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CHAPTER 1
INTRODUCTION

1.1 Principles of Compton Imaging

Compton imaging is the use of Compton scatter kinematics to reconstruct an
image of a gamma-ray source distribution. In Compton scatter a gamma ray interacts with
an atomic electron, providing enough energy to overcome the binding energy and eject it
from the atom. The gamma ray, which transfers energy to the electron in the form of
kinetic energy, is scattered at an angle with respect to its initial direction. The gamma ray
may then scatter again or undergo other types of interactions in the material. Of particular
interest in Compton imaging is photoelectric absorption in which the total gamma-ray
energy is transferred to an atom, which then ejects an electron. After any interaction the
energy carried by the electron is then deposited in the surrounding material through
electron scattering which generates electron-ion pairs in gases or electron-hole pairs in
semiconductor detectors. For initial gamma-ray energy Ej, deposited energy E;, and
scattered gamma-ray energy £/, the Compton scatter angle, &, can be calculated via

Equation 1.1,
E,E’

cos@=1-

, (1.1)

where m.c” is the rest mass energy of an electron (511 keV). Equation 1.1 is commonly
called the “Compton scatter formula” and is derived under the assumptions that the

electron is unbound and at rest.



The traditional Compton imager consists of two detectors that register the
positions and energies of gamma-ray interactions. Pixellated detectors[1-3], orthogonal
strip detectors[4, 5], or arrays of conventional planar detectors[6] can be used as position-
sensitive spectrometers. When a gamma ray scatters in the first (“front plane”) detector
and then is absorbed in the second (“back plane”) detector, the locations and energies of
each interaction are measured. By using the Compton scatter formula the scatter angle
can be determined from the deposited and initial gamma-ray energies. As illustrated in
Figure 1.1, a line connecting the positions of the interactions (labeled / and 2) determines
the axis of a cone of possible source locations. The vertex and half-angle of the cone are
given by the first interaction position and the Compton scatter angle, &, respectively. The
source location can only be determined to within a cone due to the azimuthal ambiguity
in the Compton scatter formula. Each sequence of events in the two detectors results in a
cone, and over many events the cones typically are summed in the source plane (which
must be known or estimated) to generate an image of the source distribution. Various
backprojection and iterative image reconstruction methods can then be used to improve
the quality of the image[7-9].

Two performance measurements are often quoted for Compton imagers:
efficiency and angular resolution. The intrinsic camera efficiency is the fraction of
gamma rays incident on the front-plane detector that result in imaged sequences (i.e.
sequences that deposit full energy and result in Compton cones at least partially within
the field-of-view). The intrinsic efficiency is a measure of the sensitivity of the device.
Angular resolution—usually taken as the full-width at half-maximum (FWHM) of a
central slice through the 3-D point source response function of the system—is used to
characterize the quality of the images. Large angular resolutions correspond to poor

images while small resolutions correspond to good images.
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Figure 1.1. Illustration of Compton imaging. A line between the first and second
interaction locations determines the axis of a cone whose half-angle is given by
the Compton scatter formula. The cone is projected onto the source plane.
Summing cones from many events gives an estimate (image) of the source
distribution.

1.2 History of Compton Imaging

Research with Compton imagers—also called “electronically collimated gamma
cameras” or “Compton telescopes”—has been active for thirty years. The first Compton
scatter device was proposed in 1973 by Schonfelder, Hirner, and Schneider from the
Max-Planck Institute in order to study the nature of the astronomical sources of MeV
gamma rays[10]. The Compton telescope used a 3375-cm’ plastic scintillator cube
separated by 1.2 m from a 3 x 3 array of 8000-cm® plastic scintillator cubes to register
gamma-ray events with limited angular incidence (30°). The telescope did not produce
images, but it had directional sensitivity such that observable differences could be

expected for point sources, galactic background, and the diffuse electromagnetic



spectrum. The authors reported an energy resolution of 20% half-width at half-maximum
(HWHM) at 2.75 MeV and absolute detection efficiency of 0.5%.

In 1974 Herzo et al. at the University of California-Riverside reported the design
for a combined neutron and gamma ray double-scatter telescope[11]. As before, the
purpose of the telescope was obtaining directional sensitivity and not gamma-ray
imaging. The device consisted of two groups of liquid scintillation tanks separated by 1
m. The total volumes of the front plane and back plane detectors were 0.125 m’ and 0.2
m’, respectively. Time-of-flight measurements discriminated between gamma rays and
neutrons. As with the Max-Planck Institute design, the double-scatter telescope did not
require full gamma-ray absorption in the second detector array, but instead a correction
factor was used to estimate the initial gamma-ray energy based on the observed deposited
energies and interaction positions. Simulations demonstrated an expected energy
resolution of 25% HWHM at 2.2 MeV and 20% HWHM at 4.4 MeV. Angular resolution
was estimated near 8° HWHM with a maximum field of view of about & steradians. The
maximum calculated efficiency of 3% occurred at 3 MeV.

The first Compton imaging device was proposed by Todd ez al. from the
University of Southampton in 1974 as an alternative to a mechanically collimated
imaging system[12]. They were the first to recognize that by using the kinematics of
Compton scatter, one can localize the source direction of a gamma ray within a cone
surface, given the position and energy deposited in each of two interactions. In a 1977
publication[13], they showed through simulations that a Compton imager composed of
planes of Si strip detectors could localize the direction of a point source and could even
reconstruct an image of an object phantom.

The first working prototype imager was reported in 1983 by Singh and Doria
from the University of Southern California[14]. Three-dimensional tomographic and 2-D
planar images were reconstructed using a cylindrical 6 mm diameter x 6 mm thick high-

purity germanium (HPGe) front-plane detector separated by 5 cm from an uncollimated



Nal(T)) scintillation detector in the back plane. The initial gamma-ray energy was known
and used to discard partial energy deposition events. A 9° full-width at half-maximum
(FWHM) angular resolution can be inferred based on data published in the manuscript. In
1988, Brechner and Singh used simulations to compare the above Compton imaging
(“electronically collimated”) system with mechanically collimated systems[15]. They
reported a simulated factor of 20 gain in sensitivity compared with a cone-beam
collimated gamma camera (which has better sensitivity than a traditional parallel-hole
collimated camera).

The early successes of Compton imaging systems led to the development of
COMPTEL, a Compton telescope selected to fly on NASA’s Gamma Ray Observatory
(later referred to as the Arthur Holly Compton Gamma Ray Observatory, or simply the
CGRO)[16]. Schonfelder, who helped develop the first Compton telescope, led the
international team of scientists that designed COMPTEL. The front-plane detector was an
array of seven liquid scintillator cells (28 cm in diameter and 8.5 cm thick) coupled to
photomultiplier tubes (PMTs). The back plane detector consisted of 14 Nal(T1)
scintillators (28 cm in diameter and 7.5 cm thick) also coupled to PMTs. The observed
energy resolution was 12% FWHM at 511 keV and 6% FWHM at 2.75 MeV. Due to the
large separation distance between detectors (over 2 m), the angular resolution of the
system was at or below 4.7° FWHM for gamma-ray energies between 1 and 10 MeV.

At the time of its flight COMPTEL was the most sensitive astronomical gamma-
ray detector in the 1-30 MeV range. The efficiency and angular resolution of the system
were, however, abysmal by medical imaging standards. Thus, different schemes were
investigated to maximize the efficiency of such systems while improving the imaging
resolution. In 1988, Kamae and Hanada devised an imager consisting of a stack of 6 mm
x 6 mm x 500 um Si strip detectors surrounded by a 2-cm thick cylindrical CsI(T1)
scintillator, increasing the solid angle subtended by the back plane detector, and thus

increasing the efficiency of the device[17]. They calculated a total intrinsic efficiency



near 20% for a simulated beam source with energy less than 500 keV and estimated an
expected angular resolution between 3-5.5° FWHM when the initial gamma-ray energy is
known. In the same year, Soloman and Ott determined that germanium and silicon were
ideal material candidates for the front-plane detector, based on efficiency, absorption, and
position resolution characteristics[18]. Only high atomic number scintillators were
considered for the back plane detector in their study. It should be noted that by the late
1980s pixellated anode structures had not yet been used with semiconductor detectors;
thus semiconductors with poor charge carrier transport properties were not considered
viable for these devices.

As semiconductor detectors improved throughout the 1980s and 1990s, more
researchers looked to Si, Ge, and CdZnTe detectors as possibilities for Compton imaging.
In 1990, Dogan, Wehe, and Knoll from the University of Michigan proposed a multiple
scatter Compton camera using stacks of Si detectors surrounded by a CsI(T1) scintillator
[19]. This was the first demonstration of using multiply scattered gamma rays for
Compton imaging. At 511 keV, the estimated efficiency was about 7% and the angular
resolution was estimated between 3 — 7° depending on electronic noise level[20].

In 1993 Martin et al. proposed a ring Compton camera that used a 4x4 array of
S5mm x Smm x 6mm Ge detectors as the front plane detector followed by a ring of
cylindrical Nal(T1) back plane detectors 19.1 mm in diameter and 50.8 mm in length[6].
The Ge detector could be moved along the axis of the Nal(T1) ring to vary the observed
Compton scatter angles. The camera had an angular resolution of about 9° FWHM and an
intrinsic efficiency of 1.5x10™ at a scatter angle of 45°. It was later determined by
Gormley ez al. that the device performed better than a mechanically collimated pinhole
camera for energies above 400 keV[21].

LeBlanc ef al. also from the University of Michigan, introduced the C-SPRINT
camera in 1998[22]. It consisted of a 22x22 array of 1.2 mm x 1.2 mm x 1.0 mm Si pad

detectors in the front plane followed by a ring of a variable number of 1.27 ¢cm thick



planar Nal(T1) detectors. The camera showed an angular resolution performance between
4° and 40° FWHM depending on reconstruction method and the number of back plane
detectors used.

A system similar to those reported by Kamae and Hanada and by Dogan, Wehe,
and Knoll, was developed by the University of California at Riverside in 1995[4]. The
Tracking and Imaging Gamma-Ray Experiment (TIGRE) used seven 3.2 cm x 3.2 cm X
300 um Si strip detectors sandwiched for thickness and 36 CsI(T1) scintillators with
dimensions 1 cm x 1 cm x 1.7 cm. The device was designed for astronomical imaging in
the range of 0.3 to 100 MeV. The group proposed to track the recoil electron through the
Si detector. Knowing the Compton scatter angle and the recoil electron direction
eliminates the azimuthal uncertainty in the backprojected image, resulting not in a cone
but in a ray. Using “up” versus “down” electron momentum determination, they
measured a 10° FWHM angular resolution at 900 keV. At 511 keV, the measured
resolution was approximately 11° FWHM.

One year later, Phlips et al. from the Naval Research Laboratory reported the
performance of a Compton telescope using planar 5 cm x 5 cm Ge detectors as both the
front and back plane detectors[5]. The second detector was rotated 90° relative to the
first, such that the detector planes were orthogonal. With an intrinsic efficiency of
approximately 3%, the design was capable of 1° FWHM angular resolution.

