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ABSTRACT 

A 3D CdZnTe detector can provide 3D position information as well as energy information of each individual interaction 
when a gamma ray is scattered or absorbed in the detector. This unique feature provides the 3D CdZnTe detector the 
capability to do Compton imaging with a single detector. After detector calibration, real-time data acquisition and 
imaging are implemented with a single detector system. Because the detector has a finite size and any point in the 
detector can be the first scattering position, 3D gamma-ray imaging in near field is possible. In this work we will show 
the result of the 4π Compton imaging with a single 15mm × 15mm × 10mm CdZnTe detector. Different algorithms for 
sequence and imaging reconstruction will be addressed and compared. The angular uncertainty is estimated and the 
most recent results from measurements are presented. 
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I. INTRODUCTION 

Compton camera takes advantage of the scattering kinematics if an incident photon interacts two or more times with 
detectors. The interaction positions will determine the direction of the photon after the first scattering, and the energy 
depositions will decide the first scatter angle. Therefore the source position can be limited on a cone with the vertex 
located at the first scattering position. For a photon without any prior knowledge about its polarization information, 
there is no preference for the photon to be at different positions on the cone, thus a uniform cone is reconstructed. Once 
many cones are obtained, various algorithms can be applied to reconstruct the true source image. Because this imaging 
technique eliminates the requirement of a mechanical collimator, it is sometimes also referred to as electronic 
collimation technique1. Electronic collimation using Compton scattering usually has a much larger event number than 
mechanical collimation; however, each event obtained with electronic collimation contains less information, because the 
source can locate on any position on the projection cone. Furthermore, the angular resolution of mechanical collimation 
is mainly determined by the characteristics of the collimator; while in electronic collimation, the angular resolution can 
be affected by both the position and energy resolution of the detector system, and can vary from event to event. Various 
algorithms have been developed to overcome those difficulties. Singh proposed several reconstruction methods such as 
ML, EM, and ART, etc.2, 3. However, those algorithms usually require binning of the data which becomes impractical 
when the precision of the system increases. Barrett, Parra and Wilderman4-6 developed list-mode maximum likelihood 
estimation algorithm to avoid the data binning requirement. Although maximum likelihood estimation algorithms 
usually can provide better results, they need excessively computing resources because of their iterative characteristics. 
In traditional computer tomography, filtered back-projection (FBP) is a well-understood and effective algorithm in 
image reconstruction. However, due to the lack of fast algorithms in Fourier transform on spherical coordinates, filtered 
back-projection algorithm was not very successfully applied to Compton cameras until recent years7-9. In this paper, 
both maximum likelihood estimation algorithm and filtered back-projection algorithm will be examined and compared. 
Traditionally, Compton cameras consist of two position sensitive detectors or detector array. The front detector acts as a 
scatter material and the back/side detector captures the scattered photon. From the position and energy information 
recorded by the detector system, the cone of possible source locations is generated. This design requires the photon to be 
scattered in the first detector followed by an absorption in the second detector, which results very low efficiency. 
Furthermore, the geometry of the detector system limits the imaging solid angle. With a single 3D position sensitive 
detector, because the separation distance between the first and second scatter positions is small, it can achieve higher 
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efficiency than two detector system by 1~2 orders of magnitude due to much larger solid angle the detector covers from 
the first scattering position10. 

 

Figure 1. Cone projection of a Compton scattering event. The two interaction positions determine Ω, which is the direction of the 
cone axis. The energy deposited at the first scattering position and the total energy of the photon determine the half angle of the cone. 

