increases quickly in the first few iterations.

However, the convergence speed slows down dramatically after the first few iterations.

By using the filtered back-projection image as the start image, the improvement on

the convergence speed is very limited.

The termination point of the MLEM algorithm is controversial. Various termi-

nation criteria have been proposed[49]. Although the angular resolution for a point

source tends to improve as the number of iterations increases, the noise in the recon-

structed image also increases. This is because the measurement itself is a statistical

process and has noise inherently. If the statistics in the measurement is poor, the

convergence point of the MLEM algorithm often differs from the true source distri-

bution significantly, and usually the maximum likelihood solution is not desired. The

convergence speed depends on both the number of measured events and the spatial

distribution of the source. As a result, it is difficult to set a criteria to stop the

iterations. In this study, we found that with enough counts, the reconstructed im-
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Figure 5.16: Convergence speed of the MLEM algorithm on the simulated data with five point
Cs-137 sources. The red curves show the log likelihood as a function of number of
iterations. The blue curves show the difference between the current image and the
previous image.

ages of point sources look good enough after about 20 iterations. Further iterations

improve the image very slowly and artifacts tend to appear. Therefore, in this work,

all images reconstructed by the MLEM algorithm are stopped after 24 iterations.

5.4 3-D Imaging

When back-projecting the Compton cones onto the imaging sphere, the vertex

of each cone is usually placed at the origin to simplify the geometrical calculation.

This approximation is valid when the source-to-detector distance is large comparing

with the detector size, thus is also referred to as “far field imaging”. However, if the

source is in the vicinity of the detector, the displacement of the vertexes from the

origin must be taken into account (Fig. 5.17). This technique is also referred to as

“near field imaging”.
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(a) Far field imaging.
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(b) Near field imaging.

Figure 5.17: Illustration of the difference between far field imaging and near field imaging. In far
field imaging, the vertex of each back-projection cone is approximately placed at the
origin. In near field imaging, the vertex of each back-projection cone is placed at the
first interaction position.

In far field imaging, the imaging space is the 4π directional space. In near field

imaging, the vertex of the back-projection cone is placed at the position of the first

interaction. As a consequence, one must specify the radius of the 4π imaging sphere.

This radius is referred to as the “focus distance”. The reconstructed image of any

source not on the focus distance will be blurred.

(a) F=20 mm (b) F=30 mm (c) F=37 mm (d) F=50 mm (e) F=80 mm

Figure 5.18: Reconstructed images at different focus distance. The measurement was taken with
a Cs-137 point source placed 37 mm above the detector. The images were recon-
structed using the filtered back-projection algorithm, and this figure shows the upper
hemispheres.

Fig. 5.18 shows the images reconstructed at different focus distances for the same

measurement. Fig. 5.19 shows the image resolution at different focus distances. It

can be seen that when the focus distance is at 37 mm, which is the true source-to-
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detector distance, the reconstructed image has the best resolution.

Figure 5.19: Image resolution versus focus distance.

It is possible to back project the cones into the 3-D space instead of the 4π sphere.

Therefore, 3-D imaging can be realized with near field imaging at the cost of more

storage space and more computation time. The measured data of a Cs-137 point

source above the detector was reconstructed with 3-D imaging technique using the

MLEM algorithm, and the result is shown in Fig. 5.20. The image indicates that

a single 3-D CdZnTe detector can not only do 2-D imaging, it can also provide the

source to detector distance. The resolution in radial direction is mostly limited by

the size of the detector, which is only 15 mm × 15 mm × 10 mm.

If detectors are arranged into arrays to form larger detecting dimensions, such as

the Polaris systems currently under development, better 3-D imaging performance

can be expected. A simulation was run to demonstrate the 3-D image capability of

the Polaris system. There were 9 15 mm× 15 mm× 10 mm detectors forming a 3× 3
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Figure 5.20: A vertical slice of the 3-D imaging space, which is a 200mm× 200mm× 200mm cube
around the detector. The measurement was taken with a Cs-137 point source placed
37 mm above the detector. The reconstruction algorithm was MLEM and was stopped
after 24 iterations.

array in the simulation, and the gap between detectors was 5mm. A 50mm×35mm

“M” shape Cs-137 source was placed 20 mm above the upper surface of the detector

array, as shown in Fig. 5.21. The gamma-ray source was uniformly distributed on

the “M” shape. The imaging space was an 80mm×80mm×40mm 3-D space above

the detector array.

The reconstructed image is shown in Fig. 5.22. The “M” shape source can be

clearly identified in this simulation.
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(a) top view (b) side view

Figure 5.21: The geometry configuration of the simulation in which a Cs-123 source uniformly
distributed on a “M” shape was placed 20 mm above a 3 × 3 array of 3-D CdZnTe
detectors.

(a) The horizontal slice 10 mm above the
detector array.

(b) The 3-D illustration of the reconstructed image.

Figure 5.22: Reconstructed image of the “M” shape Cs-137 source above a 3×3 array of 3-D CdZnTe
detectors. The MLEM algorithm was used and was stopped after 24 iterations.



CHAPTER VI

ENERGY-IMAGING INTEGRATED DE-CONVOLUTION

6.1 Spectral Deconvolution in Energy Space

Because of the various interaction mechanisms of gamma-rays with detectors, the

measured spectra usually consist of various features, such as photo-peaks, Compton

continua, and back scattering peaks. The task of spectral deconvolution is to estimate

the incident gamma-ray energy spectrum given the measured “energy loss” spectrum

and the detector response function. The spectral deconvolution problem is also

known as spectral unfolding or spectral inversion.

The way that an incident gamma-ray spectrum produces an energy loss spectrum

can be represent by[78]

d(E) =

∫ ∞

0

T (E,E0)f(E0)dE0 (6.1)

in which f(E0) is the incident spectrum, d(E) is the observed spectrum, and T (E,E0)

is the detector response function.

In reality, a detector has a finite dynamic range, and gives the measured counts

in a fixed number of channels. As a result, the measured spectrum d(E) is a dis-

crete spectrum. Although the incident spectrum f(E0) is continuous, it is difficult

to obtain information of f(E0) with structure finer than the channel width in the

measurement. Therefore, f(E0) is usually discretized in the deconvolution. Eq. 6.1

108
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thus can be expressed in a discrete form of

d = T · f (6.2)

in which T is also known as the system response matrix.

The deconvolution problem is to solve Eq. 6.2 given the measured spectrum d

and the system response T. However, the solution may not be unique because there

may exist solutions which satisfy Tf0 = 0. In this case, any solution f0 added to

a solution f is also a solution. Moreover, the solution that best satisfies Eq. 6.2

may be contrary to our a priori knowledge about the incident gamma-ray spectrum,

e.g. it must be positive, conserve counts, be continuous, etc.[78] All of the above

difficulties make the spectral deconvolution a complicated problem. Various algo-

rithms have been proposed and studied, such as the Singular Value Decomposition

(SVD), the Backus-Gilbert methode[79, 80], the Linear Regularization method[81],

the Maximum Entropy Method (MEM)[82], and the Maximum Likelihood method

by Expectation Maximization (MLEM)[71]. Among these algorithms, the MLEM

algorithm has been demonstrated to be advantageous[83]. Actually, it can be found

that Eq. 6.2 is very similar to the image reconstruction problem of Eq. 5.39, except

that the system response functions of the two problems differ from each other due

to the different physics behind each problem. The MLEM algorithm described in

Section 5.3 can be directly applied to the spectral deconvolution problem.

The system response function T was obtained by Geant4 simulations. In the

simulations, a single 3-D position-sensitive CdZnTe detector was operated as a spec-

trometer, and the sources were placed at one side of the detector. No surrounding

material was included in the simulations, and as a result, there is no back scattering

peak in the system response function. Fig. 6.1 shows the system responses at several

selected incident gamma-ray energies.
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Figure 6.1: Simulated energy response functions at different incident gamma-ray energies.

In the experiment, a 137Cs, a 22Na, and a 133Ba source were placed at three

different sides of a single 3-D CdZnTe detector as shown in Fig. 6.2. The measured

raw spectrum of all events is shown in the top figure in Fig. 6.3, in which a Compton

continuum is clearly present.

133
Ba

22
Na

137
Cs

0°

90°

180°

270°

CdZnTe

Detector

Figure 6.2: Experiment setup. Three point sources (a 137Cs, a 22Na and a 133Ba) were placed at
three different sides of the 3-D CdZnTe detector..

After the energy spectral deconvolution, the deconvolved spectrum is shown in

the bottom figure in Fig. 6.3. As we can see, most of the Compton background was

removed by the deconvolution. There is still a continuum between 100 keV and 300
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keV, which is mostly caused by those photons scattered outside the detector.

Figure 6.3: Energy spectral deconvolution on the measured spectrum with three point sources. The
top figure shows the measured raw spectrum of all events. The bottom figure shows the
deconvolved spectrum.

6.2 Energy-Imaging Integrated Deconvolution

From Fig. 6.3, we can see that the background of the photons scattered outside

the detector can not be removed by energy spectral deconvolution because back-

scattering was not modeled in the system response function. In order to model

the back-scattering, the surrounding materials must be included in the simulations.

This imposes a difficulty in the energy spectral deconvolution because the opera-

tion environment could change for a hand-held gamma-ray detector. Furthermore,

since the system responses of most actual gamma-ray detectors depend on the in-

cident gamma-ray direction, the spectral deconvolution methods are fundamentally

vulnerable to spatially distributed sources.
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In the 3-D position-sensitive CdZnTe detectors, the interaction position informa-

tion can provide extra information about the direction of the incident gamma-rays.