In 1997, Bolozdynya et al. reported the performance of a gaseous xenon Compton
imager[23]. The detector was composed of a cylindrical pressure chamber with a low
electric field drift region and a high-field electroluminescent region. Position-sensitive
photomultiplier tubes measured two dimensional interaction positions, and the third
coordinate was determined from the time delay between the signals generated by the
original scintillation and the electroluminescence. An imaging resolution of 13.6°

FWHM at 140 keV can be inferred from the presented data.



In 1998, Aprile et al. proposed the first liquid xenon Compton imager, composed
of a20 cm x 20 cm x 7 cm (active volume) time-projection chamber (TPC) enclosed in a
cylindrical pressure chamber[24]. Another proposed design contained two large area
(2500 cm?) time-projection chambers in a single pressure vessel[25]. Orthogonal wires in
the TPCs were used to measure interaction position in two dimensions, and the third
dimension was determined from the electron collection time. With a 1o energy resolution
0f 2.5% at 1 MeV and 1o position resolution of 1 mm, the expected 1o angular resolution
varied from 0.4° to 2.4° over the 120° field-of-view.

Du et al. from the University of Michigan developed a Compton imager prototype
composed of two 1-cm® CdZnTe detectors with three-dimensional position sensitivity in
2001[26]. This system was the prototype for the current work. The detectors were
separated by 5 cm, and the field-of-view was limited to scatter angles between 20° and
80°. Only gamma rays that scattered in the first detector and were absorbed in the second
detector were used for imaging. The measured intrinsic efficiency at 662 keV was only
1.5 x 10™, due to the small back plane detector size compared with the distance between
detectors. The imager had a measured angular resolution of about 5° FWHM at that
energy[27].

In the same year, Schmid et al. proposed using large segmented coaxial
germanium detectors for Compton imaging[2]. This design combined excellent energy
resolution of HPGe detectors with the increased efficiency of using a single detector to do
Compton imaging. Pulse shape analysis was proposed to determine interaction locations
within each segment, resulting in calculated position resolution of about 1 mm in each
direction. Measurements and simulations performed on the Gamma-Ray Energy Tracking
Array (GRETA)[28] detectors demonstrated that a large preamplifier noise was inhibiting
the imaging performance at 186 and 244 keV. The source location could not be identified
in experiments, but could be found in simulations with reduced noise levels. This work

was the first attempt at 4w Compton imaging.



In 2002 the Naval Research Laboratory published experimental data from a
Compton imager composed of a single HPGe double-sided strip detector[29]. They used
two-event sequences ina 5 cm x 5 cm x 1.1 cm detector. Measurements demonstrated the
ability to resolve two point sources at 662 and 511 keV separated by 20 cm at 41 cm from
the detector. The reported angular resolution was 7°. This was the first successful attempt
at Compton imaging using a single detector, although only planar images were
reconstructed. In the following year they successfully demonstrated using two detectors
with the three-Compton technique, where gamma rays are not required to deposit full
energy in the detectors as long as three interactions occur{30].

In 2003, Lebrun et al. proposed a Compton cube for imaging galactic and
extragalactic phenomena[31]. Planar CdTe or CdZnTe detectors (4 mm x 4 mm) are
arranged in six arrays of 32 x 32 detectors each. The arrays are arranged as sides of a
cube, with supporting electronics on the outside of the cube. The overall cube dimension
is about 15 cm. The authors propose to do all-sky imaging with this system, and cite a
field-of-view six times larger than that of COMPTEL. They estimate between 4 — 2.5°
FWHM angular resolution for gamma-ray energies from 100 keV to 1 MeV, although it
is unclear if they have considered Doppler broadening in this estimate. The uniqueness of
the design is the use of any detector array as the front plane or back plane. In this way,
the field-of-view is much larger than other geometries. However, it is unclear how the
authors plan to properly sequence the observed events, or if they have considered the
possibilities for full 4n field-of-view imaging capability.

Also in 2003, Orito et al. from Kyoto University proposed using a TPC filled with
gaseous xenon as the scatter detector and surrounding scintillators for detecting the
gamma-ray absorption[32]. The TPC has pixel electrodes only 400 um in size, and thus it
is possible to track the recoil electron from Compton scatter processes, similar to the UC

Riverside design. They estimate between 1% and 0.1% intrinsic efficiency between 100



keV and 2 MeV and an angular resolution on the order of 15°, although the performance
has not been measured.

In early 2004, Zhang, Rogers, and Clinthorne from the University of Michigan
proposed a Compton imager for scintimammography[33]. The camera is a dual-head
imager consisting of two planes of 1-mm thick Si arrays 10 cm x 10 cm placed directly
above and below the breast followed by two 40 cm x 40 cm x 2 cm thick Nal(T1)
detectors. Using a realistic simulated anthropomorphic phantom, they estimate an
absolute efficiency of several percent and a spatial resolution of several millimeters for
gamma-ray energies up to 511 keV, depending on the depth of the tumor in the breast.
They demonstrate better confidence in detecting 5 mm tumors using Compton imaging
compared with traditional scintimammography.

Other efforts have examined the use of Compton cameras for tomography[34, 35]
or combined them with coded apertures to achieve better angular resolution[36].
Compton imagers have been proposed for everything from prostate imaging[37] to
nuclear materials inspection[2] to environmental monitoring[38]. To assess the
practicality of using Compton imaging for any application, it is important to understand
the advantages and disadvantages of traditional Compton imaging in comparison with

other imaging modalities.

1.3 Comparison with Collimated Imaging Systems

Compton imagers were designed to compete with traditional collimated gamma-
ray imaging devices. In Anger cameras scintillation detectors coupled to position-
sensitive photomultiplier tubes were used with heavy collimators made of materials with
large atomic numbers[39]. Very good images can be obtained from Anger cameras with
pinhole collimators, although parallel hole, diverging, and converging collimators can

also be used. In coded aperture systems, the collimator holes are typically parallel and are
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Figure 1.2. Illustration of an Anger camera. Most gamma rays emitted from the source
will not penetrate the collimator walls. Only gamma rays emitted parallel to the
collimator axis will arrive at the detector.

arranged in a redundant pattern[40]. The resulting shadow image is deconvolved with the
coded aperture function to yield an image of the source distribution. In both collimated
systems, the collimators absorb gamma rays obliquely incident on the detector face, as
shown in Figure 1.2. Despite low imaging efficiencies, these cameras can produce good
images for x-rays and low-energy gamma rays. However, high-energy gamma rays
(greater than a few hundred keV) can penetrate collimator walls, reducing the
effectiveness of the collimation and blurring the image. To mechanically collimate high-
energy gamma rays thicker materials are needed, thus reducing imaging efficiency and
increasing detector size and weight. In astrophysics applications, the activation by cosmic
rays in the shielding materials can decrease the signal-to-noise ratio for measurements
with balloon-borne and orbiting instruments.

Compton imagers have several advantages over collimated imaging systems. The
absence of a collimator results in greater incident gamma-ray flux, which can lead to
higher sensitivities. Also, without a collimator the imager has less mass, which is
important for patient safety in nuclear medicine applications and for weight reduction of
orbiting cameras used in astrophysics. In Anger cameras collimator geometry determines
both the efficiency and imaging resolution, which are coupled and inversely related.

Improvement in one results in degradation of the other. In Compton imagers resolution

11



depends on the energy and position resolutions in the detectors, whereas efficiency
depends on the sizes, materials, and geometry of the detectors. Due to the decoupling of
these properties, it is possible to improve both image resolution and efficiency
simultaneously. In addition, Compton imagers are more suited to high-energy imaging
because they rely on Compton scatter processes, which dominate in most materials for
gamma-ray energies from a few hundred keV to several MeV. Collimated imaging, on
the other hand, requires photoelectric absorption in a single interaction—a process whose
probability decreases quickly as gamma-ray energy increases.

Despite practical advantages, Compton imagers on the whole have not
experimentally demonstrated improved performance over collimator systems, except in
the area of high-energy astrophysics. The efficiency of the two-detector system can be
orders of magnitude lower than other imagers due to the limited solid angle subtended by
the back plane detector. Compton cameras can be made much more efficient by
increasing the detector areas, but increasing thickness adds the complication of increased
multiple scatters in the first detector. The resolution of Compton imaging systems has
been shown to match the resolution of parallel hole Anger cameras used in nuclear
medicine, usually at the expense of efficiency[22]. The 1° angular resolution quoted
above from Phlips ef al. may seem impressive, but it is still large compared with the 0.5°
angle subtended by our moon as viewed from earth. Astronomers would prefer devices
with arcminute or even arcsecond resolutions.

Compton imagers also typically require some accessory electronics and shielding
materials not necessary for collimated imaging systems. Determining the event sequence
is usually done by shielding the back plane detector from any radiation directly from the
source, forcing the first interaction to occur in the front plane detector, or by separating
the detectors sufficiently so that time-of-flight measurements can be performed. In either
case, the two detectors must register interactions within a very short delay time, requiring

coincidence circuitry to gate on these sequences. In addition, image reconstruction for
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Compton imagers is more difficult than for Anger cameras, where position locations in
the detector directly correspond to positions in the image. Typically, direct reconstruction
methods for Compton imaging such as backprojection filtering require little computation
time but generate poorer images than iterative reconstruction methods in which
computation time can be on the order of minutes or hours on a personal computer.
Throughout the years, Compton imagers have been widely researched but not
widely implemented in astrophysics, nuclear medicine, nonproliferation, or high-energy
physics (the notable exception being the COMPTEL device). With the development of
position-sensitive semiconductors, there has been much effort recently to reexamine the
Compton imaging concept. These devices show promise for many applications, although

there is still much work to be done.

1.4 Objectives of this Work

In this work 41 Compton imaging is successfully demonstrated with a single
three-dimensional position-sensitive CdZnTe detector. This is the first of its kind. The
use of a single detector results in an increased efficiency by three orders of magnitude
over the prototype geometry[41] simply due to the probability of capturing the scattered
gamma ray. The three-dimensional position sensitivity in the detector allows for the
determination of all interaction locations and deposited energies. By reconstructing tracks
with three or more events (in the manner of Wulf ez al. [30]) in addition to full-energy
two-event sequences, further efficiency increases can be obtained. Using CdZnTe as the
detector material has several advantages. The high atomic numbers—48, 30, and 52—
result in high gamma-ray capture efficiency compared with Si and Ge. In addition,
CdZnTe is a room-temperature semiconductor and does not require sophisticated
annealing procedures or cooling electronics which add power consumption and weight to

the design. The field-of-view is not limited by the scatter angles between the two
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detectors, and no shielding is required because there is no back plane detector. Hence,
this Compton imager can reconstruct the full 4x sky view without moving the detector—
something no Anger camera can do. With low weight, no collimator or shielding
materials, and room-temperature operation, the CdZnTe Compton imager can operate as
a hand held 4n gamma-ray camera.

With the absence of time-of-flight capabilities or shielding of the back plane
detector, the sequence order must be determined by other means. In this work a
probabilistic approach that depends on the number of observed interactions is examined
for determining the correct sequence. Also, iterative image reconstruction techniques,
which have been shown to be superior to backprojection filtering for Compton
imaging[1, 14, 26], are explored. Maximum likelihood methods are examined in
particular, and a weighting method is introduced to improve the imaging resolution of the
camera. The performance of the 47 imager is demonstrated using medium- and high-
energy gamma-ray sources (300 keV to 2.6 MeV), and the factors which negatively affect
the imaging performance are discussed.