In this work, we will show the most recent progress of using a single 3-D position sensitive CdZnTe detector to do 
Compton imaging. The detector is 15mm×15mm×10mm in dimension and its anode is pixellated into an 11×11 array. 
The depth information is obtained by measuring the electron drift time from the interaction positions to the anodes. 
Currently, the position resolution is about 1.2mm in each direction, and energy resolution at 662keV is 1.1% and 1.6% 
for single and double pixel events, respectively11. 
Compton imaging is usually performed off-line, because it requires intensive computation, especially for iterative 
algorithms such as list-mode maximum likelihood method. However, simple back-projection and filtered back-
projection do not need iterations and can reconstruct the image event by event. Along with the advances in computing 
power of personal computers, real time Compton imaging with a single 3D CdZnTe detector was achieved in this work. 
Furthermore, virtually any computer connected to the data acquisition computer via the internet can perform real time 
imaging. This will provide the possibility that a fast central computer can process data from multiple detectors placed at 
different locations. 
Since the detector has a finite size, it is possible to do 3D imaging in near field, which will be discussed in section II. 
The angular uncertainty of each event must be estimated for both sequence and image reconstruction. Based on error 
propagation, a new method to estimate the angular uncertainty caused by detector position resolution is described in 
section III. By applying a single detector as the Compton imager, the sequence information which is guaranteed in two 
detector systems is not available. Therefore, sequence reconstruction algorithms must be developed to decide the correct 
order of interactions in the detector. In this paper, different algorithms of sequence reconstruction will be reviewed and 
compared in section IV. Finally, we will discuss different image reconstruction algorithms and their performance in 
section V. 

II. 3D COMPTON IMAGING 

The principle of Compton scattering imaging is well known. Once the positions of the first and second interactions are 
measured, the direction of the cone axis is determined. The half angle of the cone is decided by the energy deposited at 
the first scattering position and the total energy of the photon. 
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In a two-detector Compton imaging system, the scatter angle θ is limited to a certain range; while in a single detector 
Compton imaging system, the scatter angle can be any value. For simple back-projection reconstruction method, those 
cones are projected onto a sphere around the detector. If the radius of the sphere is large comparing with the size of the 
detector, the vertexes of all cones can be placed on the center of the sphere. This approximation is also referred as “far 
field imaging”. When the source is close enough to the detector, the size of the detector is no longer negligible. For 
different events, since their vertex positions are different, special consideration must be taken to correct the 
displacement of the vertex from the origin. This technique is also referred as “near field imaging”. 
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Figure 2. Near field imaging at focus distance r. 

In near field imaging, the vertex of the back-projection cone should be placed at the position of the first interaction 
rather than at the center of the detector. As illustrated in Figure 2, point C is on the focal sphere with radius r, point A is 
the position of the first interaction, and the angle α between line CA and the axis of the cone is calculated and compared 
with the half angle of the cone to determine the value of that point. 
With this simple near field imaging correction, the radius of the focal sphere must be preset. If the source is not located 
on the focal sphere, the image of the source is blurred. This is analogous to any optical system: the image is always the 
clearest on the focal plane. Figure 3 shows the images got at different focus distances for the same measurement, and 
Figure 4 shows the influence of focus distance on the image resolution. It is evident that when the focus distance is 
37mm, which is the true source to detector distance, the reconstructed image has the best resolution. 

 

Figure 3. Reconstructed images at different focus distances. The measurement was taken with a 137Cs point source placed 37mm 
above the detector. The reconstruction algorithm was MLEM and stopped at 6th interation. 
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Figure 4. Image resolution versus focus distance. 
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Since any point in the detector can act as the vertex of a back-projection cone, it is possible to back project the cone into 
3-dimensional space instead of a sphere. Therefore, 3D imaging is possible with near field imaging, although projecting 
the cone into 3D space need much more storage space and computing resource. The same measurement was 
reconstructed with 3D imaging technique, and the result is shown in Figure 5. The image indicates that a single 3D 
CdZnTe detector can not only do 2D imaging, it can also provide the source to detector distance. The resolution in 
radial direction is mostly limited by the size of the detector, which is still very small at the current stage. If the detectors 
can be fabricated into arrays, more powerful 3D imaging capability will be achieved. 

 

Figure 5. A vertical slice through the center of the detector in 3-D Compton imaging. The measurement was taken with a 137Cs point 
source placed 37mm above the detector. The reconstruction algorithm was MLEM and stopped at 24th interation. 