Therefore, the detector system response function can be modeled as a function of

both the incident gamma-ray direction and energy. In this work, a new energy-

imaging integrated deconvolution algorithm is proposed. The deconvolution space is

defined as a combined space of both energy and spatial dimensions. By this mean,

this method can simultaneously provide the source image at any gamma-ray energy,

as well as the gamma-ray energy spectrum at any incident direction.

This energy-imaging integrated deconvolution algorithm removes the difficulty of

the system response function dependence on the incident gamma-ray direction. On

the other hand, the new algorithm will also benefit the imaging part. In conventional

Compton imaging systems, it is sometimes assumed that the incident gamma-ray en-

ergy is known a priori. To reduce the Compton background, an image is typically

reconstructed only from those events within a narrow energy window. However, in

many applications, the incident gamma-ray energy is unknown, or the energy spec-

trum is continuous, and it is unlikely to set an energy window to select the full-energy

events. Therefore, the reconstructed image is degraded by the Compton background,

in which only a fraction of the incident gamma-ray energy is deposited within the

detector. Even if the incident gamma-ray energy is known, in the case of multiple

sources, the low-energy photopeak is contaminated by the Compton background from

the high-energy sources, and the reconstructed image of the low-energy gamma-rays

is affected by the distribution of the high-energy gamma-rays. Furthermore, although

the back-projection rings of the Compton background do not pass the true source

direction, those background events still contain information about the source distri-

bution. Therefore, there will be a waste in efficiency if only full-energy events are
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reconstructed. The new energy-imaging integrated deconvolution algorithm consid-

ers all the possibilities in the system response function model. Therefore, all of the

measured events can contribute to the deconvolution. As a result, the energy-imaging

integrated deconvolution algorithm does not require the a priori knowledge about the

incident gamma-rays. The algorithm is also efficient, free of Compton background,

and provides the best estimation of the incident gamma-rays.

6.2.1 Modeling of the System Response Function

In the energy-imaging integrated deconvolution algorithm, a source pixel j is de-

fined in a combined space of both spatial and energy dimensions, and a measurement

i is defined by two sets of position and energy information. Suppose the position is

defined by an 11×11×10 matrix, and the energy is divided into 1000 channels, there

will be more than 106 bins in each set of position and energy information. A Comp-

ton scattered event requires at least two sets of position and energy information.

As a result, 1012 bins are required to store the measurement output. On the other

hand, in the imaging space, suppose the 4π directional space is divided into 16× 16

pixels, and the energy space is divided into 500 channels. The whole imaging space

thus has about 105 pixels. As a result, the system response function for the 3-D

position-sensitive CdZnTe detector has more than 1017 elements, which is beyond

the limit of any memory system currently available.

Because of the huge number of possible measurement events, it is impossible to

pre-calculate the system response function tij by simulations. In this work, an analyt-

ical model was developed to calculate the system response function for each measured

two-pixel event during the reconstruction process. This analytical approach consid-

ers the binning process and the uncertainties in an actual detector system. Since the

imaging space includes the energy dimension, there are two possibilities for a photon
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from an imaging pixel to create a measured event with two interactions. The first

possibility is that the photon deposits all its energy in the detector by a Compton

scattering followed by a photoelectric absorption. The other possibility is the photon

deposits partial of its energy by two Compton scatterings and the scattered photon

escapes. The system response function model should account for both possibilities.

The system response function tij is defined as the probability of a photon emitted

from pixel j to be observed as a measured event i. The system response function

tij therefore can be described as the probability of a photon with a certain energy

emitted from a certain spatial direction to be observed as event i.

The measurement data is usually binned due to pixellation or digitization. There-

fore, the measurement result is actually a small bin volume around point i in the

measurement space. Before this binning process, the imperfect detector system will

introduce uncertainties to the measurement quantities due to noise or Doppler broad-

ening. Therefore, the system response function can be written as

tij =

∫
ΔVi

d̂i

∫
f (̂i|̃i)f (̃i|j)d̃i (6.3)

in which, f (̃i|j) is the probability density function for a photon from pixel j to create

a “real” event ĩ, which consists of the actual interaction positions and deposited

energies, and f (̂i|̃i) is the probability for the detector system to generate a response

of î due to uncertainties given the real event ĩ. ΔVi is the bin volume around

measurement i.

Our model will be based on this procedure to calculate the system response func-

tion. First, we will derive the probability density function f (̃i|j) for a photon emitted

from pixel j to create a real event ĩ. Then we will calculate the probability density

function f (̂i|̃i) for the detector system to output this event ĩ to be î in the mea-

surement space due to measurement uncertainties, assuming all the uncertainties are
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Gaussian. Finally, to obtain tij , the probability density function is integrated over

the bin volume ΔVi around i.

In this work, only two-interaction events are modeled. The system response func-

tion modeling for three or more interaction events can follow the same procedures

but usually is much more complicated. The spatial domain in the imaging space is

the 4π angular space around the detector, thus a source pixel in the energy-imaging

integrated space is defined by (E0,Ω0). The deconvolved image gives the incident

gamma-ray intensity from a certain direction, which is irrelevant to the distance be-

tween the source and the detector. Therefore, it is reasonable to assume that the

source is distributed on the surface of a sphere with radius R which is much greater

than the dimension of the detector. As a result, a source pixel can also be described

by (E0, r0), in which r0 = RΩ0. The measurement event ĩ and î can be represented by

(Ẽ1, r̃1, Ẽ2, r̃2) and (Ê1, r̂1, Ê2, r̂2), respectively. Fig. 6.4 illustrates a two-interaction

event. d1 is the distance that the incident photon travels before reaching the first

interaction position, d is the distance between the two interaction positions, and d2

is the distance that the escaping photon travels before leaving the detector.

6.2.1.1 Probability density function of f (̃i|j)

In a measured event, if two interactions are observed by the detector system,

the first interaction is always a Compton scattering. For the second interaction,

there are two possibilities, which are another Compton scattering or a photoelectric

absorption.

Define Ω̃1 = r̃1−r0

|r̃1−r0| , and Ω̃2 = r̃2−r̃1

|r̃2−r̃1| , which are the directions of the incident and

scattered photons. We will have the conditional probability of

f(Ω̃2|E0, Ẽ1, Ω̃1) =
δ(θr − θe)

2π sin θe
(6.4)
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Figure 6.4: A photon from pixel j creates a two-interaction event i, which consists of energy depo-
sitions of E1 and E2 at positions r1 and r2, respectively.

in which, θe is the scattering angle determined by energies (cos θe = 1+ mec2

E0
− mec2

E0−Ẽ1
),

θr is the angle between Ω̃1 and Ω̃2, and δ(θr − θe) is the Dirac’s delta function. Eq.

6.4 means that given the direction and the initial energy of the incident photon, and

the energy deposited in the first scattering, the second interaction must occur on the

surface of a cone with the half angle determined by Compton scattering kinematics

(here, coherent scattering and Doppler broadening are neglected).

We introduce t as the distance that the scattered photon travels before the second

interaction. If t is known, the second scattering must occur on a ring which is on the

cone defined by Eq. 6.4. Since Ω̃1 and Ω̃2 is defined by r̃0, r̃1 and r2, from Eq. 6.4

we have

f(r̃2|E0, r0, Ẽ1, r̃1, t) =
δ(θr − θe)δ(d− t)

2πt2 sin θe
(6.5)

The probability density function for a photon with energy E0 from r0 to interact

at position r̃1 is

f(r̃1|E0, r0) =
1

4πR2
μ

E0
e
−μ

E0
d1 (6.6)
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in which, 1
4πR2 is the solid angle and μ

E
is the linear attenuation coefficient for

gamma-rays at energy E.

The probability density function for a photon from (E0, r0) to deposit Ẽ1 in a

Compton scattering given the condition that the photon interacts at position r̃1 is

f(Ẽ1|E0, r0, r̃1) =
1

σt(E0)

dσc(E0)

dΩ

∣∣∣∣
Ẽ1

dΩ

dẼ1

∣∣∣∣
Ẽ1

=
N

μ
E0

dσc(E0)

dΩ

∣∣∣∣
Ẽ1

dΩ

dẼ1

∣∣∣∣
Ẽ1

(6.7)

in which, σt(E) is the total cross section at energy E, N is the number of nuclei

per unit volume, and dσc(E0)
dΩ

is the differential scattering cross section defined by the

Klein-Nishina formula.

The probability density function for the scattered photon to travel a distance of

t before the second interaction is

f(t|E0, r0, Ẽ1, r̃1) = μ
E0−E1

e
−μ

E0−E1
t

(6.8)

From Eq. 6.6, 6.7, and 6.8, we can obtain

f(Ẽ1, r̃1, t|E0, r0) = f(t|E0, r0, Ẽ1, r̃1)f(Ẽ1|E0, r0, r̃1)f(r̃1|E0, r0)

=
1

4πR2
e
−μ

E0
d1 N

dσc(E0)

dΩ

∣∣∣∣
Ẽ1

dΩ

dẼ1

∣∣∣∣
Ẽ1

μ
E0−Ẽ1

e
−μ

E0−Ẽ1
t
(6.9)

which is the probability density function that a photon with energy E0 and from r0

creates the first scattering interaction of (Ẽ1, r̃1) and the scattered photon travels a

distance of t before the second interaction.