This work is organized according to the process of generating Compton images.
First, the energy deposited and the locations of interactions must be determined. Then, it
is necessary to determine the proper sequence of events in the detector. Images can be
reconstructed using various models and reconstruction algorithms. Finally, imaging
capabilities can lead to improvements in the energy spectrum observed for a given
source. Thus the 4n Compton imager becomes a true spectroscopic imager. In this work,
Chapter 2 discusses 3-D position sensitivity and how energies and positions are
calculated from measured signals. Chapter 3 describes the experimental hardware used in
this Compton imager. In Chapter 4 a probabilistic algorithm for determining event
sequences is examined. Chapter 5 describes image reconstruction using backprojection in
addition to an enhanced maximum likelihood reconstruction algorithm that emphasizes

the contribution of gamma-ray tracks with better angular uncertainty. Chapter 6 discusses
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factors that can degrade the performance of the imager. Measured performance of the 47

imager and its response to multiple sources and high energy gamma rays are shown in

Chapter 7. Finally, concluding remarks about the system and areas for further research

are discussed in Chapter 8.
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CHAPTER 2
3-D POSITION SENSING IN PIXELLATED DETECTORS

2.1 Introduction

The first step in Compton imaging is the measurement of the positions and
deposited energies for every gamma-ray interaction in the device. For early designs that
used a front and back plane detector, the problem was reduced to finding the location of a
single event in each detector and determining the energy deposited there. There are
several detector options for such a system.

Position-sensitive photomultipliers optically coupled to scintillating detectors
provide a good means to measure both the energy and 2-D position of an interaction. The
depth of interaction in the scintillators is normally not determined, but the thickness of
the crystal provides a maximum range of coordinates. The front and back plane detectors
are necessarily far apart in order to achieve good imaging resolution. In terms of energy
resolution scintillators are poor spectrometers by today’s standards, and typically yield
energy resolutions between 4% and 9% full-width at half-maximum (FWHM) for 662
keV gamma rays.

Another option is to use position-sensitive gas detectors. Two sets of wires inside
the gas chamber will pickup signals from the electrons (liberated by the energy deposited
in the gamma-ray interaction) moving through an electric field. The relative magnitudes
of the signals on the wires indicate the position of the interaction in two dimensions. The
third coordinate can be inferred from the drift time of the moving charges. The

spectroscopic performance of gas detectors varies but is limited to several percent at best.
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Semiconductors became popular due to their excellent energy resolutions, which
can range from one-tenth of a percent to several percent for 662 keV gamma rays.
Germanium detectors (typically 0.2% at 662 keV) are still the “gold standard” in gamma-
ray spectroscopy. Along with the computer industry, the gamma-ray detection field grew
rapidly as semiconductor processing improved. The greatest benefit has been the ability
to deposit electrodes on a semiconductor using a mask pattern. In this way, so-called
“single carrier” spectrometers like coplanar grid and pixellated detectors were developed.
Coplanar grid and pixellated detectors rely on the movement of electrons only. The
Shockley-Ramo theorem, which describes the currents induced on a conductor by moving
charges, is used to predict signal shapes and determine the depth coordinate of the
interaction.

Starting with this theorem, this chapter describes the process of determining the
interaction positions and energies in a pixellated semiconductor detector. The processes
for single-pixel events (in which only one pixel collects electrons) and multiple-pixel
sequences are described separately. Charge sharing between pixels, weighting potential

cross talk, and other difficulties of 3-D sensing are discussed.

2.2 The Shockley-Ramo Theorem

When a gamma-ray interaction occurs in a semiconductor detector electron-hole
pairs are created. An electric field in the detector accelerates the holes toward the cathode
and the electrons towards the anode. The movement of these charges generates a signal
on each of the electrodes. In the late 1930s Shockley[1] and Ramo[2] independently
published papers detailing the calculation of currents on a conductor due to moving
charges. The Shockley-Ramo Theorem[3] provides a method for calculating the induced
currents, and hence induced charge signals, on the electrodes. This theorem is the basis

for all single-carrier detector devices.
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The Shockley-Ramo Theorem states that to calculate the induced charge on an
electrode the “weighting potential” is first determined by solving Poisson’s equation
throughout the detector volume under the conditions that the space charge is removed and
the electrode under inspection is given a unit potential and all other conductors are
grounded. Poisson’s equation is given by Equation 2.1, where ¢ is the weighting potential
and V? is the Laplacian operator. The total induced charge, O, is then directly
proportional to difference in weighting potentials between the initial and final positions
of the moving charge as in Equation 2.2, where e is the unit charge of an electron and #» is
the number of charge pairs generated in the detector. The leading sign is determined by
the sign of the charge carrier (positive for holes and negative for electrons).

V=0 (2.1)
Q =*tneAgp 2.2)

To illustrate the use of the Shockley-Ramo Theorem, induced charge is calculated
for an infinite planar semiconductor detector with no fixed space charge as shown in
Figure 2.1. Electron-hole pairs are generated by gamma-ray interactions, and the electric
field (established by setting the anode to a higher potential than the cathode) forces the
electrons to drift toward the anode and the holes to drift toward the cathode. Solving
Equation 2.1 under the appropriate conditions yields the weighting potential for the anode
given in Figure 2.2. The weighting potential function for the anode increases linearly
from zero at the cathode surface to unit potential at the anode.

For an interaction that occurs halfway between the cathode and anode, the initial
weighting potential is 0.5. The electrons then travel to the anode, where the weighting
potential is 1, resulting in a potential difference of 0.5. The holes travel to the cathode,
where the weighting potential is 0, resulting in a potential difference of -0.5. The total

induced charge on the anode is then the sum of the electron and hole contributions—in

this case the total charge created in the detector: Q = ne(-0.5 + (~0.5)) = —ne.
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Figure 2.1. Ilustration of a planar semiconductor detector. The cathode is grounded and
the anode is set to positive voltage. Electrons and holes drift along the electric
field lines toward their respective electrodes.
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Figure 2.2. Weighting potential calculated for the anode in the geometry of Figure 2.1.
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In semiconductors like Ge the electrons and holes have similar mobilities such
that the transit times of charge carriers across the detector are not widely different. In
CdZnTe, however, the mobility of electrons (~1000 cm?/V/s) is significantly higher than
that of holes (~80 cm?/V/s). During electron collection times in CdZnTe, the holes move
only slightly toward the cathode. For an electric field of 2000 V/cm the holes travel only
1.6 mm in 1 us. Assuming the holes do not move at all and that electrons are not trapped
in transit to the anode, Equations 2.1 and 2.2 predict an induced charge on the anode that
is linearly dependent on the depth of the interaction in the detector. In the above case
where the interaction occurs in the middle of the detector, the induced charge on the
anode would be 0.5ne. For an interaction at a depth of 0.25, the induced charge would be
0.75ne. When electron trapping is taken into consideration, the induced charge becomes a
non-linear function of interaction depth. Thus, in semiconductors with widely different
electron and hole transport properties the energy resolution observed in a planar detector
will be poor because the same amount charge created at different interaction locations
will lead to different induced charges on the anode.

To alleviate this problem, CdZnTe detectors in the past were made only a few
millimeters thick and were operated using high electric fields. In that case the holes travel
further due to the high electric field and are collected due to the small detector thickness.
It is also possible to increase the shaping time to tens of microseconds in order to collect
all the holes. However, the efficiency suffers due to the small detector thickness. To use

thicker detectors it is necessary to employ single-polarity charge sensing.

2.3 Single-Polarity Charge Sensing

One way to mitigate the depth dependence of induced charge for semiconductors
with poor hole transport, such as CdZnTe, is to use an array of pixels as the anode, as in

Figure 2.3. The weighting potential of the anode pixel electrode is then low for most
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Figure 2.3. Illustration of 11 x 11 pixellated anode array.

depths in the detector and sharply rises to 1 near the pixel electrode, as shown in Figure
2.4. This is known as the “small pixel effect[4].” When holes travel only a small distance
through the bulk, the weighting potential difference due to holes is small compared with
the weighting potential difference associated with the motion of electrons. Only for
events very close to anode will the contribution of holes to the signal be significant. For
the rest of the detector the electrons dominate the induced charge signal, and this is
referred to as “single-polarity charge sensing.”

There is a serious problem with an anode structure as shown in Figure 2.3. Each
anode is biased to the same potential. Therefore, some electric field lines will intersect
the nonmetal surface of the detector between pixels before terminating on one of the
anode pixels, and electrons will be directed toward the gap, as illustrated in Figure 2.5.
When electrons created underneath the gap between pixels do not reach the anode the
result is a reduced induced charge and an observed energy that underestimates the true
deposited energy. To alleviate this problem, a steering grid electrode is introduced into

the anode array, as shown in Figure 2.6. The grid is negatively (or less positively) biased
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Figure 2.4. Weighting potential at the center of an anode pixel with and without a
steering grid electrode present.

compared with the anodes. The electric field between pixels will then drive electrons in
the gap to be collected by the anodes. The weighting potential for the anode configuration
with a steering grid present (generated using Maxwell3D) is also shown in Figure 2.4.
The weighting potential with a steering grid present is lower throughout the bulk than the
weighting potential from the simple pixel array. This is an added benefit of the grid
design because lower weighting potential in the bulk leads to less variability in the
induced charge as a function of depth.

One drawback of using the steering grid electrode is the manufacturing of the
anode structure. A continuous mask pattern can be constructed to make simple pixels on
a surface. The electrode materials can be deposited on the entire surface over the mask,
which is then removed leaving only pixels. However, when a steering grid is present, a

single mask is insufficient and special photolithography procedures are required.
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Figure 2.6. Illustration of 11 x 11 pixel anode array with steering grid electrode.
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Figure 2.7. Induced charge (as a fraction of the total energy deposited) for the weighting
potentials shown in Figure 2.4.

The induced charge due to electrons is calculated using Equation 2.2 and is given
in Figure 2.7 as a function of depth in the detector along a path through the center of an
anode for an array of 11 x 11 pixels on a 15 mm x 15 mm x 10 mm detector. The
variation in induced charge is almost 15% in the bulk of the detector (greater than 1 mm
from the anode surface) without the steering grid, but only 10% with the grid present.
This variability is due to the slow rise of the weighting potential throughout the bulk of
the detector.

It 1s clear there is still some residual dependence of the induced charge on the
depth of interaction after pixellating the anodes with or without the steering grid present.
To overcome this, He et al. proposed in 1996 to use the cathode and anode signals
together to directly determine depth of interaction for coplanar grid detectors[5]. This

same method was later applied to pixellated detectors[6]. The authors recognized that (in
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the absence of electron trapping) the cathode signal amplitude is proportional to the depth
of interaction, and the anode signal amplitude is nearly independent of depth. Thus, the
ratio of the cathode to anode signals should yield the depth of interaction. By separating
the gamma-ray spectra into different depths, the variation in the induced charge (and
hence observed energy) can be directly measured. Corrections are then applied to align
each depth spectrum. This correction can account for any weighting potential effects,
electron trapping, and also nonuniform defects in the material[7], and can be applied to
an anode structure with or without a steering grid electrode. However, without a steering
grid some electrons may not reach the collecting anode (as shown in Figure 2.5
previously), and this effective charge loss cannot be corrected.