III. ANGULAR UNCERTAINTY 

For each event, the angular uncertainty is affected by both energy and position resolution of the detector system. The 
detector position uncertainty will cause the uncertainty of the cone axis; and the detector energy resolution will decide 
the uncertainty of the half angle. The angular uncertainty is important in both sequence and image reconstruction. 
Doppler broadening of the scatter angle is ignored because this effect is relatively small comparing with the angular 
resolution achievable with the current system. 
The contribution from energy resolution can be calculated by means of error propagation based on Eq. 110. Suppose 
there are N interactions in a single event, the angular uncertainty caused by energy resolution is 
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in which mec
2 is the rest mass energy of an electron, E0 is the total energy of the incident photon, Ei is the energy 

deposited at ith interaction, and θ is the first scatter angle. 
The position uncertainty contribution to the angular uncertainty of the back-projection cone is more complex. The 
position uncertainty is about 1.2mm in the lateral coordinates due to the pixellation on the detector anode surface, and 
1.0mm in depth due to the uncertainty of the electron drift time measurement. In previous study, the angular uncertainty 
due to position resolution is calculated by simulations. The detector depth was separated into 20 bins. Therefore the 
whole detector volume was divided into over 2000 small voxels. For each pair of voxels, two points were randomly 
sampled within the two voxels and a vector was drawn between the two points. The angle between this vector and the 
line connecting the centers of the two voxels was then calculated12. Many vectors were sampled for each pair of voxels 
and the angular uncertainty of the axis between these two voxels was then estimated.  
This method is simple and straightforward. However, this method assumes that for each pair of voxels, the angular 
uncertainties due to position resolution are the same at all directions. This is not always true in reality, especially for two 
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neighboring pixels. Here we will derive the uncertainty of the cone axis in azimuthal and polar angles from error 
propagation, and the uncertainty at any other angle can be approximated by these two uncertainties. Suppose the first 
two interaction positions are P1(x1, y1, z1) and P2(x2, y2, z2), and the cone axis connected by these two points is at the 
direction of (θ, φ). It is easy to know: 

 1 2 1

2 1

tan
y y

x x
ϕ − −=

−
, (3) 

and,  

 1 2 1

2 2
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z z
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From error propagation, we can get: 
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and,  
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Here, p is the pixel size of the detector, and ∆z is the depth uncertainty. 
However, σθ and σφ are not orthogonal on the unit sphere. We define another angular uncertainty σφ’, which is shown in 
Figure 6 to be the angular uncertainty of the axis in azimuthal direction before it’s projected onto the x-y plane. 

 2arcsin(sin cos )
2
ϕ

ϕ
σ

σ θ′ =  (7) 

 

φ

 

Figure 6. Angular uncertainty due to position uncertainty of the detector. In the right figure, the cone in bold lines is the back-
projection cone. The axis has uncertainties in both azimuthal and polar angles, so that the back-projection cone is spread around into 

the shadowed ring shape area. 

Since the cone axis has difference uncertainty at different directions, the cone spread will differ with angle β between 
line AB and plane OAC, which represents different positions on the back-projection cone. The spread of the back-
projection cone at any angle β is approximated in the following way: 
 2 2( ) cos sinp θ ϕσ β σ β σ β= +  (8) 

Combined with the angular uncertainty contributed by energy resolution, the overall angular uncertainty is 

 2 2 2 2( ) ( cos sin )e θ ϕσ β σ σ β σ β= + +  (9) 
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We compared this angular uncertainty estimation algorithm with simulations, and found this method is a good 
approximation when the uncertainty of the cone axis differs at different angles. This helps to improve the overall image 
resolution. There is some distortion because of the rough approximation in Eq. (8), but it is only noticeable when the 
two interaction points are very close to each other or the scatter angle is very small. In reality, those events usually have 
poor angular resolution and are not very helpful to image reconstruction. The drawback of this algorithm is that it needs 
to calculate β for each pixel in one event, therefore costs more computation time. 

IV. SEQUENCE RECONSTRUCTION 

In a two-detector Compton imaging system, the interaction sequence is known as a prior. However, in a single 3D 
CdZnTe detector, the timing resolution is much larger than the flight time of a photon between interactions. The 
sequence of interactions must be reconstructed from the energy or position information of the event.  