From the Compton scattering kinematics, we obtain

dΩ = 2π sin θdθ =
2πmec

2

(E0 − E1)2
dE1 (6.10)
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From Eq. 6.5, 6.9, and 6.10, we obtain

f(Ẽ1, r̃1, t, r̃2|E0, r0) = f(r̃2|E0, r0, Ẽ1, r̃1, t)f(Ẽ1, r̃1, t|E0, r0)

=
1

4πR2
e
−μ

E0
d1N

dσc(E0)

dΩ

∣∣∣∣
Ẽ1

2πmec
2

(E0 − Ẽ1)2

(6.11)

·μ
E0−Ẽ1

e
−μ

E0−Ẽ1
t · δ(θr − θe)δ(t− d)

2πt2 sin θe

Therefore, given that the initial photon has an energy of E0 and is from r0, the

probability that the first interaction deposits Ẽ1 at r̃1 and the second interaction

happens at r̃2 is

f(Ẽ1, r̃1, r̃2|E0, r0) =

∫ ∞

0

f(Ẽ1, r̃1, t, r̃2|E0, r0)dt

=
1

4πR2
e
−μ

E0
d1N

dσc(E0)

dΩ

∣∣∣∣
Ẽ1

2πmec
2

(E0 − Ẽ1)2

(6.12)

·μ
E0−Ẽ1

e
−μ

E0−Ẽ1
d · δ(θr − θe)

2πd2 sin θe

We will discuss two cases here depending on the type of the second interaction.

A. Photopeak events: The second interaction is a photo absorption, thus the full

energy of the incident gamma-ray is deposited in the detector (E0 ≈ E1 +E2). f (̃i|j)

becomes

f (̃i|j) = f(Ẽ1, r̃1, Ẽ2, r̃2|E0, r0)

= f(Ẽ1, r̃1, r̃2|E0, r0)f(Ẽ2|E0, r0, Ẽ1, r̃1, r̃2)

= f(Ẽ1, r̃1, r̃2|E0, r0)
σp(Ẽ2)δ(E0 − Ẽ1 − Ẽ2)

σt(Ẽ2)

= f(Ẽ1, r̃1, r̃2|E0, r0)
Nσp(Ẽ2)δ(E0 − Ẽ1 − Ẽ2)

μ
E0−Ẽ1

(6.13)

in which, σp(Ẽ2) is the photoelectric cross at energy Ẽ2.
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B. Compton continuum: The second interaction is a Compton scattering and

the scattered photon escapes the detector, thus only partial energy of the incident

gamma-ray is deposited in the detector (E0 > E1 + E2). f (̃i|j) becomes

f (̃i|j) = f(Ẽ1, r̃1, Ẽ2, r̃2|E0, r0)

= f(Ẽ1, r̃1, r̃2|E0, r0)f(Ẽ2|E0, r0, Ẽ1, r̃1, r̃2)

= f(Ẽ1, r̃1, r̃2|E0, r0)
N

μ
E0−Ẽ1

dσc(E0 − Ẽ1)

dΩ

∣∣∣∣∣
Ẽ2 (6.14)

· 2πmec
2

(E0 − Ẽ1 − Ẽ2)2
e
−μ

E0−Ẽ1−Ẽ2
d2

6.2.1.2 Uncertainties

Due to detector uncertainties, the observed event is different from the actual event.

The probability for a photon emitted from pixel j to create an observed event î can

be obtained by the integral of

f (̂i|j) =

∫
f (̂i|̃i)f (̃i|j)d̃i (6.15)

Specifically, 6.15 can be written as

f(Ê1, r̂1, Ê2, r̂2|E0, r0) =

∫
f(Ê1, r̂1, Ê2, r̂2|Ẽ1, r̃1, Ẽ2, r̃2)f(Ẽ1, r̃1, Ẽ2, r̃2|E0, r0)dV

(6.16)

in which, dV is the integral volume in the measurement space defined by Ẽ1, r̃1, Ẽ2

and r̃2.

Suppose the measurements of the energy E and the position (x, y, z) all follow

Gaussian distribution with uncertainties of σ
E
, σx, σy, and σz, respectively. The

probability density function of observing Ê given the actual energy deposition of Ẽ

is

fE(Ê|Ẽ) =
1√

2πσ2
E

e
− (Ê−Ẽ)2

2σ2
E (6.17)
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Similarly, we have

fx(x̂|x̃) =
1√
2πσ2

x

e
− (x̂−x̃)2

2σ2
x (6.18)

fy(ŷ|ỹ) =
1√
2πσ2

y

e
− (ŷ−ỹ)2

2σ2
y (6.19)

fz(ẑ|z̃) =
1√
2πσ2

z

e
− (ẑ−z̃)2

2σ2
z (6.20)

As a result, f (̂i|̃i) = f(Ê1, r̂1, Ê2, r̂2|Ẽ1, r̃1, Ẽ2, r̃2) is a joint Gaussian distribution.

If the uncertainties in energy and position are smaller enough so that f(Ẽ1, r̃1, Ẽ2, r̃2|E0, r0)

varies slowly around (Ê1, r̂1, Ê2, r̂2), f(Ẽ1, r̃1, Ẽ2, r̃2|E0, r0) can be regarded as a con-

stant and taken out of the integral in Eq. 6.16. Since,
∫
f(Ê1, r̂1, Ê2, r̂2|Ẽ1, r̃1, Ẽ2, r̃2)dV =

1, we can approximate f(Ê1, r̂1, Ê2, r̂2|E0, r0) by replacing (Ẽ1, r̃1, Ẽ2, r̃2) with (Ê1, r̂1, Ê2, r̂2)

in Eq. 6.13 and 6.14.

The above approximation is usually valid when Ẽ1 + Ẽ2 < E0, which means the

second interaction is a Compton scattering. However, if Ẽ1 + Ẽ2 = E0, which means

the second interaction is a photo-electric absorption, (Ẽ1, r̃1, Ẽ2, r̃2|E0, r0) has a term

of a delta function and can not be regarded as a constant. In this case, the delta

function should be integrated over Ẽ1 and Ẽ2.

A. Photopeak events: f (̂i|j) is obtained by

f(Ê1, r̂1, Ê2, r̂2|E0, r0) = f(Ê1, r̂1, r̂2|E0, r0)
Nσp(Ê2)

μ
E0−Ê1

·
∫∫

dẼ1dẼ2δ(E0 − Ẽ1 − Ẽ2)

2πσ
E1
σ

E2

e
− (Ê1−Ẽ1)2

2σ2
E1

− (Ê2−Ẽ2)2

2σ2
E2

= f(Ê1, r̂1, r̂2|E0, r0)
Nσp(Ê2)

μ
E0−Ê1

·
∫

dẼ1

2πσ
E1
σ

E2

e
− (Ê1−Ẽ1)2

2σ2
Ê1

− (E0−Ê2−Ẽ1)2

2σ2
E2

=
f(Ê1, r̂1, r̂2|E0, r0)Nσp(Ê2)

μ
E0−Ê1

√
2π(σ2

E1
+ σ2

E2
)

e
− (E0−Ê1−Ê2)2

2(σ2
E1

+σ2
E2

)
(6.21)
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B. Compton continuum: From Eq. 6.14, f (̂i|j) is obtained by

f(Ê1, r̂1, Ê2, r̂2|E0, r0) = f(Ê1, r̂1, r̂2|E0, r0)
N

μ
E0−Ê1

dσc(E0 − Ê1)

dΩ

∣∣∣∣∣
Ê2 (6.22)

· 2πmec
2

(E0 − Ê1 − Ê2)2
e
−μ

E0−Ê1−Ê2
d2

In Eq. 6.21 and 6.22, f(Ê1, r̂1, r̂2|E0, r0) is the same as Eq. 6.12, except Ẽ1, r̃1,

and r̃2 are replaced by Ê1, r̂1, and r̂2.

6.2.1.3 Binning

The binning process is to integrate the probability density function over the bin

volume, i.e.

tij =

∫
ΔVi

f (̂i|j)d̂i =

∫
ΔVi

f(Ê1, r̂1, Ê2, r̂2|E0, r0)d̂i (6.23)

in which, d̂i = dÊ1dr̂1dÊ2dr̂2.

If the bin volume is small enough such that all terms except the delta function

in f(Ê1, r̂1, Ê2, r̂2|E0, r0) vary slowly within the bin volume, the integral can be

approximated by moving those terms out of the integral.

A. Photopeak events: The system response function is

tij =

∫
ΔVi

f(Ê1, r̂1, Ê2, r̂2|E0, r0)d̂i

=
1

4πR2
e
−μ

E0
d1N

dσc(E0)

dΩ

∣∣∣∣
E1

2πmec
2

(E0 − E1)2
e
−μ

E0−E1
d

(6.24)

· 1

2πd2 sin θe

Nσp(E2)√
2π(σ2

E1
+ σ2

E2
)
e
− (E0−E1−E2)2

2(σ2
E1

+σ2
E2

) ·
∫

ΔVi

δ(θr − θe)d̂i
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B. Compton continuum: The system response function is

tij =

∫
ΔVi

f(Ê1, r̂1, Ê2, r̂2|E0, r0)d̂i

=
1

4πR2
e
−μ

E0
d1N

dσc(E0)

dΩ

∣∣∣∣
E1

2πmec
2

(E0 − E1)2
e
−μ

E0−E1
d N

2πd2 sin θe

(6.25)

· dσc(E0 − E1)

dΩ

∣∣∣∣
E2

2πmec
2

(E0 − E1 − E2)2
e
−μ

E0−E1−E2
d2

∫
ΔVi

δ(θr − θe)d̂i

In both cases, there is an integral of
∫

ΔVi
δ(θr − θe)d̂i which needs to be solved.

Considering that this integral depends on r0, r1, r2, E0 and E1, and the integral vol-

ume is a rectangular parallelepiped due to pixellation and digitization, it is formidable

to obtain an analytical solution for this integral. Here, we make the following as-

sumptions to ease the calculation.