This method only works correctly when only one interaction occurs in the
detector. When more than one event occurs, the cathode signal is the sum of the
contributions from each event, while each anode signal is the sum of the contribution of
the event that occurred underneath it and the weighting potential cross talk from the other
events in the detector (see Section 2.4). The cathode-to-anode ratio no longer determines
the interaction depths, but rather the energy-weighted centroid depth of the interactions.
Another method must be used to determine interaction depths for multiple events.

One popular way is to use signal timing, as illustrated in Figure 2.8. The cathode
signal begins to rise linearly as soon as the electron cloud starts to drift toward the
anodes. The signal is passed through a shaping amplifier with a very short shaping time,
and then a threshold trigger can determine the start time of the drift. The anode signal
rises very slowly until the electron cloud underneath it arrives close to the anode, where it
sharply rises. The anode triggers just before the electrons are collected. In this way, the
difference in time between the two triggers determines how long the electron cloud
drifted and, hence, the depth of interaction in the detector. (The illustration is a
simplification of the timing determination because each signal has a separate threshold

level in the detector.) This method works for any number of interactions in the detector.

28



Cathode

CLF

7 Before shaping
time 2
v After shaping Trigger
/\ threshold
------ A il A S S SR Hme =
Cathode
trigger A, trigger A, trigger
time 2>

A,

Figure 2.8. Illustration of depth determination of multiple events. The cathode triggers
first, followed by each of the anode triggers as the electron clouds near the pixels.
The time between the cathode and anode triggers determines the interaction depth.
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The limiting factors for using the cathode-to-anode ratio to determine the depth of
single events are the energy resolution on both the cathode and anode and the electronic
noise on the cathode signal[5]. However, for multiple events, the timing resolution of the
system is critical to achieving good performance. Because single events cannot be used in

Compton imaging, only the timing method is used to determine depth in this work.

2.4 Weighting Potential Cross Talk

As an electron travels toward the anode structure, it induces a charge not only on
the pixel that eventually collects it, but also on the other anode pixels. This is referred to
as “weighting potential cross talk.” In detector materials with similar electron and hole
mobilities, the induced signals on these non-collecting pixels are transient and integrate
to zero net charge. The hole contribution exactly cancels the electron contribution.
However, for CdZnTe and other detector materials with poor hole transport, there is a net
induced charge on the neighboring pixels. The weighting potential for the non-collecting
pixel is always non-negative throughout the detector for any initial electron position, and
the weighting potential at the electron collection location is always zero. According to
Equation 2.2 the difference in the weighting potentials of the final and initial electron
positions gives the magnitude of the induced charge on the non-collecting pixel. Thus,
the induced charge signal on a non-collecting pixel is always negative or zero.

The magnitude of the cross talk signal as a function of depth of interaction for
several interaction positions is given in Figure 2.9 for the anode geometries with and
without a steering electrode. This magnitude is measured as a fraction of the total
deposited charge. Thus, if an interaction occurs in the center of one pixel 1 mm from the
anode depositing 1000 keV, then the neighboring pixel will observe a cross talk signal of
35 keV if a steering grid is used. Without the grid, the cross talk would be nearly 60 keV.

The presence of the steering grid electrode reduces the effect of cross talk.
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Figure 2.9. Magnitude of the fractional cross talk signal measured on one anode pixel due
to interactions occurring under a neighboring pixel, shown for three distances
from the measuring (non-collecting) pixel. Solid curves are without a steering
grid, and dashed curves are for the geometry with a grid.

The magnitude of the cross talk can yield information about the location of the
interaction within the collecting pixel. If the non-collecting pixel signal is relatively large,
then the event occurred close to that pixel (indicated by the blue point in Figure 2.9). A
small cross talk signal would result from an interaction further from the non-collecting
pixel (corresponding to the green point in Fig 2.9). With a sufficiently low anode
threshold, the cross talk signals on the eight non-collecting pixels surrounding the
collecting pixel could be used to obtain subpixel position resolution. However, the anode
thresholds in the detector used in this work are too high to use the cross talk information.
Measuring the induced signals on non-collecting pixels would be difficult even with low

anode thresholds because the cross talk signals are of opposite polarity to the collecting
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pixel signal. Thus, bipolar triggers and amplitude measurements would have to be
implemented. This is not possible with the current electronics design.

The effect of weighting potential cross talk becomes problematic for multiple-
pixel sequences. If two events occur under neighboring pixels, then each pixel acts as
both a collecting and a non-collecting pixel. The observed signal amplitude on each pixel
is the sum of the induced charge from the event under that pixel (a positive signal) plus
the cross talk contribution from the event under the neighboring pixel (a negative signal).
The amplitudes measured from both pixels are reduced, and the observed energies are
less than the actual deposited energies. It is possible to correct these signals for events
that occur in the bulk of the detector. For deposited energies £; and E, the observed
energies A; and A, are given by Equations 2.3 and 2.4, where f; and f are the fractional
cross talk contributions from E; and E.

A =E - f,E, (2.3)
A, =E, - fE, (2.4)

For interactions at depths of 0.6 cm and below, as shown in Figure 2.9, the cross
talk fractions f; and /> depend only on the depth of the interaction and not on its lateral
position. At depths near the anode surface the cross talk becomes a stronger function of
the lateral position under the anode and an average value must be used to correct the
observed energy. For events very close the anode the holes can contribute significantly to
the cross talk signal as well, and the cross talk contribution may increase or decrease,
depending on the interaction position. In the bulk of the detector the true energies can be

obtained by solving Equations 2.3 and 2.4 for E; and E>, as in Equations 2.5 and 2.6.

g At Sl @5
1_f1f2

E, - A, + fi4, (2.6)
1_f1f2

Using an average value for the cross talk fractions for events within 4 mm of the

anode can overestimate or underestimate the weighting potential cross talk. Because this
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represents a significant fraction of the detector volume, an experimental correction of the
weighting potential is used[8]. This method does not take into account the dependence of
the cross talk on the energy deposited under the other pixel in the sequence, but the
energy resolution of the current system is not good enough for this approximation to
significantly detract from the weighting potential correction. The experimental method
can also account for the small movement of holes, which is beneficial for events near the
anode. The simple execution of the experimental cross talk correction makes it an
attractive alternative to the inaccurate analytical method outlined above.

The weighting potential cross talk correction method also works for correcting the
energies observed in charge sharing events. In this case one event creates an electron
cloud near the pixel boundary. The cloud separates due to the electric field and is
collected by more than one anode pixel. Charge sharing makes one event appear as two
or more. Weighting potential cross talk will reduce the observed signals on each pixel, as
if two separate interactions occurred. Applying the above correction will improve the
summed energy spectrum. Of course, if charge sharing occurs, the sequence cannot be
used for Compton imaging unless the energies are summed and an average lateral
position is calculated from the determined energies. In this work no such corrections are
made, and when charge sharing is observed the sequence is discarded.

Three-dimensional position-sensing is performed in this work using a 2.25 e’
pixellated CdZnTe spectrometer with a steering grid electrode. Interaction positions in
two dimensions are determined by which anode pixels collected charge. Due to the high
anode threshold there is no attempt to obtain subpixel resolution. The third interaction
position is determined by the timing of events in the detector. Energy information is
obtained by separating the spectrum from each pixel into separate depths, creating
virtually 2420 voxels in the detector. A gain correction is applied to each depth spectrum
using the method described by Li et al.[9] to align the energies. This measured correction

value can account for weighting potential, electron trapping, and material
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nonuniformities. In multiple-pixel sequences, an experimental weighting potential cross

talk correction is also applied. The detector hardware and characterization of the system

are described next in Chapter 3.
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CHAPTER 3
DETECTOR HARDWARE AND SYSTEM DESCRIPTION

3.1 Introduction

To obtain energy and 3-D position information for each gamma-ray interaction,
the concepts of single-polarity charge sensing discussed in Chapter 2 were implemented
in two detector systems in this work. One system was designed for low- and medium-
energy gamma-rays (less than 1 MeV); the other could measure gamma-ray energies up
to a few MeV. Both systems used CdZnTe detectors of the same size and design,
although the corresponding electronics used with each detector were different. A
description of the detectors is given in this chapter along with a discussion of the
procedures used to calibrate the systems to yield correct energy and position information
for each interaction in the detector. The measured performance of each detector system is

also discussed.

3.2 Detector Description

The CdZnTe detectors used in this work were built by eV Products, Inc., in
Saxonburg, PA. They each consist of a single crystal 15 mm x 15 mm x 10 mm in size,
grown using the high-pressure Bridgman method[1]. On one square side of the crystal, a
planar gold cathode is deposited. The cathode covers the entire 15 mm x 15 mm surface.
On the opposite side of the detector the anode structure—also made from gold—is
deposited using photolithography techniques. The anode structure consists of an 11 x 11

array of pixels contained within a grid structure, as illustrated in Figure 3.1.
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Figure 3.1. Ilustration of the anode structure. There are 121 anode pixels surrounded by a
steering grid electrode.

Figure 3.2. Photographs of a CdZnTe detector mounted to a ceramic substrate. The planar
cathode is visible in the left image, and the gold finger contacts are shown in the
image to the right.

The total pixel pitch is 1.3 mm with a pixel size of 0.8 mm, a gap between the pixel and
grid of 0.2 mm, and a grid width of 0.1 mm. The array is surrounded by a guard ring 0.5
mm thick which is connected to the grid.

Each anode pixel is glued via conductive epoxy to a ceramic substrate, as shown
in Figure 3.2. The epoxy forms a contact between each anode pixel and its corresponding
conductive pad on the substrate. The substrate acts as a plate-thru-via, and embedded

wires carry the anode signals to gold fingers at the edge of the opposite surface of the
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ceramic. These gold fingers are then wirebonded to a hybrid board, shown in Figure 3.3.
A polyvinyl chloride (PVC) mount is attached around both sides of the hybrid board to
protect the detector and wirebonds from mechanical shock, as shown in Figure 3.4.

The hybrid board and controller card were designed and built by Integrated
Detector & Electronics AS (IDE AS) in Norway. The hybrid board performs all energy
and timing determination for the 121 anode pixels plus the cathode. There are four pairs
of VAS/TAT application specific integrated circuits (ASICs) located on the hybrid card.
Each pair can measure the voltage (VAS) and timing (TAT) of 31 anode channels and 1
cathode channel. This results in four possible cathode channels, which is beneficial given
the fragility of these special channels, but only one cathode channel is actually connected
to the cathode at any time. There are 124 possible anode channels, but only 121 are used;
thus, three ASIC channels are not used.