1. Two Interactions 
For two interactions, previous study used a simple method by comparing the two energy depositions. Geant4 
simulations indicate that in a 15mm×15mm×10mm CdZnTe detector, when the incident photon energy is greater than 
400keV, the interaction with higher energy deposition has more chance to be the first interaction, and vice versa. So the 
sequence reconstruction algorithm for two pixel events is simply to choose the higher energy deposition to be the first 
interaction for gamma rays with energy higher than 400keV, and for gamma rays with energy lower than 400keV, the 
algorithm chooses the lower energy deposition to be the first interaction. 
However, for gamma rays with energy greater than 400keV, this algorithm will sometimes give a sequence which is 
physically impossible. For example, a photon can deposit very small amount of energy during the first scattering, and 
the energy of the scattered photon is beyond the Compton edge. If the scattered photon is absorbed by the detector by 
photoelectric absorption, the sequence reconstruction algorithm by simple comparison will give the wrong sequence, 
which is physically impossible. This situation can be avoided by doing a Compton edge test first. If one of the two 
energy depositions is beyond the Compton edge, the other interaction will be chosen as the first interaction. 
From Geant4 simulations, this simple comparison algorithm for sequence reconstruction can correctly identify 58% of 
sequences at 662keV with full energy depositions. Considering at this energy, about 20% events will deposit more than 
1 interaction under a same pixel, and those events are regarded as “unreconstructable” events, 58% is a reasonable 
percentage. Studies also show that for those events with 2 or more interactions under the same pixel, the sequence got 
by the simple comparison algorithm can still contribute to image the correct source location. 
Another sequence reconstruction algorithm is deterministic algorithm based on Klein-Nishina formula: 
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in which α≡hν/mec
2. The probability density function of a photon to be scattered at angle θ then is: 
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For a two-pixel event, there are two possible sequences, which correspond to two different scatter angles. 

 

Figure 7. Two possible sequences in a two-pixel event. θ1 and θ2 are the two possible scatter angles. 

To decide which sequence has more probability, we assume there is a small energy perturbation dE in the first 
interaction. Since the total energy E0 is constant, the change in E2 then is –dE. From Eq. (1), 
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So, the probability for a photon with energy E0 to leave an energy deposition between E1 and E1+dE in the first 
interaction is Σ(θ1)dθ1. Therefore, in the deterministic sequence reconstruction algorithm for two-pixel events, the figure 
of merit is defined as: 
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The deterministic sequence reconstruction algorithm has close performance comparing with the simple comparison 
method, except that deterministic algorithm is about 15% better at medium energy around 500keV. 
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Figure 8. Fraction of simulated correctly reconstructed sequences by simple comparison and deterministic sequence reconstruction 
algorithms. 

2. Three Interactions 
Sequence reconstruction for three-pixel events is more complicated. Current techniques include “backtracking”13, 
deterministic method14, and “chi-squared” or “minimum squared difference” (MSD) method10, 15, 16. Here we will only 
discuss the last two algorithms. 

 

Figure 9. Three interactions. The second scatter angle can be calculated from both energy and position information. 

MSD method compares the cosines of the second scatter angle calculated from energy and position information, and 
defines the figure of merit by dividing the square of their difference by the uncertainty in that difference: 
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From error propagation, the uncertainty in θ2e and θ2r can be calculated as: 
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and 
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In Eq. (16), we made an assumption of 2 2 2 2
x y zσ σ σ σ= = =  to simplify the expression. 

The deterministic algorithm for three-pixel events is similar to the algorithm for two-pixel events. The figure of merit is 
defined as: 
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where ( )EθΣ  stands for the cross section of a photon with energy E to be scattered at angle θ. 

The performances of the two algorithms are very close. 

Table 1. Fraction of correctly reconstructed sequences at 662keV by MSD and deterministic sequence reconstruction algorithms. 
Events with multiple interactions under a same pixel are always regarded as incorrectly reconstructed, although they still contribute to 

the imaging. 

 All Events Full Energy Deposit 
MSD 44.2% 52.1% 

Deterministic 43.9% 51.8% 

However, the first scatter angle distribution of correctly reconstructed events shows that MSD algorithm tends to 
correctly identify those events with smaller scatter angles, which have better angular resolution. Therefore, although the 
fraction of correctly reconstructed events by deterministic algorithm is very close to MSD algorithm, MSD algorithm is 
used in this work. 

V. IMAGE RECONSTRUCTION 

The simplest way to reconstructed a Compton image is to back project the cones to the imaging plane or sphere. This is 
sometimes called “event circle” method. Here we will refer it as “simple back-projection” algorithm, to correspond to 
the “filtered back-projection” algorithm which is also studied in this paper. Another popular algorithm in Compton 
image reconstruction is maximum likelihood estimation via the expectation maximum algorithm (MLEM). 