1. r0 is on the back-projection cone defined by r1, r2, E0 and E1. A Gaussian

function with its standard deviation equal to the angular uncertainty will be

used to approximate the system response for pixels not on the back-projection

cone.

2. The integral volumes around r1 and r2 have the same volume, and are approx-

imated by two spheres with equivalent radius of R0 as illustrated in Fig. 6.5.

3. θe is constant in the integral region around E1.

Under the above assumptions, the integral of
∫

ΔVi
δ(θr − θe)d̂i can be calculated

by ∫
ΔVi

δ(θr − θe)d̂i = ΔE1ΔE2

∫
ΔV1

dr̂1

∫
ΔV2

dr̂2δ(θr − θe)

= ΔE1ΔE2

∫
ΔV1

dr̂1

∫ R0

−R0

dz

∫
S

dsδ(θr − θe) (6.26)

The integral region S consists of those points which satisfy θr = θe. Strictly

speaking, S is not a plane. However, when d � R0, S can be approximated by a
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Figure 6.5: The bin volumes in the measurement space are approximated by two spheres when
calculating the system response function.

plane. Also, when d� R0, dz = d · dθr. As a result, we obtain

∫
ΔVi

δ(θr − θe)d̂i = ΔE1ΔE2d

∫
ΔV1

Sdr̂1

= ΔE1ΔE2d

∫ π

0

π(R0 sin θ)2π(R0 sin θ)2R0 sin θdθ

=
16

15
π2R5

0dΔE1ΔE2 (6.27)

6.2.1.4 Final result

For source pixel j of which the gamma-ray initial position is on the back-projection

cone defined by r1, r2, E0 and E1, the system response function is

A. Photopeak events:

tij =
2R5

0ΔE1ΔE2N
2

15R2d sin θe

e
−μ

E0
d1
dσc(E0)

dΩ

∣∣∣∣
E1

2πmec
2

(E0 − E1)2

(6.28)

·e−μ
E0−E1

d σp(E2)√
2π(σ2

E1
+ σ2

E2
)
e
− (E0−E1−E2)2

2(σ2
E1

+σ2
E2

)

B. Compton continuum:

tij =
2R5

0ΔE1ΔE2N
2

15R2d sin θe
e
−μ

E0
d1
dσc(E0)

dΩ

∣∣∣∣
E1

2πmec
2

(E0 − E1)2
e
−μ

E0−E1
d

(6.29)

· dσc(E0 −E1)

dΩ
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E2

2πmec
2

(E0 −E1 − E2)2
e
−μ

E0−E1−E2
d2
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For other source pixels not on the back-projection cone, their system responses

are approximated by a Gaussian function of which the standard deviation equals

the angular uncertainty, which is determined by the detector position uncertainties,

Doppler broadening, and the energy uncertainties.

In Eq. 6.28 and 6.29, e
−μ

E0
d1 is the probability for the incident photon to reach the

first interaction position, dσc(E0)
dΩ

∣∣∣
E1

2πmec2

(E0−E1)2
represents the probability for the incident

photon to deposit E1 in the scattering, e
−μ

E0−E1
d

is the probability for the scattered

photon to reach the second interaction position, σp(E2) represents the probability for

the scattered photon to be photo-electric absorbed, dσc(E0−E1)
dΩ

∣∣∣
E2

2πmec2

(E0−E1−E2)2
repre-

sents the probability for the scattered photon to deposit E2 in the second scattering,

and e
−μ

E0−E1−E2
d2 is the probability for the escaping photon to leave the detector.

The 1
sin θe

term represents the probability that r2 is on the direction of the scattered

photon. In the Compton continuum case, the lack of the energy Gaussian spread

shown in the photopeak case is due to the facts that the system response function

in the Compton continuum case is a slow-changing continuous function of the in-

cident gamma-ray energy E0, and a Gaussian spread with a small uncertainty will

not affect the system response function very much. This is the direct result of the

approximation done in Eq. 6.22.

We notice that R0, ΔE1, ΔE2, N and R are all constants for a specific detector

system, and d is a fixed value for a specific event. From Eq. 5.51, the iteration is not

sensitive to the scaling factor in the system response function since tij appears on

both the numerator and the denominator. Therefore, we can ignore those constants

to simplify the system response function as
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A. Photopeak events:

tij =
1

sin θe

e
−μ

E0
d1
dσc(E0)

dΩ

∣∣∣∣
E1

1

(E0 −E1)2

(6.30)

·e−μ
E0−E1

d σp(E2)√
2π(σ2

E1
+ σ2

E2
)
e
− (E0−E1−E2)2

2(σ2
E1

+σ2
E2

)

B. Compton continuum:

tij =
1

sin θe
e
−μ

E0
d1
dσc(E0)

dΩ

∣∣∣∣
E1

1

(E0 −E1)2
e
−μ

E0−E1
d

(6.31)

· dσc(E0 −E1)

dΩ

∣∣∣∣
E2

2πmec
2

(E0 −E1 − E2)2
e
−μ

E0−E1−E2
d2

6.2.1.5 Discussions on the system response function model

There are several details that need to be addressed:

A. Total cross section The total cross section may not include coherent scattering

(Rayleigh scattering) cross section because the photon does not loss energy in co-

herent scattering process. Coherent scattering is usually unimportant in modeling

gamma-ray transportation. However, when the gamma-ray energy is low (below a

few hundred keV), the cross section and average deflection angle of coherent scat-

tering become nontrivial, and coherent scattering should be taken into account in a

complete model.

B. Sequence ambiguity In 3-D position-sensitive CdZnTe detectors, sequence recon-

struction algorithms are applied to determine the order of the measured interactions.

However, these algorithms can only estimate which sequence has the highest proba-

bility, but can not eliminate the sequence ambiguity. An accurate system response

model should consider all the possible sequences. Particularly, for a two-interaction
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event, each interaction can be the first interaction. Therefore, there are two back-

projection rings at each energy in our model of the system response function.

C. Conventional Compton cameras For conventional Compton cameras with known

incident gamma-ray energy E0 and known interaction sequence, the system response

function can be greatly simplified due to the insensitivity of the MLEM algorithm

to the scaling factors in the system response function. In this case, Eq. 6.30 and Eq.

6.31 can both be reduced to e−σt(E0)d1 , which is the only term in the system response

function related to pixel j. If the size of the detector system is small, this term can be

further reduced. Therefore, the system response function for conventional Compton

cameras is constant on the back-projection cone with a spread defined by the angular

uncertainty.

D. Variation in the binning volume size The anode surface of the 3-D position-sensitive

CdZnTe detector is pixellized into an 11 × 11 array. The effective volume of the

peripheral pixels is slightly larger than that of the central pixels. This variation in

the binning volume size will affect the integral of
∫

ΔVi
δ(θr −θe)d̂i in the derivation of

the system response function. However, this integral does not depend on the energy

or direction of the incident gamma-ray, thus is a constant to all pixels. Again, due

to the insensitivity of the MLEM algorithm to the scaling factors in tij , this integral

can be ignored. Therefore, the variation in the binning volume size will not affect

the deconvolution process.

E. Escaping distance d2 If the incident photon is scattered twice in the detector,

and the final scattered photon escapes the detector, the escaping photon can be on

any direction on a cone, as shown in Fig. 6.6. Since the measurement does not
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provide any information about the escaping direction, an average escaping distance

is calculated by sampling 8 directions uniformly distributed on the cone.

E0

(E2, r2)

θ

(E1, r1)

Figure 6.6: The escaping photon can be on any direction on the escaping cone. The half angle of
the escaping cone can be calculated from E0, E1, and E2.

6.2.2 Factors not Included in the Model

There are several factors that can affect the system response function. The cur-

rent ASIC (VAS3.1/TAT3) developed for 3-D position-sensitive CdZnTe detectors

have an anode triggering threshold of about 30 keV and a dynamic range of about

1.6 MeV [29, 45]. New ASIC under development can have dynamic range up to 3

MeV. Any energy deposition below the triggering threshold or above the dynamic

range will not be measured correctly, and have an impact on the system response

function. For example, theoretically, it is possible for a photon with energy greater

than E1 + E2 to scatter several times before depositing E1 and E2 in the detector,

with the deposited energies lower than the triggering threshold in each scattering.

However, this possibility is considered very low and will have little influence on the

deconvolution results.

The effect of multiple interactions under the same pixel occurs in about one fifth
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of the measured events. Since the measured depth is the interaction depth of the

energy deposition which is the closest to the anode side, there is an asymmetry in the

system response function between the cathode side and the anode side. Currently, no

efficient method has been developed to account for the pixel sharing effect. However,

as shown in Fig. 2.15, the separation distance between the two interactions under the

same pixel is very small, and it is very likely that the two interactions are consecutive.

Therefore, the impact on the image reconstruction is small by regarding the two

interactions as a single interaction.

The charge sharing events are another factor that can affect the system response

function. A K X-ray escaping to a neighboring pixel can also cause a two-pixel

event in which the incident photon only deposit a single interaction in the detector.

Currently, there is no efficient way to distinguish those events from the true two-

interaction events. Since the charge sharing events have two energy depositions in

neighboring pixels, and the depth difference between the two energy depositions is

small (Fig. 2.14(a)), the charge sharing events can be eliminated by excluding the

neighboring two-pixel events with depth difference less than 2 mm, at the expense

of losing some true two interaction events.

6.2.3 Verification of the System Response Function

Eq. 6.30 and Eq. 6.31 give a theoretical model of the system response function

for two-pixel events in 3-D position-sensitive CdZnTe detectors. This model can be

examined by comparing with simulation results. However, the absolute value of a

single element in the system response function is extremely small, which means the

probability for a photon to create a specific two-pixel event is very low. Therefore,

it requires huge amount of simulations to create enough counts in a specific bin.