When a gamma-ray interaction occurs underneath a pixel, the electrons are

collected by the pixel, generating a signal. This signal is simultaneously sent to the VAS

A e e b e

Figure 3.3. Pho ograp of the
detector is glued is wirebonded to the gold fingers seen in the center of the board.
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Cathode

— PVC mount

Figure 3.4. Photograph of the PVC mount attached to the detector and hybrid board. The
cathode surface is visible through a hole in the mounting structure.

and TAT chips. The VAS contains a slow (1 us) shaper for measuring signal amplitudes,
while the TAT has a fast (75 ns) shaper for measuring signal timing. If the signal from
the fast shaper exceeds a given threshold, a trigger is generated for that anode, and the
maximum VAS signal amplitude is detected and held until it is read out by the controller
card. In this way, each anode pixel is self-triggering. This is an improvement over the
original VA/TA design in which the triggers were generated from the steering grid
electrode. The energies and positions of multiple events in the detector could not be
correctly identified using the previous design which had sample-hold rather than peak-
hold circuitry, meaning that the time between the trigger and the sampling of the signal
amplitude was constant rather than variable[2].

There are two versions of the hybrid board used in this work. The VAS2/TAT2
system is used for measurements of low- and medium-energy gamma rays. The dynamic

range of the VAS2/TAT2 system is approximately 1 MeV. The VAS3/TATS3, an updated
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version of the VAS2/TAT2 system, has a much higher dynamic range (1.6 MeV) and is
used for the high-energy measurements. It is not used in the lower energy measurements
due to its poor energy resolution performance (see Section 3.4).

The signals held on the hybrid board are then read out using the MCR3 controller
card, which communicates with the data acquisition software on a personal computer.
The controller card reads out the 128 ASIC channels sequentially (including the channels
not connected to anodes or the cathode), resulting in a 500 ps dead time after the initial
cathode trigger. If any additional gamma-ray events occur within this time, they will not
be measured. The maximum trigger rate in the detector cannot exceed 2000 triggers per
second. Using a sparse readout in which only anodes that trigger are read out would
improve the dead time to only tens of us and increase the allowable trigger rate, but that
is not done in this work.

The controller card sends digital signals to the computer, and software then
controls the data acquisition parameters. The TA mask can be set to prevent the
disconnected cathode channels and any noisy anode pixels from triggering the system.
The mask essentially turns these TAT channels off. Anode thresholds are also set with
the software. (The cathode threshold is set via hardware on the MCR3 controller card.)
The observed pulse height and timing information is collected for all 128 ASIC channels

for each triggered event in the detector.

3.3 Detector Calibration

To obtain accurate energy and interaction depth information from events recorded
in the detector, it is necessary to first calibrate the system. To demonstrate the calibration
process, data from the VAS2/TAT2 system will be used. The cathode and steering grid
electrode were biased to —2000V and —80V, respectively, and the anode pixels were

grounded. The cathode threshold was set at about 5 mV, while the anode threshold was
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set to 13 mV, or about 60-90 keV. The calibration is performed in two steps: corrections
for single-pixel events, and then corrections for multiple-pixel sequences. The calibration
process involves making corrections for channel-to-channel gain variations, the non-
linearity of the ASICs, electron trapping and weighting potential as a function of depth,
weighting potential cross talk, and other contributing factors. After calibration, the
correct energy and interaction depth for each event in the detector can be determined. The
calibration procedures for single- and multiple-pixel sequences are discussed in this

section.
3.3.1 Single-pixel events

A '¥7Cs source was placed on top of the detector, and data were acquired for many
hours. Single-pixel events are identified by a TAT trigger on only one pixel. The energy
spectrum obtained by summing the anode signal pulse heights observed in single-pixel
events before calibration is shown in Figure 3.5. The variations in gain between ASICs
create the double-peak feature in the spectrum. Channel-to-channel gain variations on a
single ASIC also cause shifting of the photopeaks for each pixel spectrum, which sum to
produce the broad peaks observed in Figure 3.5.

As discussed in Chapter 2, the depth for single-pixel events can be determined by
measuring the ratio of the amplitude of the cathode signal to the amplitude of anode
signal (C/A ratio). Small C/A ratios correspond to events that occur near the anode, and
large C/A ratios correspond to events that occur near the cathode. The distribution of C/A
ratios can be separated into bins, and each bin corresponds to a specific depth in the
detector. The energy spectrum for each individual pixel can then be separated into
different depths.

Figure 3.6 shows the resulting depth-separated energy spectra for a typical pixel

in the detector (#94). Near the cathode side there is a reduction in the low-energy count
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Figure 3.5. Single-pixel energy spectrum of Cs source summed for all 116 working
pixels before calibration.

rate. This is not surprising considering that the detector was irradiated from the cathode
side. When a gamma ray scatters at a small angle (depositing a small energy), it is likely
that after the scatter it will interact again. Therefore, this gamma ray cannot contribute to
the energy spectrum of single-pixel sequences. If the gamma ray interacts in the middle
or toward the anode side of the detector, there is a higher probability that it will escape
the detector after a Compton scatter; these single-pixel events are included in the spectra
shown in Figure 3.6.

The position of the photopeak shifts as a function of depth in the detector due to
electron trapping. The drift of the photopeak position is given in Figure 3.7 for pixel #94.
The variation in peak position is 3.2%. After separating the timing spectrum into depths,

the photopeaks are aligned by rebinning the energy spectrum with an appropriate
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Figure 3.6. Energy spectrum for single-pixel sequences before calibration from *’Cs for
pixel #94 as a function of interaction depth. The peak position shifts to lower
energies near the cathode.

correction factor using the method described by Li[3]. Thus, for each depth (given by the
C/A ratio) under each anode pixel there is a measured correction.

After the correction factors at 662 keV are determined, the next step is to calibrate
the system at other energies. This entails acquiring data from gamma-ray sources with
energies from 122 keV to 662 keV; specifically, 5 7Co, 133 Ba, 22Na, and "*’Cs sources are
used. The photopeak position as a function of energy is then measured, and a correction
for the non-linearity of the ASICs is performed for each anode pixel. The relationship
between gamma-ray energy and observed channel number (pulse height) is shown in
Figure 3.8 for pixel #94. A quadratic function is fit to the calibration curve and is also
shown in the figure. The observed pulse heights can then be converted to the appropriate

energies using the calibration equation for each pixel.
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Figure 3.7. Drift of the peak centroid position for pixel #94. The drift near the anode is
due to the large slope of the weighting potential. Near the cathode electron
trapping creates a decrease in peak position.
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Figure 3.8. Energy calibration curve for pixel #94. The ASIC response is fit with a
quadratic function.
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To some extent the initial depth calibration is energy dependent. Due to the non-
linearity of the anode channels, the C/A ratio will also have a non-linear dependence on
energy. To account for this effect, the depth and energy calibrations are performed in an
iterative manner. The depth calibration is used to estimate the non-linearity, which is then
fed back into the depth calibration. The process is repeated until the photopeak energies
predicted from correcting the measured data using the current estimates for depth and
channel number match the known gamma-ray energies. Typically 5-6 iterations are
required.

The data from the uncalibrated spectrum in Figure 3.5 are shown in Figure 3.9
after the energy and interaction depth calibrations. Only a single peak is observed, as
expected. The energy resolution at 662 keV is 1.18% full-width at half-maximum

(FWHM) for single-pixel events.
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Figure 3.9. Energy spectrum using all single-pixel events of '*’Cs source after calibration
using the data shown in Figure 3.5.
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3.3.2 Multiple-pixel sequences

As discussed in Chapter 2, the C/A ratio cannot provide information about the
individual depths when multiple interactions occur in the detector. Only the centroid
depth of the interactions can be determined. Therefore, it is necessary to use the timing
information available from the TAT ASICs to determine the depth for each event. When
a single gamma ray interacts more than once in the detector, all events appear to occur
simultaneously. As the separate electron clouds drift toward their respective anodes, the
cathode signal immediately begins to rise due to the motion of all charges. The signals on
each individual anode begin to rise when their respective electron clouds reach close to
the pixel. In this way the cathode signal timing is the same for all events, but each anode
pixel triggers just before its electron cloud is collected.

Shown in Figure 3.10 is the timing spectrum for pixel #94. The timing spectrum
shows the distribution of time observed between the cathode trigger and anode trigger for
many events. Events that occur close the anode appear on the right side of the spectrum,
and those that occur on the cathode side appear at the lower times. (Events near the anode
show small timing differences, but these correlate to high numbers in the timing spectrum
shown here.) As with the C/A ratio, the distribution of time between the cathode and
anode signals can be separated into bins, each of which corresponds to a depth in the
detector.

With the depth determined by the timing of events, the correction factors
generated in the single-pixel calibration can be used on each of the multiple events to
account for electron trapping, weighting potential, and other effects. Multiple-pixel
sequences also require a weighting potential cross talk correction, as discussed in Chapter

2. The two- and three-pixel energy spectra for 1*’Cs after calibration are shown in Figure

3.11.
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Figure 3.10. Timing spectrum of "*’Cs source from pixel #94.
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Figure 3.11. Two- and three-pixel energy spectra of '*’Cs after calibration summed from
all 116 working pixels in the detector.
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Once calibration is performed, the correction parameters are fed back into the data
acquisition program so that the true energies and interaction positions can be determined
in real time. The acquisition software can save both the raw data (pulse height and timing
information for every channel from every event in the detector) and the calibrated data.
The number of events, the energies deposited, and the interaction positions are written to
a file for every sequence of gamma-ray interactions in the detector. This file is later used

offline to reconstruct Compton images.

3.4 VAS2/TAT?2 System Performance

In this work the VAS2/TAT?2 system is used for measuring gamma rays with
energies lower than 1 MeV. This section describes the performance of the system at
several gamma-ray energies. An examination of energy and timing spectra for individual
pixels is performed to compare good and poor pixels in the detector.

Data were acquired for several sources placed individually on top of the detector.
Calibrated energy spectra were generated separately for single-pixel, two-pixel, and
three-pixel sequences. The one-, two-, and three-pixel sequence energy resolutions
measured using the whole detector volume are shown in Figure 3.12 as a function of
gamma-ray energy. At 662 keV the resolution is only 1.18% full-width at half-maximum
(FWHM) for single-pixel events. For two-pixel sequences the resolution worsens to
1.91%, and for three-pixel sequences a resolution of 3.63% is observed.

The total energy spectrum for multiple sources is shown in Figure 3.13. All
recorded sequences are included. It is evident that some pixels have a threshold lower
than 80 keV; part of the 81 keV peak from '>’Ba is observed in the energy spectrum. (If
all pixels had a low threshold, the 81 keV peak would dominate over the other barium
gamma-ray lines due to its higher probability of absorption.) The peak centroids in Figure

3.13 are within 1 keV of the true energies, demonstrating a good correction for the ASIC
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Figure 3.12. Energy resolution (in % FWHM) measured at selected gamma-ray energies
in one-, two-, and three-pixel sequences. At least 200 keV or 300 keV is required
for a two- or three-pixel sequence, respectively, due to the anode threshold.
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Figure 3.14. Energy resolution for each pixel in percent FWHM for single-pixel
sequences in VAS2/TAT2 system. Also shown are the locations of pixels
discussed throughout the text.

non-linearity, except at 81 keV where the lower part of the peak is cut off due to the
anode thresholds. Despite this effect at 81 keV the difference is only 3 keV.