1. Simple back-projection 
Simple back-projection method is the most straight forward algorithm. Since each event provides the information of the 
possible source locations which are uniformly distributed on a cone, those cones are simply summed up together. 
Because theoretically every cone will pass the true source location, the source can then be enhanced and be 
distinguished from the background. 

 

Figure 10. Simple back-projection algorithm sums all cones on the imaging sphere to form the image. 

The image reconstructed by simple back-projection algorithm is usually blurred because the cones overlap with each 
other. Currently the angular resolution achieved by simple back-projection algorithm is about 50 degrees. However, 
since this method is simple and fast, it might be useful in some applications that require fast response rather than good 
angular resolution, such as source probing. 
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2. Filtered back-projection 
Even with perfect detector performance, i.e., perfect energy and position resolution, and correct sequence, the simple 
back-projection still suffers from the random distribution of cone axis directions. Parra8 proposed FBP algorithm to 
deconvolute the blurring in spherical harmonics domain. With perfect detector performance, a point source will generate 
a simple back-projection image as: 
 2 0
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∫
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in which ω0 is the angle between the image pixel direction and the source direction, and h(z) is defined by Klein-Nishina 
formula: 
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Surprisingly the above integral has a closed form: 
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where 0cos
2

k
ω= , and γ is the ratio of the initial gamma ray energy and rest mass of an electron. 

Eq. (18) or (20) is the point spread function (PSF) of the system. Suppose the simple back-projection generates an 
image of g’(Ω), then FBP algorithm will deconvolute the PSF out of g’(Ω) to form the filtered image of g(Ω). The 
deconvolution can actually be performed through a convolution: 
 1( ) ( ) (cos )g d g h ω−′ ′ ′Ω = Ω Ω∫ , (21) 

in which: 
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In the above equations, ω is the angle between Ω and Ω’, and Hn are the coefficients of hbp(cosω) expanded on Legendre 
polynomials. 
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Fortunately, Hn converge to a constant value rather than zero when n is large, thus avoid the instability problem usually 
faced by deconvolution process. If PSF other than Eq. (20) will be used, and Hn vanish to zero when n is large, the 
image must be low pass filtered before deconvolution. 
Convolution of Eq. (21) can be performed either in angular space or by transforming into spherical harmonics space, 
filtering, and then transforming back into angular space. Parra also suggested an “event response function” method to 
combine the back-projection and filtering into a single filtered back-projection step. However, due to recent progresses 
in fast algorithms of Fourier transform on spherical coordinates17-19, it is possible to perform the convolution of Eq. (21) 
directly. Since FBP algorithm can also be performed event by event, it is easy to implement this algorithm in real time 
imaging. The computation cost of FBP is only slightly more than simple back-projection algorithm, but it can achieve 
much better angular resolution. Currently, detector errors are not taken into consideration. If detector errors are 
considered, there is still room for further improvement. 

3. List-mode MLEM 
MLEM is an iterative algorithm that will converge to a source distribution having the maximum likelihood for the 
measured data set to be observed. The convergence is assured if the total number of events is greater than the pixel 
number in the image. The iteration is performed by the following equation6, 20: 

 1
n
j i ijn

j n
ij ik k

k

Y t

s t

λ
λ

λ
+ = ∑

∑
, (24) 

152     Proc. of SPIE Vol. 5540



in which λj
n is the estimated value of pixel j at nth iteration, sj is the probability of an emission from pixel j to be 

detected, Yi is the number of times that measurement i is observed, i={1,2,…,i,…,I-1,I} includes all possible 
measurement outputs, and tij is the probability of an emission from pixel j to be observed as measurement i. The matrix 
tij is also called the system model or matrix. Iterations can be terminated by some preset stopping criterion. However, in 
practice, computation time usually sets the limit to terminate the iterations early. 
The system matrix can be modeled analytically: 
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where σt(E) is the total absorption cross section for a photon at energy E, E0 and E′ are the initial and scattered photon 
energies, respectively, r01 is the attenuation distance between the source pixel and the first interaction, r12 is the 
attenuation distance between the first and second interactions, and dσcB/dΩ is differential Compton cross section, which 
is approximated by the Klein-Nishina cross section (10) divided by r12