Here, we use an alternative way to compare the system response function model with
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simulations by generating an energy spectrum from the system response function, and

comparing it with the simulated spectrum. The energy spectrum can be generated

by summing the system response function over all measurement output i with certain

total energy deposition, i.e.

P (E|j) =
∑

i
E1i+E2i=E

tij (6.32)

The source is placed at the side of the detector. Two incident gamma-ray energies

at 356 keV and 662 keV were compared. In the simulation, only two interaction

events were counted. The ASIC triggering threshold, the pixel sharing effect, and

the charge sharing effect were not included. The calculated spectra from the system

response function and the simulated spectra are shown in Fig. 6.7

(a) Incident gamma-ray energy at 356 keV. (b) Incident gamma-ray energy at 662 keV.

Figure 6.7: Comparison of the spectra generated from the system response function and the spectra
from Geant4 simulations.

As we can see, the energy spectra generated by the system response function agree

with the Geant4 simulations at both energies, which indicates that the proposed

system response function models the 3-D CdZnTe detector very well. The slight

difference in the Compton continuum could be caused by the error in the average

escaping distance d2.
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6.2.4 Calculation of the Sensitivity Image

The sensitivity image sj in the list-mode MLEM algorithm of Eq. 5.60 needs to be

precalculated. Theoretically, sj can be calculated by summing the system response

function over all possible measurement outputs, i.e.

sj =
∑

i

tij (6.33)

However, the approach of Eq. 6.33 is impractical for 3-D CdZnTe detectors be-

cause the number of possible measurement outputs is huge. Therefore, the sensi-

tivity image is usually obtained by Monte Carlo simulations. This method becomes

very computational expensive if the number of image pixels is large, such as in 3-D

imaging or energy-imaging integrated reconstruction. Carson proposed a method of

summing over a down-sampled data set instead of summing over all possible mea-

surement outputs [84]. Qi developed a sampling strategy to reduce the error in

the calculated sensitivity image[85]. However, those sampling methods depends on

the accuracy of the system response function. In this work, we propose another

approach by summing over the measurement outputs obtained in Monte Carlo sim-

ulations. This method can produce the sensitivity image that is not affected by the

scaling errors in the system response function.

In the proposed method, a Geant4 simulation with sources uniformly distributed

in all imaging pixel j was first performed to provide a data set. When we use

the simulated data set to do the reconstruction using the MLEM algorithm, if the

iteration begins with the true source distribution, the next MLEM iteration will

converge toward the MLEM solution. Since the MLEM solution is an asymptotic

unbiased estimator, we can assume that with enough statistics, the MLEM solution

and the true source distribution are very close to each other. Therefore, f̂k+1 ≈ f̂k.
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As a result, sj can be estimated by

ŝj =
N∑

i=1

tij∑
j′ tij′ f̂

0
j′

(6.34)

The list-mode data is obtained from the Monte Carlo simulation with a preset

source distribution f̂ 0, which is uniform in this work. As can be seen from Eq. 6.34,

our estimator of the sensitivity image is not sensitive to the scaling error in the

system response function.

Suppose there are M gamma rays emitted from the uniform source in the simu-

lation. Those gamma rays are tagged by m = 1, 2, ...,M . The source has J pixels

with the same area, so the M gamma rays are uniformly distributed within these J

pixels. The mth gamma-ray is from pixel jm, and jm ∈ {1, 2, 3, ..., J}. The average

number of gamma rays emitted from pixel j is

E [nj ] =
M

J
(6.35)

which will be our start image f̂ 0.

For each gamma-ray jm, it can either pass through the detector or be recorded.

The number of possible measurement outputs is I, and we denote the measurement

result of mth gamma-ray is im, and im ∈ {1, 2, ..., I}. If mth gamma-ray is not

detected, we let im = 0.

The proposed estimator of the sensitivity image sj is written as

ŝj =

M∑
m=1
im �=0

timj∑J
j′=1 timj′E [nj′]

=
J

M

M∑
m=1
im �=0

timj∑J
j′=1 timj′

(6.36)

The expectation value of this estimator is

E [ŝj ] =
J

M
E

⎡
⎢⎣ M∑

m=1
im �=0

timj∑J
j′=1 timj′

⎤
⎥⎦ (6.37)
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Since the M gamma rays are independent of each other, Eq. 6.37 becomes

E [ŝj] = J · E
[

tij∑J
j′=1 tij′

]
(6.38)

The physical meaning of the above equation is that the expectation of the sensi-

tivity image sj does not depend on how many gamma rays are simulated. Instead,

the expected value of sj can be calculated from a single simulation.

The probability for a gamma-ray to be recorded as event i is

Pr [ a gamma-ray is recorded as event i ]

=
∑J

j=1 Pr [ a gamma-ray is recorded as event i | i from pixel j ]Pr [ i from pixel j ]

= 1
J

∑J
j=1 tij

(6.39)

Therefore, we have

E

[
tij∑J

j′=1 tij′

]
=

I∑
i=1

tij∑J
j′=1 tij′

Pr [ a gamma-ray is recorded as event i ]

=

I∑
i=1

tij∑J
j′=1 tij′

1

J

J∑
j′=1

tij′

=
1

J

I∑
i=1

tij

=
sj

J

As a result, the expectation value of the proposed sensitivity image estimator

becomes

E [ŝj ] = J · E
[

tij∑J
k=1 tik

]
= sj (6.40)

which means ŝj is an unbiased estimator of the sensitivity image sj.

The proposed estimator of the sensitivity image depends on the assumption of

f̂ 1 ≈ f̂ 0 given f̂ 0 is the true source distribution. It is well known that the MLEM

convergence solution is quite noisy and might be different from the true source
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distribution[86, 87]. However, since the MLEM convergence speed is also low, it

is still reasonable to assume that the first iteration is very close to the true source

distribution.

The calculated sensitivity image by Eq. 6.34 is compared with the Geant4 sim-

ulation result as shown in Fig. 6.8. Because it is impossible to run simulations for

every image pixel j, we only compare the sensitivity images as a function of the

incident gamma-ray energy. In the Geant4 simulations, the incident gamma-rays

are uniformly distributed from all directions, and the estimated sensitivity image is

summed over all incident directions. It can be seen that the estimated sensitivity

image agrees with the simulation result very well.

Figure 6.8: Comparison of the calculated sensitivity and the sensitivity from Geant4 simulations as
a function of the incident gamma-ray energy.

6.3 Performance

The energy-imaging integrated deconvolution algorithm was applied to both sim-

ulated data and measured data. In the system response function model of Eq. 6.30,
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the energy resolution was modeled by Eq. 4.5. The spatial imaging space of the 4π

sphere was divided into 64 × 64 pixels, and the energy space was divided into 500

bins from 0 to 2 MeV. The MLEM algorithm was stopped after 24 iterations.

6.3.1 Deconvolution Using Simulation Data

CdZnTe

Detector

300keV, 0°

475keV, 90°

650keV, 180°

825keV, 270°

1MeV, 360°

Figure 6.9: Source distribution in the Geant4 simulation. The source is uniformly distributed
around the side of the detector. The source energy increases from 300 keV to 1 MeV
linearly as a function of the rotational angle from 0◦ to 360◦.

Ideally, the energy-imaging integrated deconvolution algorithm estimates the true

incident gamma-ray intensity. A Geant4 simulation was performed with a point

source uniformly distributed from 300 keV to 1 MeV. The source rotates around the

detector at the side as the energy increases linearly as a function of the rotational

angle, as shown in Fig. 6.9. By deconvolving the simulation data, we can examine

both the energy and spatial uniformity of the deconvolution method. About 226k

two-pixel events were used in the deconvolution.

Fig. 6.10 shows the simulated two-pixel spectrum and the deconvolved spectrum.

The simulated raw spectrum does not imply that the source is uniform between 300

keV and 1 MeV. This is because the detection efficiencies at different energies are

different, and the low-energy part of the spectrum is contaminated by the Compton

background from the high-energy gamma-rays. The simulated raw spectrum also
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Figure 6.10: Simulated two-pixel spectrum and deconvolved spectrum.

shows a Compton background below 300 keV although there is no incident gamma-

ray with energy below 300 keV. However, the deconvolved spectrum represents the

true energy distribution of the incident gamma-rays, which is uniform from 300 keV

to 1 MeV. Fig. 6.11 shows the deconvolved energy spectra at different gamma-

ray incident directions. The deconvolved spectrum in Fig. 6.10 still shows some

background below 300 keV. This is because the MLEM algorithm tends to amplify

the statistical noise if the detection efficiency is low. As shown in Fig. 6.8, the

two-pixel event detection efficiency decreases quickly for gamma-rays with energy

lower than 300 keV, and this low efficiency introduces the background below 300

keV. In Fig. 6.11 we can see that those Compton background around 200 keV

are distributed across all angles and can be ignored at each direction. Although

the detection sensitivity varies according to the incident directions because of the

asymmetry of the geometry of the detector, the deconvolved spectra correctly show

that the source is spatially uniform.
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Figure 6.11: Deconvolved spectra at different directions. The spectra show that the source is not
only uniformly distributed in energy from 300 keV to 1 MeV, but it is also uniformly
distributed across spatial directions.

6.3.2 Deconvolution Using Experiment Data

The energy-imaging integrated deconvolution algorithm was applied to the mea-

sured data using three point sources as described by Fig. 6.2. The three point sources

were Ba-133, Na-22, and Cs-137, respectively. About 41k two-pixel events were used

in the deconvolution. After the deconvolution, the three sources were well resolved.