The energy resolution at 662 keV for single-pixel events is represented in Figure
3.14 for each individual pixel. Nearly half the pixels have an energy resolution near 1%.
The upper quadrant of the detector outlined in black shows poorer energy resolution than
other channels. These are all connected to ASIC #4. The pixels on ASIC #3 (the left
quadrant in Figure 3.14) also show a poorer energy resolution than the rest of the

detector. The most likely cause for the poor resolution is lower gain in the ASIC or
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electronic cross talk on the hybrid board or MCR3 repeater card. The poor energy
resolution behavior may also be in part due to material defects in the crystal. This same
detector connected to a different hybrid board (with different ASICs) also demonstrated a
poor energy resolution on the pixels connected to ASICs #3 and #4, especially the top
three rows. From the distribution of energy resolutions it is not surprising that the two-
pixel energy resolution is 1.91% compared with only 1.18% for single pixels.

There are two pixels without signals (“dead pixels”) due to either ASIC channel
failure or wirebonding problems and three poor pixels, which may be caused by material
defects or problems with the anode contacts. The energy spectra after gain correction
(before depth and non-linearity corrections) from two of the poor pixels are shown in
Figure 3.15. Also shown is the typical spectrum observed from pixel #94.

Pixel #34 is the poor pixel in the lower right corner of Figure 3.14, and #44 is the
poor pixel in the horizontal center of the detector. In the pixel #34 energy spectrum, there
is extreme tailing on the low-energy side of the photopeak and a buildup of the Compton
continuum. In the spectrum for pixel #44, the photopeak is spread between two energies.
The timing spectra from both poor pixels are given in Figure 3.16. When compared with
Figure 3.10, the timing spectrum from a typical pixel, the timing spectrum for pixel #44
appears normal. Furthermore, the two-peak feature in the energy spectrum appears at all
depths in the detector. This indicates that the gain of the pixel may shift during
acquisition. However, this effect was not observed when a test pulse was injected in the
ASIC channel. Another possibility is the existence of a major defect just under the anode
pixel contact. When the electron cloud avoids the defect, the full energy is observed; if
the cloud loses electrons to the defect, only some of the energy will be observed. This
could cause the behavior observed in the energy spectrum.

Unlike pixel #44, the timing spectrum of pixel #34 appears highly irregular. Some

events have very long drift times (low timing spectrum numbers). Pixel #34 is a corner
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Figure 3.15. Energy spectra for one typical and two poor pixels after gain corrections and
before depth correction. Pixel #44 exhibits a two-peak behavior, while the
photopeak on pixel #34 has an extremely large low-energy tail.
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Figure 3.16. Timing spectra for pixels #34 and #44. Pixel #44 appears normal (compared
with the typical spectrum shown in Figure 3.10).

51



pixel, and it is possible that surface defects can create a smaller electric field in this
region. The electrons would then take a longer time to drift to the anode. Because of the
reduced drift velocity, the electron trapping would increase. Evidence for this exists in
the depth separated spectra for pixel #34, which show the poor spectroscopic
performance worsening for depths near the cathode side.

Pixel #66, not shown in the previous figures, has normal timing and energy
spectra. However, the 662 keV peak appears at a much lower channel before calibration
than the peaks on other channels. This is not due to a low gain because the difference in
channels between the peak and the Compton edge is the same as for other pixels. In other
words, the spectrum is simply shifted to lower channel numbers. One possible
explanation for this behavior is a high baseline due to leakage current. The baseline is
subtracted from the signal during processing, which could cause events of given energies
to appear at much lower channels. The energy spectrum for this pixel used to be normal;
thus, there was obviously some degradation over time. The performance of this pixel is
unpredictable and it was not used in measurements.

It is expected that corner pixels perform more poorly than pixels near the center of
the detector due to surface defects from crystal polishing and handling. Electrons must
travel a larger distance to reach the anode if they start under the boundary electrode than
if they start directly under the pixel. This difference in drift time will create errors in
depth determination and, hence, the depth-corrected spectrum. In fact, the worst
resolution observed in the detector for a properly functioning pixel is the corner pixel at
the top left of Figure 3.14. However, the performance on pixels #34 and #66 is much
worse than the other two corner pixels, which have normal timing spectra and slightly
broadened photopeaks in the energy spectra.

The three pixels with poor spectroscopic behavior are turned off in the

measurements included in this work. There are two additional dead pixels, which totals
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five unused pixels. The remaining 116 anode pixels are used in the measurements of

gamma-ray energies below 1 MeV.

3.5 VAS3/TAT3 System Performance

The VAS3/TAT3 system is used for high-energy measurements. For the
experiments demonstrated later in this work, the dynamic range of the VAS2/TAT2
system (only 1 MeV) is insufficient for observing 2.2 MeV or 2.6 MeV gamma rays. The
VAS3/TAT3 system, which is an updated version of the VAS2/TAT2 system, has a
dynamic range of 1600 keV. Of course, a single event at 2.2 MeV cannot be observed
even with the VAS3/TAT3 system, but Compton imaging relies on multiple events. It is
possible for two events within the dynamic range to sum to 2.2 MeV. This is not true for
the VAS2/TAT?2 system.

The new system was connected to a different detector than the VAS2/TAT2
system. The detector was the same size and had the same anode structure as the previous
detector. This detector required a -2200V cathode bias and -85V on the steering grid
electrode. The calibration of the VAS3/TAT3 system was performed in the same manner
as described in Section 3.2, but some high-energy sources are included. In addition to
33Ba and *7Cs, ®Co (1173 and 1332 keV) and ***Th (2614 keV + escape peaks) are
used. The energy spectrum after calibration for all sources except thorium is shown in
Figure 3.17. (The thorium spectrum, which has many low-energy gamma-ray lines,
would obscure the other calibration energies.) A much poorer energy resolution is
obtained with this system compared with the VAS2/TAT?2 system. Single-pixel
sequences display about 1.5% FWHM energy resolution at 662 keV, while the resolution
for two- and three-pixel sequences are 3.1% and 4.8%, respectively, as shown in Figure
3.18. The poor resolution is caused by a flaw in the electronics design. The waveform

output from the shaping amplifiers appear to have a stair-step response, rather than a
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Figure 3.17. Total energy spectrum summed for all working pixels of '**Ba, *’Cs, and
%Co from VAS3/TAT3 system after calibration.
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Figure 3.18. Energy resolution (in % FWHM) of the VAS3/TAT?3 system at selected
gamma-ray energies in one-, two-, and three-pixel sequences. Energy resolution is
worse on this system compared with the VAS2/TAT2 system.
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smooth shape. This creates problems for the peak-hold circuitry in the ASICs, and the
signal pulse height is often incorrectly determined.

The energy resolution at 662 keV for single-pixel sequences is mapped in Figure
3.19. The resolution on the VAS3/TAT3 system is much more uniform than on the
VAS2/TAT?2 system, most likely due to using a higher quality detector crystal. For this
system the electronics—and not the detector—Ilimit the observable energy resolution. The
only poor region of the detector is lower left corner in Figure 3.19, which shows poor
energy resolution. The 37Cs energy spectra after the gain correction (before depth

correction) for a few pixels in that corner are given in Figure 3.20.

Dead pixel

Material problems

Figure 3.19. Energy resolution for each pixel in degrees FWHM for single-pixel
sequences in VAS3/TAT3 system.
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Figure 3.20. Energy spectra observed for three poor pixels in the lower left corner of
Figure 3.19. Pixels #35, #92, and #90 have similar spectra, while the spectrum of
pixel #37 is similar to that of pixel #93.

The energy spectrum for pixel #35 is similar to that for pixels #90 and #92 as
well. The photopeak is very broad, but the spectrum looks otherwise normal. Pixel #34
exhibits a very low count rate. The timing spectrum, shown in Figure 3.21 along with the
timing spectra for pixels #35, #92 and #93, shows a sharp peak rather than a broad
distribution. Only events near the anode are being collected, indicating major defects in
the crystal at that corner. The energy and timing spectra of pixel #37 are similar to those
of pixel #93. There is a broad continuum in the energy spectrum with almost no
photopeak present. The timing spectrum is extremely broad, indicating long collection
times for events under this pixel. Pixel #93 shows a very large count rate, while the count
rate of pixel #37 is similar to pixel #34. However, the timing spectrum for pixel #37 is
broad, indicating that some events from all depths are being collected by the pixel. It is

clear that there are some material problems in this corner of the crystal.
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Figure 3.21. Timing spectra observed for four poor pixels in the lower left corner of
Figure 3.19. Pixels #92 and #93 show longer drift times even for events near the
cathode. The timing spectrum for pixel #34 contains only events from the anode

side of the detector.

The six poor pixels and one dead channel total 7 excluded pixels. These ASIC
TAT channels are turned off for data acquisition. The remaining 114 pixels are used for

the high-energy measurements in this work.

The two detector systems discussed in this chapter are used to collect all data
analyzed later in this work. The VAS2/TAT2 system is used for measuring energies

below 1 MeV, while the VAS3/TAT3 system is used for high-energy measurements.
Once the energies and interaction positions are determined for each event in the detector,

it is necessary to reconstruct the sequence of events. This topic is discussed next in

Chapter 4.
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CHAPTER 4
SEQUENCE RECONSTRUCTION

4.1 Introduction

The sequence of interactions in some types of Compton imagers is clearly
defined. COMPTEL, for example, had two sets of detectors separated by a sufficient
distance such that the timing between interactions in the first and second detector arrays
could be measured[1]. Only gamma rays that first scattered in the plastic scintillators and
then were absorbed in the Nal(T1) back plane scintillators were accepted for imaging. In
other designs, the back plane detector is shielded so that it does not receive direct
irradiation. The design of the two-detector imager can then require the first detected event
to occur in the front plane detector.

The 47 imager in this work consists of a single small detector. Time between
events in the detector (less than 80 ps) is very small compared with the timing resolution
of the system. Thus, all events for a given gamma ray appear to occur simultaneously.
Neither shielding nor timing can help determine the sequence of events. The only
information available on a sequence-by-sequence basis is the number of events and the
positions and energies deposited for each event. The kinematics of Compton scattering
provide some guidance to choosing the proper event order. In some applications, the
initial gamma-ray energy or incident direction is known and the determination of
interaction order becomes simpler and more precise. Except where indicated in the
following discussion, the gamma-ray energy and incident direction are assumed to be

unknown.
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In the following discussion, “event” or “interaction” describes a single occurrence
of a detectable photon interaction such as photoelectric absorption, Compton scatter, or
pair production. A detectable interaction is one in which the energy deposited exceeds a
given threshold. Except where explicitly stated, the detection threshold is 0 keV (i.e. a
non-zero amount of energy must be deposited). For example, Rayleigh (coherent) scatter
is not considered an event because the gamma ray deposits no energy and is therefore
undetectable. A “sequence” or “track” is the series of interactions from a single gamma
ray in the detector. Thus, a sequence consists of one or more events. Finally, “sequence
reconstruction,” sometimes referred to as “gamma-ray tracking” in the literature, is the
determination of the order of interactions in the detector.