2. Therefore, the system matrix is the product of 
the probabilities for the initial gamma ray to reach the first interaction point, be scattered at angle θ, and for the scattered 
photon to reach the second interaction location. 
The number of the possible measurement outputs can be very large. For an N-pixel event, the measurement output is a 
4N dimensional vector, including 3N dimensions in positions and N dimensions in energy. Therefore, the system matrix 
could be extremely large to keep the information loss low. List mode maximum likelihood was introduced to overcome 
this difficulty by setting Yi=1 for all measured events and zero for all unmeasured events. This assumption is usually 
valid because the chance for two measurements to be exactly the same is extremely low. Therefore, the summation over 
all possible measurement outputs in Eq. (24) becomes a summation over all measured events. By this way the system 
matrix tij can be calculated on the fly and thus eliminates the requirement to pre-calculate and store the system matrix. 
When reconstructing an event, the system matrix is only calculated on the back projection cone and set to zero 
elsewhere, because if the source pixel is not on that cone, it is obvious that there is no chance for a photon with energy 
E0 to be detected as the measured event. We also found that the last two terms in the system matrix model of Eq. (25), 

/Cd dσ Ω   and ))(exp( 12rEt ′−σ , are independent on the locations of source pixels. Noticing that in Eq. (24), there are 

system matrixes on both numerator and denominator, these two terms will eventually cancel with each other. The first 
term, ))(exp( 010 rEtσ− , is the source pixel position determined, because r01 depends on the source pixel position, and is 

a quite complicated function. However, for small detector system such as a 15mm×15mm×10mm 3D CdZnTe detector, 
we found the ratio of the maximum value of this term to its minimum value is very close to 1, which indicates this term 
in the system matrix model can also be considered as constant. 
Therefore, as long as the detector is small enough, tij is almost constant for all the pixels on the back-projection cone. In 
Eq. (24), tij will eventually be normalized, so it is equivalent to replace all tij with 1. By this way, the calculation of the 
system matrix can be skipped, and great amount of computation cost is then saved. After this approximation, the MLEM 
algorithm in one iteration cycle almost has the same speed as the simple back-projection algorithm, while the image 
almost has no noticeable difference from the image reconstructed with the original system matrix. 

4. Performance 
Due to the asymmetry in the detector system, the angular resolutions are different in azimuthal and lateral directions. 
Currently, the angular resolutions achieved by different reconstruction algorithms are listed in Table 2. 

Table 2. Angular resolution (FWHM) achieved by different image reconstruction algorithms. 

 Simple back-projection FBP MLEM (24 iterations) 
FWHM in azimuthal 
direction (degrees) 47.7 19.1 10.1 

FWHM in lateral 
direction (degrees) 

61.4 29.6 14.4 

Only full energy events were imaged by those reconstructions. To verify the above resolution, two point 137Cs sources of 
nearly equal activity were placed 15 degrees apart at the side of the detector. Surprisingly, the two sources are still 
resolvable even with 19.1 degrees angular resolution in FBP. Since FBP algorithm does not need iterations and its speed 
is comparable with simple back-projection algorithm, it can be used as a start point of MLEM algorithm thus decreases 
the iteration times. Currently, FBP algorithm is equivalent to MLEM at about 5th iteration. 
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(1) Simple back-projection; (2) FBP (3) MLEM (24 iterations) 

Figure 11. A point 137Cs source images reconstructed by simple back-projection, FPB and MLEM, respectively. 
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(1) FBP (2) MLEM (24 iterations) 

Figure 12. Images of two point 137Cs sources placed 15o apart by FBP and MLEM separately 

VI. CONCLUSIONS 

A single 3D CdZnTe detector is proven to be capable of doing 4π Compton imaging. When the detector size increases, 
it is also able to do 3D imaging. Real-time data acquisition and imaging were implemented with simple back-projection 
and FBP reconstruction algorithms. With a single 15mm×15mm×10mm 3D CdZnTe detector and currently available 
ASICs, an angular resolution of 100 at 662keV was achieved by list-mode MLEM reconstruction algorithm after 24 
iterations. Filtered back-projection is a promising algorithm since it is fast and does not need iteration. Current achieved 
angular resolution by FBP is about 190 at 662keV, and there is still room for further improvement if detector error is 
taken into consideration. 
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