Fig. 6.12 respectively shows the images at the three characteristic energies of the

gamma-ray sources, which are 356 keV, 511 keV and 662 keV. It clearly shows the

locations of the three sources. If we look at the directions of the three sources, as

shown in Fig. 6.13, the deconvolved spectra only show the true incident gamma-ray

spectra which are free of Compton continuum.

Although the spectral deconvolution method can remove the Compton contin-

uum which is caused by the scatters within the detector, it is not able to remove

the background in which the scatters occur outside the detector. In those events,
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(a) Energy at 356 keV.

(b) Energy at 511 keV. (c) Energy at 662 keV.

Figure 6.12: The deconvolved images at the photopeak energies of the three sources. The 4π imag-
ing space is projected onto a plane defined by the azimuthal and the polar angles of
the sphere.

the gamma-ray from the source is first scattered by the materials surrounding the

detector, the scattered photon enters the detector and is recorded. The detector

can not distinguish those scattered photons from the un-scattered photons. Since

the deconvolved spectra represent the intensity of the incident gamma-rays, which

include the scattered photons from the surrounding materials, we expect to see a

distribution of those scattered photons, especially a backscatter peak. Fig. 6.13 also

shows the deconvolved spectrum from all directions, in which a continuous back-

ground is present. However, because the scattered photons are spatially distributed,

their distribution is not prominent in the localized spectrum shown in Fig. 6.13.

In order to verify that the deconvolved spectrum represents the true intensity of
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Figure 6.13: The upper figure is the measured two-pixel spectrum. The middle figure respectively
shows the deconvolved spectra at the three source directions. The lower figure is the
deconvolved spectrum from all directions.

the incident gamma-rays, the relative intensities of the four 133Ba gamma lines to the

356 keV line are listed in Table 6.1. The relative intensities from the raw spectrum

are calculated with background subtracted. As we can see, the deconvolved spectrum

represents the true relative intensities much better than the measured raw spectrum.

6.3.3 Comparison with Conventional Compton Imaging and Energy Spectral Decon-
volution

The conventional Compton imaging was performed by setting an energy window

around the full energy peak. By doing so, the true full energy deposition events as
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Table 6.1: Relative intensities of the four 133Ba lines to the 356 keV line

276 keV 302 keV 356 keV 384 keV

Absolute intensity 11.55% 29.54% 100% 14.41%

Measured spectrum 8.87% 26.70% 100% 11.39%

Deconvolved spectrum 12.30% 29.65% 100% 14.27%

well as the Compton backgrounds from the higher energy gamma-rays are selected.

The Compton backgrounds are usually spatially distributed, and have little effect

on the angular resolution of the reconstructed image of a point source. However,

as shown in Fig. 6.14(a), the Compton backgrounds do introduce noises in the re-

constructed image because they are from random directions. Fig. 6.14(b) shows

the energy-imaging integrated deconvolved image summed in the same energy win-

dow. Since the Compton backgrounds are correctly recognized as from higher energy

gamma-rays, they introduce less noises comparing with the conventional Compton

imaging by setting an energy window.

The energy-imaging integrated algorithm uses all measured events and puts the

Compton backgrounds into the right energy bin. As a result, the image obtained at a

full energy peak is from both the true full energy deposition events and the Compton

backgrounds. The Compton backgrounds usually have larger angular uncertainties

than the full energy events. Therefore, the imaging spatial resolution of the new

imaging-energy integrated deconvolution algorithm is not superior comparing with

the conventional Compton imaging by setting an full energy window. Fig. 6.15 shows

the images obtained by the two methods for the 511 keV gamma-rays from the 22Na

source. It can be seen that the energy-imaging integrated deconvolved image has a

spatial resolution slightly worse than the reconstructed image by setting a full energy

window.

Energy spectral deconvolution was also applied to the measurement. Because they
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(a) Conventional Compton imaging.
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(b) Energy-imaging integrated deconvolution.

Figure 6.14: Images of the 384 keV line from the 133Ba source. (a) Reconstructed image by setting
an energy window from 370 keV to 390 keV. (b) Energy-imaging integrated decon-
volved image summed from 370 keV to 390 keV.

do not require the directional information of the incident gamma-rays, single-pixel

events can also be used in the deconvolution. Fig. 6.3 shows the measured raw

spectrum of all events and the deconvolved spectrum. In the spectrum, it can be

seen that the 80 keV photopeak from the 133Ba source is also present. In the current

system, the energy threshold for individual pixels is about 60 keV. Therefore, for

two-pixel events, the minimal detectable energy is 120 keV, which is the reason why

the 80 keV peak is absent in the spectra in Fig. 6.13. Comparing the energy-imaging

integrated deconvolved spectrum in Fig. 6.13 with the spectral deconvolved spectrum
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(b) Energy-imaging integrated deconvolution.

Figure 6.15: Images of the 511 keV line from the 22Na source. (a) Reconstructed image by setting an
energy window from 490 keV to 520 keV. (b) Energy-imaging integrated deconvolved
image summed from 490 keV to 520 keV.

in Fig. 6.3, we can see both spectra show backgrounds due to photons that were

scattered outside the detector. Because both methods did not model the surrounding

materials, the scattering background can not be removed by either method. Although

by carefully modeling the surrounding materials, the energy spectral deconvolution

method can provided a more detailed system response function, and can remove the

scattering background, this practice is not possible for hand-held detectors of which

the operation environment changes frequently. In the energy-imaging integrated

deconvolved spectrum, because the scattering background is spatially distributed,
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the scattering background is not present in the localized spectra at the true source

directions. As a result, the signal-to-noise ratio can be improved at the true source

directions.



CHAPTER VII

POLARIZATION MEASUREMENT

The polarimetry of X-ray or gamma-ray sources is an important tool to study the

origins of X-ray or gamma-ray production in high-energy astrophysics. With the re-

cent report of linear polarization in the prompt gamma-ray emission from gamma-ray

burst GRB021206[88], which provided detailed information of the origin of gamma-

ray bursts (GRB), interest has risen in polarimetry in high-energy astrophysics[89].

The current X-ray or gamma-ray detectors employed for astrophysics missions are

not optimized for polarization study, and polarimetry ability is one of the most

interested characteristics for next-generation X-ray and gamma-ray telescopes. In

1996, S.E. Inderhees and R.A. Kroeger successfully demonstrated the detection of

the polarization of gamma rays using position-sensitive germanium strip detectors

(GSD) [90, 91]. However, the cooling requirement of germanium detectors is a seri-

ous limitation for satellite missions. In this study, we show that room temperature

3-D position-sensitive CdZnTe detectors, which are designed for gamma-ray spec-

troscopy and imaging[92, 29, 30], can be an excellent candidate to do polarization

measurements[93].

143
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7.1 The Klein-Nishina Formula for Polarized Incident Gamma-Rays

All of the three most important interactions of X-rays and gamma-rays with mat-

ter are polarization dependent. The direction of the products from these interactions,

i.e., photoelectrons in photoelectric absorption, scattered photons in Compton scat-

tering, and electron-positron pairs in pair production, all retain signatures of the

polarization information of the incident photons. This angular dependence on the

polarization direction of the incident photons can be the basis of the polarization

measurement in different energy ranges. For soft gamma-rays with energy between

300 keV and 10 MeV, Compton scattering is the dominant process and is the most-

used interaction in current polarization measurements.

According to the Klein-Nishina formula, the Compton scattering cross section per

electron for a linearly-polarized gamma-ray is[62]

dσ =
r2
0

4
dΩ

k2
1

k2
0

[
k0

k1
+
k1

k0
− 2 + 4 cos2 Θ

]
(7.1)

in which dσ is the differential cross section, dΩ = sin θdθdη is the differential solid

angle around Ω, θ is the scattering angle, the azimuthal angle η is the angle between

the electric vector of the incident gamma-ray and the scattering plane, r0 is the

classical electron radius, k1 and k0 are the respective momenta of the scattered and

initial gamma rays, and Θ is the angle between the electric vectors of the incident

gamma-ray and scattered photon ε0 and ε′, respectively. The angles and directions

involved in the scattering are shown in Fig. 7.1

From Fig. 7.1, we can easily obtain the geometrical relationships of

cos Θ = cosβ sin ξ (7.2)

and

cos ξ = sin θ cos η (7.3)
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Figure 7.1: Compton scattering of a polarized photon at position O. ε0 and ε′ are the electric vectors
of incident and scattered photons, respectively. θ is the scattering angle, ξ is the angle
between the scattering direction and the electric vector of the incident photon, η is the
angle between the electric vector of the incident photon and the scattering plane, and
β is the angle between the electric vector of the scattered photon and OCAD plane.

Eq. 7.1 becomes

dσ =
r2
0

4
dΩ

k2
1

k2
0

[
k0

k1
+
k1

k0
− 2 + 4 cos2 β(1 − sin2 θ cos2 η)

]
(7.4)

The total differential cross section for a scattering in which the photon is scattered

at a specific θ and η can be calculated by summing over all directions of polarization of

the scattered photon. In particular, it can be calculated by summing the differential

cross sections when β = 0 and β = π/2. As a result, we have

dσ = dσ‖ + dσ⊥

=
r2
0

2
dΩ

k2
1

k2
0

[
k0

k1

+
k1

k0

− 2 sin2 θ cos2 η

]
(7.5)

Eq. 7.5 is the differential Compton scattering cross section for polarized gamma-
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rays. For unpolarized gamma-rays, the incident gamma-ray can be resolved into two

orthogonally polarized components with the same intensity. The directions of the

two components can be chosen to be perpendicular and parallel to the scattering

plane (η = π/2 and η = 0), respectively. As a result, the differential cross section

for unpolarized gamma-rays is the sum of these two components, i.e.

dσ =
1

2
dση=π/2 +

1

2
dση=0

=
r2
0

2
dΩ

k2
1

k2
0

[
k0

k1
+
k1

k0
− sin2 θ

]
(7.6)

which is the Klein-Nishina formula for unpolarized incident gamma-rays (Eq. 5.16).