Sequence reconstruction techniques differ according to the number of interactions
observed. Figure 4.1 shows the simulated frequency of observing up to five-pixel full-
energy sequences for selected energies between 300 keV and 2.5 MeV. Tracks that
consist of only one event cannot be used for Compton imaging. At least two interactions
must occur in the detector in order to determine the scatter angle and cone axis. This
chapter discusses two- and three-event sequences in detail. A brief examination of 4+-
event sequences is also given. The performance of each reconstruction method is
analyzed using Monte Carlo simulations[2] (see Appendix), and the effectiveness is

estimated for selected energies between 300 keV and 2.5 MeV.

4.2 Sequences with Two Interactions

Considering the curves in Figure 4.1, it is clear that two-pixel sequences will
dominate Compton imaging with this detector. At all energies observed, two-pixel
sequences occur with at least double the frequency of three-pixel sequences. It is

therefore critical to correctly sequence two-event sequences.
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Two interactions in the detector can consist of a scatter followed by an absorption,
two scatter events, or a pair production followed by the scatter or absorption of one of the
annihilation photons, as shown in Figure 4.2. (Pair production occurring after Compton
scatter is also possible but rare.) Because the highest energy considered here is 2.6 MeV,
pair production is typically neglected due to its low probability of occurrence relative to
Compton scatter in CdZnTe. Although pair production is modeled in the simulations,
when determining the sequence order, only scatter and photoelectric interactions are
considered in the reconstruction process. When pair production does occur, it may or may
not lead to incorrect choices for the sequence order, but it will lead to incorrect image

reconstruction. The effect of pair production on Compton imaging is discussed in detail

later in Chapter 6.
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Figure 4.1. Frequency of observing the given number of pixels in full-energy sequences
for selected incident gamma-ray energies.
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Figure 4.2. Illustration of possible two-event sequences: a) Compton scatter followed by
photoelectric absorption, b) two Compton scatters, and c) pair production
followed by the scatter (dashed blue line) or absorption (solid blue line) of one
annihilation photon and the escape of the other (solid green line).

For tracks with two events, determining the order of interactions is for the most
part educated guessing, where the method of guessing depends on the total observed
energy. For initial gamma-ray energies below 256 keV the energy distribution of the
deposited and scattered gamma-ray energies are distinct. This indicates that for a full-
energy sequence in which the gamma ray is scattered and then absorbed in two
interactions the sequence order is absolutely distinguishable. The first interaction always
deposits less energy than the second. Figure 4.3 shows the deposited energy distributions
for the scatter and absorption events, calculated using the Klein-Nishina differential
Compton cross section [3] for 200 keV gamma rays. For gamma-ray energies above 256
keV the scatter and absorption distributions overlap, as shown in Figure 4.4 for 662 keV
gamma rays. For these gamma rays the knowledge of the deposited energies is
insufficient to determine the order of events absolutely.

From Figures 4.3 and 4.4 it is clear that there are some energies that are
kinematically impossible to deposit via scatter processes given the incident gamma-ray
energy. The Compton edge, corresponding to a backscatter event, is the highest energy
that can be deposited in scatter by a gamma ray and is determined using the Compton

scatter formula as in Equation 4.1. If the sequence order is known, then a sequence can be
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rejected if the first event deposits an energy higher than the Compton edge. This is called

the Compton edge test.
E E
Eedge = 2 . = ° 2 (41)
m,c 2m,c
1+ (1 — o8 7[) I+ —=
E, E,

In any two-event sequence in which more than 256 keV is deposited at least one
of the two potential sequence orders is kinematically possible. As a result, the Compton
edge test cannot be used when the sequence order is unknown unless more information is
available. Fortunately, as incident gamma-ray energy increases, the probability of the first
event depositing more energy also increases. Shown in Figure 4.5 is the fraction of
simulated events in which the first of two interactions deposited more energy. Notice that

above 400 keV, there is a greater probability that the first event deposits more energy.
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Figure 4.3. Energy deposition distributions for scatter and absorption of 200 keV photons
in two-event sequences. For initial gamma-ray energies below 256 keV, the first
of two events always deposits lower energy if the second event is an absorption.
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Figure 4.5. Fraction of simulated two-event tracks in which the first interaction deposits
more energy than the second as a function of initial gamma-ray energy.
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The probability is about 70% at 662 keV and approaches 85% at high energies. This
suggests a simple way to determine which event in the sequence actually came first. If the
total energy deposited is greater than 400 keV, the higher energy was most likely
deposited first. If the total energy observed is below 400 keV the opposite assumption is
made: the first interaction is the one that deposited less energy. Note that for full-energy
sequences below 256 keV the probability of choosing the wrong track is zero (meaning
that the sequence is always determined correctly), as explained via Figure 4.3.

Now that there is a simple sequence reconstruction technique for total deposited
energies above 256 keV, the Compton edge test can be applied. If the chosen sequence is
not kinematically possible, either the sequence order was incorrect or the full energy of
the gamma ray was not deposited. When this occurs the track is rejected altogether. Using
this method, many partial-energy sequences can be eliminated. As discussed in Chapter
5, only full-energy sequences will contribute to the correct source location during image
reconstruction. Partial-energy sequences contribute to the background in the image,
lowering the signal-to-noise ratio. Thus, the kinematics test can be used to eliminate
some partial-energy sequences once a specific track order has been chosen, and better
images can be produced.

Simulations were performed to test the performance of the two-pixel method (see
Appendix). The interaction position and energies were recorded, along with the total
number of interactions. The data were then “pixellated,” meaning that the precise position
of the interaction is replaced with the coordinate of the center of the pixel that would
collect most of the electrons from the interaction site. The deposited energies were spread
with a Gaussian distribution whose full-width at half~-maximum (FWHM) is given by the
empirical relation given in Equation 4.2 below. The Gaussian spread approximated the
electronic noise and charge generation and collection statistics after data processing.
Finite electron cloud size, charge sharing, and randomly coincident gamma rays were not

considered.
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FWHM =4 +0.129JAE  (keV) (4.2)

For the purposes of predicting the performance of the sequence reconstruction
methods with simulations, a sequence is discarded ifn more than one interaction occurs
under a single pixel. For example, if three events occur in the sequence and two of them
are under a single pixel, only two events are observed. The number of apparent events is
smaller than the actual number of events, and the track cannot be sequenced correctly.
The impact of multiple interactions under a single pixel is shown in Table 4.1 for selected
energies. The table shows the simulated fraction of two- and three-event sequences in
which more than one interaction occurs under a single pixel. At 662 keV, nearly 24% of
two-event sequences appear as a single event. That percentage decreases to 20% at 2500
keV. Because these tracks cannot be sequenced correctly, they are not useful for
Compton imaging. There is no way to distinguish these from useful sequences using the
current electronics, although digitization of the pulse shapes could provide more
information. Sequences with multiple interactions under one pixels are excluded from the
simulated data used throughout this chapter in order to test the performance of the
sequence reconstruction methods on sequences that could possibly be reconstructed
correctly. Thus, the performance is measured as a fraction of potentially useful Compton

imaging sequences.

Table 4.1. Percentage of Sequences with Multiple Events under a Single Pixel

Energy (keV) | Two-Event Sequences | Three-Event Sequences
300 28.59% 54.51%
662 23.86% 46.08%
1500 22.69% 41.72%
2500 20.07% 37.91%

In measuring the overall performance of the two-pixel technique there are two
considerations: a sequence must be both correctly determined and it must be accepted via

the Compton edge test. A full-energy sequence will almost always be accepted if the
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sequence is correct. (The exceptions to this are the presence of a Rayleigh scatter in the
track, which alters the direction but not the energy of the gamma ray, and finite energy
resolution or Doppler broadening making a backscatter event deposit more energy than
the Compton edge.) Also, as previously stated, a partial energy sequence may not be
accepted even if the sequence is correct. Table 4.2 gives the percentage of useful two-
event sequences that are accepted, are correct, and are both correct and accepted.

One significant result is that most of the full energy sequences are accepted and
correctly reconstructed. Whereas for 2500 keV gammas the total accepted fraction is just
over 60%, nearly all of the full-energy tracks are accepted. The poorest performance of
the technique was at 662 keV where only 69% of full energy sequences and 48% of all
sequences were determined correctly and accepted. The poorest performance is expected
to occur for gamma rays near the 400 keV transition. Although 300 keV is closer to the
transition point than 662 keV, the sequencing technique performs better at 300 keV due

to the steep slope below 400 keV of the curve represented in Figure 4.5.

Table 4.2. Percentage of Useful Two-Event Sequences that are Correct and

Accepted
Energy (keV) All Sequences Full Energy Sequences

Accepted Correct Correct & | Accepted Correct Correct &
Accepted Accepted

300 93.0% 792%  76.0% 100% 87.1% 87.1%

662 76.4%  63.0%  47.5% 87.9%  72.6% 69.1%

1500 59.8% 85.8%  49.1% 96.2%  94.2% 91.1%

2500 61.2% 89.7% 52.4% 96.7%  97.6% 94.4%

It may be possible to use other available information to determine the sequence
order. If, for example, the source direction were known, then knowing that low energy
gamma rays will most likely interact near the surface of the detector would allow one to
guess that the first interaction is nearest the source. In addition, the source energy and

direction could be determined using spectroscopy and Compton imaging, respectively,
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and then that information could be fed back into determining which sequence is more
likely. Such complex sequence reconstruction schemes are not used in this work.

In summary, for two-pixel sequences the first event is chosen to be one that
deposits higher (lower) energy if the total deposited energy is above (below) 400 keV.
The Compton edge test is then performed in an attempt to reject unwanted partial-energy

tracks.

4.3 Sequences with Three Interactions

Traditional Compton imagers have not used three-interaction sequences for
imaging. From Figure 4.1, it is clear that these tracks can contribute to a significant
increase in efficiency, especially at high energies. Using both two- and three-event
sequences at 662 keV can increase the efficiency by 30% if the sequence reconstruction
performance for three-pixel tracks is at least as successful as two-pixel tracks. At 2500
keV, that increase jumps to 50%. It is important to correctly sequence as many of these
tracks as possible.

When there are three events in the detector, there are six possible sequence orders
as 1llustrated in Figure 4.6. Again, pair production is typically ignored (Section 6.2.2
discusses the effects of pair production on Compton imaging), and the sequence is

assumed to consist of either three scatters or two scatters followed by photoelectric

AN

Figure 4.6. Illustration of the six possible sequences for three observed interactions.

68



absorption. Choosing between possible tracks requires a figure-of-merit (FOM) to be
assigned to each track. The sequence with the best FOM is then chosen. Two FOMs have
been proposed by other researchers: a chi-squared statistic relating the difference in the
second scatter angle calculated using both deposited energies and known interaction
positions (“minimum squared difference method”) [4-7], and a likelihood function based
on the Klein-Nishina scatter probability (“probabilistic method”) [8, 9]. Both methods are
investigated here. Simulations of a monoenergetic point source 10 cm from the detector
were performed with Geant4[2] to determine which FOM is better at selected energies

between 300 keV and 2.5 MeV.