7.2 Polarimetry Using Compton Scattering

From the differential cross section of Eq. 7.5 for polarized incident gamma-rays, it

can be seen that for any specific scattering angle θ, the scattering probability is max-

imized when η = π/2, which means that the scattered photon prefers to be ejected at

directions perpendicular to the polarization plane of the incident photon. By mea-

suring the azimuthal angular distribution of the scattered photons, the polarization

information of the incident photons can be deduced.

To quantify the polarization information, the modulation ratio is defined as

R(ϕ) =
n(ϕ) − n(ϕ+ π/2)

n(ϕ) + n(ϕ+ π/2)
(7.7)

where ϕ is an arbitrary angle in a plane perpendicular to the incident photon direc-

tion, and n(ϕ) is the measured number of events in dϕ about that angle.

Suppose the polarization direction of the incident gamma rays is at ϕ0, then
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η = ϕ− ϕ0. The modulation ratio becomes

R(ϕ) =
n(ϕ) − n(ϕ+ π/2)

n(ϕ) + n(ϕ+ π/2)

=
dσ |η=ϕ−ϕ0 −dσ |η=ϕ+π/2−ϕ0

dσ |η=ϕ−ϕ0 +dσ |η=ϕ+π/2−ϕ0

=
− sin2 θ cos(2ϕ− 2ϕ0)

k0

k1
+ k1

k0
− sin2 θ

(7.8)

in which dσ |η is the differential Compton scattering cross section at η. As we can see,

at each scattering angle θ, the modulation ratio is a sinusoid function of cos(2ϕ−2ϕ0),

which has a period of π. The amplitude of the modulation ratio versus the scattering

angle at different the incident gamma-ray energies is shown in Fig. 7.2. Since the

phase of the modulation ratio is independent of θ, the average modulation ratio over

all scattering angles is still a function of cos(2ϕ − 2ϕ0). The modulation ratio is

maximized when ϕ is perpendicular to the polarization plane of the incident photon

(ϕ = ϕ0 + π/2), and is minimized when ϕ is along the polarization plane (ϕ = ϕ0).

Therefore, the polarization direction and degree can be deduced from the measured

phase and amplitude of the modulation ratio, respectively.

7.3 Experiment Setup

Natural gamma-rays emitted from decaying isotopes are unpolarized. To obtain

a polarized gamma-ray source, 662 keV photons from a 137Cs source were scattered

90◦ by a 25.4 mm × 25.4 mm BaF2 scintillator before entering the 3-D CdZnTe

detector. The scintillator and the CdZnTe detector were operated in coincidence to

suppress the background. The 90◦-scattered photons irradiated the CdZnTe detector

from the cathode side. Those scattered photons were 58% polarized. In the actual

experiment configuration shown in Fig. 7.3, due to the finite size of the scintillator,

the photons entering the CdZnTe detector were not exactly 90◦ scattered. Therefore,
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Figure 7.2: The change of the modulation ratio amplitude according to different incident gamma-ray
energies and scattering angles. For a fixed incident gamma-ray energy, the modulation
ratio amplitude is maximized when the scattering angle is slightly less than 90◦.

the polarization degree of the incident photons was slightly less than 58%, which is

one of the reasons causing the deficiency of the simulated modulation ratio when

compared with the theoretical value (Fig. 7.4). When changing the position of

the 137Cs source, the polarization direction of the scattered photons will change

accordingly. This will be reflected by the phase change of the measured modulation

ratio.

7.4 Theoretical Prediction of the Modulation Ratio Amplitude

For an unpolarized 662 keV gamma-ray from the Cs-137 source, the direction of

its electric vector is uniformly distributed in 2π. As a result, the azimuthal angle

η is uniformly distributed. Therefore, to calculate the polarization status of the

90◦-scattered photon, η should be integrated over 2π. When the scattering angle θ
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Figure 7.3: Experimental setup. The Cs-137 source was scattered by the BaF2 scintillator before
entering the CdZnTe detector. The scintillator was operated in coincidence with the
CdZnTe detector to suppress the background. The CdZnTe detector is enclosed in the
detector box and placed underneath the scintillator.

equals π/2, we have

ε2‖ =
dσ‖
dθ

∣∣∣∣
θ=π/2

=
r2
0

4

∫ 2π

0

dη
k2

1

k2
0

[
k0

k1

+
k1

k0

− 2 + 4(1 − cos2 η)

]

=
r2
0

4
· 2πk2

1

k2
0

[
k0

k1
+
k1

k0

]
(7.9)

and

ε2⊥ =
dσ⊥
dθ

∣∣∣∣
θ=π/2

=
r2
0

4

∫ 2π

0

dη
k2

1

k2
0

[
k0

k1

+
k1

k0

− 2

]

=
r2
0

4
· 2πk2

1

k2
0

[
k0

k1
+
k1

k0
− 2

]
(7.10)

Eq. 7.9 and Eq. 7.10 are obtained from Eq. 7.4 with β = 0◦ for σ‖ and β = 90◦ for

σ⊥. The ratio of k1 and k0 can be calculated from the Compton scattering equation,

and is presented by

k1 =
k0

1 + α(1 − cos θ)
(7.11)

in which, α = hν0/mec
2 and hν0 = 662 keV.
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The polarization degree of the 90◦-scattered photons is

ε2‖ − ε2⊥
ε2‖ + ε2⊥

=
2

k0

k1
+ k1

k0
+ k0

k1
+ k1

k0
− 2

= 0.577 (7.12)

We first calculate the modulation ratio of linearly polarized photons at 288 keV,

which is the scattered photon energy at 90◦ from the 662 keV gamma-rays. The

modulation ratio of the actual 90◦-scattered photons can be obtained by multiplying

the modulation ratio of linearly polarized 288 keV photons by the actual polarization

degree of the incident gamma rays.

The differential scattering cross section of a linearly polarized 288 keV photon is

represented by Eq. 7.5. When we integrate over the scattering angle θ in Eq. 7.5,

we can get the differential cross section of a linearly polarized photon to be scattered

into different azimuthal angles, i.e.

dσ(η) =
r2
0

4
dη

∫ π

0

sin θdθ
k2

1

k2
0

[
k0

k1
+
k1

k0
− 2 sin2 θ cos2 η

]
(7.13)

in which k1/k0 can be calculated by Eq. 7.11 with hν0 = 288 keV, which is the

energy of the 90◦-scattered photon from a 662 keV gamma-ray.

The modulation ratio of linearly polarized 288 keV photons calculated from Eq.

7.13 is 0.412.

As a result, the theoretical modulation ratio expected in our experiment is: 0.412×

0.577 = 0.238.

7.5 Simulations

Theoretical calculation gives the amplitude of the modulation ratio to be 0.238

if Compton scatterings at all scattering angles are recorded (see Appendix). From

Eq. 7.8 and Fig. 7.2, the modulation ratio is a function of the scattering angle θ. In

the actual detector system, the detection efficiency will vary at different scattering
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angles, therefore the measured amplitude of the modulation ratio depends on the

geometry of the detector. However, in this experiment, due to the low incidental

gamma-ray energy, the detection efficiency at different scattering angles will be very

close to 100%, except those scattering events with very large or small scattering

angles (those events will deposit two interactions under the same pixel and will not

be recorded as two pixel events by the detector system). Therefore, the measured

modulation ratio should be still close to the theoretical value. In addition, since

the detector is pixellated, the measured count rate at a specific scattering direction

inside the CdZnTe detector depends on the solid angles subtended by pairs of pixel

anodes along that scattering direction, which will contribute to the decrease of the

amplitude of the modulation ratio. Simulations were run using the Geant Monte

Carlo package to account for the effect of the detector geometry. As we can see in

Fig. 7.4, the simulated amplitude of the modulation ratio is slightly less than the

theoretical calculation.

Simulations were also run to study the efficiency of the 3-D CdZnTe detector as

a polarimeter. In the simulation, the detector was irradiated by a beam of linearly

polarized photons from the cathode side. For comparison, a Ge detector with the

same geometry was also simulated. The polarimeter efficiency was calculated using

only non-neighboring two-pixel events. For incident gamma rays with energy greater

than 200 keV, the results in Fig. 7.5 show that CdZnTe detector has higher efficiency

although the Compton scattering cross sections of CdZnTe and germanium are very

close to each other. The advantage of CdZnTe is more significant if only photo

peak events are selected for polarization measurement. This is because that CdZnTe

has more stopping power for the scattered photon due to higher photoelectric cross

section.
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Figure 7.4: The modulation ratio from simulation. The amplitude of the modulation ratio is 0.225,
which is slightly less than the theoretical value of 0.24. The difference is caused by the
finite size of the scintillator, the different detection efficiencies for different scattering
angles and the finite pixel size.

7.6 Results

As shown in Fig. 7.6, the Cs-137 source was placed at four different locations,

which are at 0◦, 30◦, 60◦ and 90◦ with respect to the direction of the gap between

the two lead shielding blocks. Events recorded by two neighboring anode pixels

on the 3-D pixellated CdZnTe detector were excluded to eliminate the influence of

charge sharing events. The activity of the 137Cs source was 20μCi. The count rate

of two-pixel events in the detector was very low due to the low coincidence rate

between the BaF2 scintillator and the 3-D CdZnTe detector. After one week of data

acquisition, only about 3500 useful events were recorded. The observed events were

mostly recorded by two anode pixels that are separated only by one pixel in between,

thus the recorded scattering direction can only have some discrete values, such as 0◦,
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Figure 7.5: Simulated spectrometer and polarimeter efficiencies for CdZnTe and Ge detectors. The
events useful for polarimeter are defined as non-neighboring two-pixel events.

27◦, 45◦, 63◦ and 90◦.

The polarization direction of the scattered photons will change according to the

position of the 137Cs source. This will be reflected by the phase change of the

measured modulation ratio as shown in Fig. 7.7. The modulation ratio should have

a period of 180◦, and any two points with 90◦ phase difference should differ only in

the sign.

The low count rate has contributed to the large experimental uncertainties. How-

ever, the phase change in the modulation ratio is still evident. The amplitude of the

modulation ratio is between 0.19 and 0.25, which is close to the theoretical value of

0.238 and the simulated result of 0.225. The statistical uncertainties of the measure-

ment should be improved if more counts are collected.

The source location can be reconstructed by Compton imaging. Since the incident
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Figure 7.6: Top view of the measurement setup. The source was placed at four different locations
to produce scattered gamma rays with different polarization directions, which can be
deduced by measuring the distribution of the scattering direction in the CdZnTe de-
tector. The CdZnTe detector was placed underneath the BaF2 scintillator and is not
displayed in this figure.

direction of gamma rays from a source can be identified, the polarization measure-

ment can be performed on any source in space. Fig. 7.8 shows the reconstructed

image using one of the measured data sets with the list-mode MLEM algorithm. The

image shows the source correctly at the location of the BaF2 scintillator.

In our data processing program, events with all scattering angles were taken into

account to provide better statistics. From Fig.7.2, we can see that the modulation

ratio is maximized at scattering angle slightly less than 90◦. If a specific range of

scattering angles around 90◦ is selected to enhance the polarization effect, higher

modulation ratio can be obtained. The selection of scattering angles can be done by

selecting scatter energies, positions of interactions, or even both to provide better

accuracy by rejecting those non-Compton scattering events, such as events with

multiple interactions under one pixel anode or events produced by pair production at
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Figure 7.7: Modulation ratio measured for 288 keV gamma rays with 60% polarization degree. The
phase shift of the modulation ratio reflects the measured polarization direction, and the
amplitude of the modulation ratio is proportional to the polarization degree.

higher energies. However, to get the scattering angle from the interaction positions,

the direction of the incident gamma-ray source must be known a priori. This will be

possible from the imaging capability of the 3-D CdZnTe detector.

In principle, three (or more) pixel events are also useful in polarization measure-

ment and they provide more information. However, for energy as low as 300 keV,

three or more pixel events in CdZnTe are rare. At higher energies, three or more

pixel events should contribute more to the polarization measurement.
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Figure 7.8: Reconstructed image of the 90◦-scattered photons after 24 iterations with the list-mode
MLEM algorithm. The image shows the up and down hemispheres of the 4π imaging
space. Since the scintillator has a finite size, the reconstructed image is a distributed
phantom.



CHAPTER VIII

Summary and Future Work

8.1 Summary

It has been demonstrated that three-dimensional position-sensitive room temper-

ature CdZnTe detectors are precise and versatile gamma-ray measurement devices.

Besides the excellent energy resolution, information about the incident gamma-ray

position and polarization can be measured without the use of mechanical collima-

tors or coded apertures common to other gamma-ray imaging devices. Furthermore,

the detector has a full 4π field of view. The dimensions of the detector studied in

this work are 15 mm × 15 mm × 10 mm. The position resolution is approximately

1.3 mm × 1.3 mm × 0.4 mm, and the energy resolution is approximately 1% FWHM

for single pixel events and 1.6% FWHM for two pixel events.

Sequence reconstruction is necessary in image reconstruction algorithms such as

the simple back-projection and the filtered back-projection. Monte Carlo simulation

data shows that following a Compton edge test, there is a greater probability for the

first interaction to deposit more energy across all the energy range in a 15 mm ×

15 mm× 10 mm detector. The simple comparison method chooses the higher energy

deposition as the first interaction if the event passes the Compton edge test. At

662 keV, this method can identify 77% of full-energy two-pixel events in simulations.

157



158

The deterministic method relies on the position information as well as the energy

information to identify the sequence. Because of the small size of the detector, the

deterministic method provides little advantage over the simple comparison method.

Given the information of the direction of the incident gamma-rays, the sequencing

efficiency can be improved even further.

The angular resolution of the imager can be affected by various factors, of which

the detector position resolution is the limiting factor. The average separation dis-

tance between the positions of a two-pixel event is only about 4.3 mm at 662 keV.

The 1.3 mm × 1.3 mm × 0.4 mm position resolution introduces an angular uncer-

tainty with standard deviation of about 12.4◦. Because of the high Z number of

CdZnTe, the Doppler broadening effect is another dominant factor, introducing 8.4◦

standard deviation in the angular uncertainty. Energy resolution and coherent scat-

tering introduce relatively small effects in the angular uncertainty. When a number

of detectors are arranged into an array, the angular uncertainty introduced by the

position resolution can be decreased since more events are separated with longer

distance. Although the variation in the angular uncertainty for different events in-

troduces difficulties in image reconstruction algorithms, the variation also enables

an improvement in angular resolution by selecting those events with less angular

uncertainties (at the expense of detection efficiency).

Three different image reconstruction algorithms have been applied to the 4π

Compton imager. The simple back-projection algorithm has relatively poor reso-

lution, but it is a very straight forward method and may be an appropriate choice if

identification of the presence of a source is more important than angular resolution.

The angular resolution of the simple back-projection algorithm is about 50◦ for a

Cs-137 source to the side of the detector. The filtered back-projection algorithm
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utilizes the Fourier transform between the 4π sphere and the spherical harmonics to

deconvolve the point spread function from the simple back-projection images. With

recent advances in fast transform algorithms, the filtered back-projection algorithm

can be operated in real-time. The angular resolution of the filtered back-projection

algorithm is about 22◦. The maximum likelihood method estimates the source dis-

tribution from a statistical point of view, resulting in the solution which is the most

likely to generate the measured data. The angular resolution of the MLEM algorithm

is about 12◦ after 24 iterations. when the source is in the vicinity of the detector,

the finite size of the detector can help to identify the source-to-detector distance

with near field imaging technique. More powerful 3-D imaging capability has been

demonstrated using Monte Carlo simulations with a 3 × 3 CdZnTe detector array.

Because of the imaging capability of the detector, the system response function

of the detector is a function of both the energy and the direction of the incident

gamma-ray. A new energy-imaging integrated deconvolution algorithm is proposed

and studied in this work. By applying the MLEM algorithm, the deconvolution gives

the estimation of the true incident distribution of the gamma-rays as a function of

both the energy and the direction. Comparing with the conventional energy spectral

deconvolution method, the energy-imaging integrated deconvolution method is not

sensitive to the direction of incident gamma-rays and the surrounding materials.

The proposed algorithm can not remove the back-scattered photons because these

photons are part of the incident gamma-ray spectrum. However, the back-scattered

photons are spatially distributed and are not present in the localized energy spectrum

at the true source directions.

Polarization is another important characteristic of gamma-rays. When a polar-

ized gamma-ray is Compton scattered, an asymmetry exists in the scattered photon’s
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azimuthal direction. The polarization information can therefore be deduced by mea-

suring the azimuthal distribution of the Compton scattered events. The position-

sensitive CdZnTe detector was operated as a polarimeter, and 58% polarized 288

keV gamma-rays were measured. The measurement results showed good agreement

with theoretical calculations and Monte Carlo simulations.

8.2 Suggestions for Future Work

There are several topics not addressed in this work that should be studied in

the future. Currently, only the system response function for two-pixel events was

modeled. At 662 keV, the fractions of one, two, and three-or-more pixel events

are 31%, 37%, and 32%, respectively[94]. As the gamma-ray energy increases, the

fraction of three or more pixel events also increases. It is necessary to model the

system response function of three or more pixel events to increase the efficiency. It

will be a challenging task since there will be N! possible sequences for a N-pixel event.

Currently, the computation cost of the MLEM algorithm remains high. This

is especially true for the energy-imaging integrated deconvolution algorithm as the

number of pixels is very large. Ordered subset expectation maximization (OSEM)

algorithm[95] is a possible way to accelerate the reconstruction speed. The OSEM

algorithm divides the measured data set into several subsets, and uses the recon-

struction image of the previous subset as the initial image of the next subset. The

algorithm can provide order-of-magnitude acceleration over the conventional MLEM

algorithm and is easy to implement[95]. However, the variance and convergence

properties of the OSEM algorithm are still unclear.

In the filtered back-projection algorithm, the point spread function is obtained

from a simulation with a Cs-137 source placed at the side of the detector. In reality,
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the point spread function depends on the incident gamma-ray energy and direction.

The volume of the CdZnTe detector is quite symmetric, therefore the PSF of the

source from the side can be applied to other source directions. However, for a detector

system with large geometrical asymmetry (such as a detector array), the PSF should

be modeled as a function of the incident gamma-ray direction. The PSF should also

be calculated at different energies.

Another promising avenue of study is the possibility to improve sensitivity by

making best use of the inherent imaging capability. In applications where a point

source is to be detected in the presence of a strong background, traditional gamma-

ray spectrometers use the counts in the full-energy window as the detection criteria.

However, the natural gamma-ray background is usually distributed in all directions.

By looking into the source direction, the background will be reduced thus the signal-

to-noise ratio can be increased. Therefore, the sensitivity of detecting a point source

in a strong background can be improved over traditional gamma-ray spectrometers.
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