4.3.1 Probabilistic method

The first step in the probabilistic method is to choose a sequence order and
calculate the initial gamma-ray energy based on the observed energies and positions.
From the Compton scatter formula, given in Equation 1.1, the energy of a gamma ray
before the scatter, £, can be derived as in Equations 4.3 from AE, the energy deposited in
the scatter at angle 6. The term m.c” is the rest mass energy of an electron. The plus or
minus in Equation 4.3 is a result of solving the quadratic equation. In reality, the initial
gamma-ray energy cannot be less than the deposited energy, and only the positive root is

used in the calculation.

AE=F - E

1+ (1—cos8)

2
m,c

. AE(l—cosé’)E= (I1-cosf) 7

2

AE

m,c’ m,c
AE 1\/AE2 N 4m,c*AE

E=—+— s S —
2 2 (1-cos8)

(4.3)

In a sequence of three interactions, the second scatter angle is always known from

the three interaction locations. Equation 4.3 can then be used to calculate the energy of
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the gamma ray before the second scatter. The initial gamma-ray energy is simply this
energy plus the energy deposited in the first event. For deposited energies AF; and AE; in
the first and second scatters, respectively, and scatter angle 6, initial energy E, can be
calculated using Equation 4.4. This is sometimes referred to as “Three-Compton

Reconstruction.”

AE
E,=AE, + 22 +%\/AE22 +

4m,c’AE,
(1—-cosé,)

(4.4)

The second step in this method is to determine whether the chosen sequence is
kinematically possible. In other words, the Compton edge test is performed for the first
scatter event. If the energy deposited is higher than the Compton edge the sequence is
discarded and a new one is examined. The final event in the sequence must either be a
Compton scatter, requiring passing the Compton edge test, or a photoelectric absorption,
in which case the sum of the deposited energies should equal the reconstructed energy
from Equation 4.4. If the final event is not consistent with either a scatter or an
absorption, then the sequence is discarded and a new one is examined.

If the sequence passes the kinematics tests, a figure-of-merit is assigned to the
sequence based on the probability of observing the sequence. The probability is
calculated using the Klein-Nishina differential cross section for Compton scatter[3],
given the observed second scatter angle and deposited energies as in Equations 4.5 and
4.6, where Z is the atomic number of the scatter medium, ry is the classical electron
radius, and £is the gamma-ray energy after the first scatter, given by E =E;-AE,;. Note
that E’is solely a function of AE, and 6, in accordance with the Compton scatter
formula. The product 277’ is a constant for all FOMs. Thus, the first term in Equation

4.6 is usually ignored.
do
FOM =—(0,,E’' 4.5
dQ( 2 E") (4.5)
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After the FOM is assigned to the first track, the process is then repeated for the
remaining sequences. Of the kinematically possible tracks, the one with the highest FOM
is chosen as the correct sequence. Note that the sequences of opposite order will have the
same FOM. For example, if the events are labeled A, B, or C, then the tracks B-A-C and
C-A-B have the same AE, and 6, and therefore they have the same FOM. In many cases,
only one of the two will be kinematically possible and there is no ambiguity. Sometimes
it is possible for both sequences to occur. An additional parameter is used to help
distinguish these sequences. If any of the six sequences has a total deposited energy equal
to its reconstructed energy from Equation 4.4, then the FOM is increased by 10%.
Kroeger et al. cite this as an effective way to improve the probability of getting full
energy sequences correct, and they state that the performance of the algorithm is not
significantly dependent on the value of the increase[8]. There may still be some cases in
which the forward and backward sequences tie for the highest FOM. In these cases it is
necessary to simply guess or to use additional information, such as distance between
interactions[8]. For the CdZnTe detector when there is a tie for the highest FOM the
correct sequence is chosen to be the one with the higher first deposited energy for total
energies above 400 keV, as in the two-event case. Below 400 keV total deposited energy,
the winning sequence in a tie is the one with the lower first deposited energy.
To test the probabilistic method data were simulated in the same manner as for

two-pixel sequences. Again, sequences in which multiple interactions occur under a
single pixel are excluded from this analysis, which reduces the number of observed three

event sequences by 55% at 300 keV and by 38% at 2500 keV, as shown in Table 4.1. The
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performance of the probabilistic method for selected gamma-ray energies from 300 keV
to 2.5 MeV is given in Table 4.3. Almost two-thirds of the sequences at 300 keV are
incorrectly reconstructed. The algorithm improves as the incident gamma-ray energy
increases, and at 2.5 MeV over half of the tracks are correctly identified. Note that the
method is less successful for full-energy sequences compared with sequences at all

energies, except at 300 keV where the success rates are nearly identical.

Table 4.3. Percentage of Useful Three-Event Sequences Correctly Determined by
the Probabilistic Method

Energy (keV) | Total Correct Full Energy Correct
300 33.5% 34.6%
662 40.1% 35.9%
1500 48.7% 41.2%
2500 50.3% 42.1%
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Figure 4.7. The distribution of reconstructed energies for full-energy sequences from
simulated 2.5 MeV gamma rays using the three-Compton technique. Also shown
is a normalized traditional spectrum that would be obtained by simply summing
the energies of three-event sequences.
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The probabilistic method shows poor performance (although it is still better than a
random guess, for which one would expect 16.7% correct guesses). The poor position
resolution leads to an incorrect value of cos &, which is used in Equation 4.4 to calculate
the initial gamma-ray energy. Figure 4.7 shows the distribution of reconstructed energies
for full-energy sequences at 662 keV. Wulf ez al. also demonstrate poor resolution in
reconstructed spectra using this equation[10]. When the incident energy calculated using
Equation 4.4 is significantly different than the actual incident energy, the calculation of
probabilities will also be incorrect. Wulf ez al. reported that the higher energies are

favored in three-Compton reconstruction, but that effect was not observed here.

4.3.2 Minimum squared difference method

The minimum squared difference (MSD) method is the most common method of
three-event sequence reconstruction. It first assumes that the full energy of the gamma
ray has been deposited (i.e. the final event was a photoabsorption). In this case there are
two ways to calculate the angle of the second Compton scatter: using the three measured
positions ry, r,, and r; or using the final two observed energies AE; and AE;, as in

Equations 4.7 and 4.8.

_#B-n)e( -7h)

cosl, =—— T 4.7)
|("2 _71)”(73 —7‘2)|
2
AE
cosf, =1- ¢ 2% (4.8)
(AE, + AE,)AE,
6. —cosf )’
FOM=(COS ; cozs ) (4.9)
o, +0,

The figure-of-merit (FOM) is calculated according to Equation 4.9, where o’

and o’ are the variances of the cosines calculated in Equations 4.7 and 4.8, respectively.

The sequence with the smallest FOM is chosen. The MSD method is occasionally
referred to in the literature as a “chi-squared” analysis, but the algorithm is simply a

minimization of the squared difference—adjusted for uncertainties—between cosines
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Table 4.4. Percentage of Useful Three-Event Sequences Correctly Determined by
the Minimum Squared Difference Method

Energy (keV) | Total Correct Full Energy Correct
300 48.4% 57.2%
662 49.4% 50.7%
1500 47.3% 62.3%
2500 47.9% 63.6%

calculated using energies or positions of interactions. A chi-squared test is not actually
performed. The variances in the cosines are calculated using the chain rule, as in
Equations 4.10 and 4.11. The angular uncertainties d6, and d, are defined in Section
5.2.4.
o’ =[d(cos8,)]’ =sin’ 8.(d6.)’ (4.10)
ol =[d(cos8,)]’ =sin® 6,(d6,)’ (4.11)
The percentage of useful sequences that are correctly determined by the minimum
squared difference method is given in Table 4.4. Nearly half of all tracks are correctly
sequenced. Full-energy tracks are sequenced correctly more often, up to 63% at 2.5 MeV.
The MSD method clearly outperforms the probabilistic method for all energies
tested. More than half the full-energy sequences are correctly identified, and these tracks
are chosen correctly more often than partial-energy tracks. This is no surprise, given that

the algorithm assumes the full energy has been reconstructed.

4.3.3 Comparison of MSD and probabilistic methods

To directly compare the methods, the same simulated data were reconstructed
using both the MSD and the probabilistic methods. A tally was made of the number of
times a given pair of sequence orders was found. For example, MSD may select the
sequence 2/3 while the probabilistic method may select /32; in another sequence both
methods may choose /23, the correct sequence. The results are shown in Figures 4.8, 4.9,

and 4.10 for 300 keV, 662 keV, and 2.5 MeV gamma rays, respectively. At 300 keV, the
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Figure 4.8. Comparison of sequence orders chosen by MSD and probabilistic methods for
300 keV gamma rays (all sequences). MSD chooses the correct sequence (/23)
with much higher frequency than the probabilistic method.

most common occurrence is both methods choosing the correct sequence (/23), and it is
clear that the MSD method performs better. When the order is chosen incorrectly, both
methods select the reverse sequence (32/) most often. There is no obvious correlation
between the sequences chosen via MSD and the probabilistic method.

At 662 keV, it is evident that the probabilistic method performs better than at 300
keV. The performance of the MSD method is degraded somewhat, although still better
than the probabilistic method. At 2.5 MeV, the MSD method correctly identifies fewer
overall sequences than the probabilistic method, although more full energy tracks are
correctly sequenced. Again, there is no obvious correlation between the two methods and
the sequence orders chosen.

Due to its superior performance with full-energy sequences, the MSD method is
the obvious choice for reconstructing three-pixel tracks in this detector. For the remainder

of this work, the MSD method will be used to reconstruct sequences of three interactions.
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Figure 4.9. Comparison of sequence order chosen by MSD and probabilistic methods for
662 keV gamma rays (all sequences). The probabilistic method shows better
performance than at 300 keV, although the MSD method is still superior.
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Figure 4.10. Comparison of sequence order chosen by MSD and probabilistic methods
for 2.5 MeV gamma rays (all sequences). The probabilistic method shows better
performance for all events, but the MSD method correctly identifies more full-
energy sequences.
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4.4 Sequences with Four or More Interactions

The process for determining the correct tracks for four or more interactions is
similar to that for three interactions. Both the MSD and probabilistic methods are easily
expandable. First, each possible track is separated into triplets. For example, the sequence
1234 has two triplets: /23 and 234. The methods for three interactions are then used to
reconstruct each triplet. Because the triplets actually overlap, there is redundant
information. In this case, the scattered gamma-ray energy between interactions 2 and 3
should be the same for both 723 and 234. This provides an additional constraint on the
kinematics when four or more events are observed.

The figures-of-merit for each physically possible sequence is simply the sum of
the FOMs of each triplet, as in Equation 4.12 for MSD and Equation 4.13 for the
probabilistic method, where 7 is the number of triplets. The sequence order with the

minimum (MSD) or maximum (probabilistic method) FOM is then selected.

2 (cosf,, —cosb.)?
FOM = = < 4.12
Z‘ cl+ol “4.12)
L do
FOM =) —(0,,,E] 4.13
ZdQ( 2L 1) ( )

i1
Four-event tracks comprise only 1.5% of the total sequences at 662 keV, and most
of them deposit the full gamma-ray energy. At 2.5 MeV, 2.5% of tracks have four
interactions, although only 60% of these are usable for Compton imaging due to pair
production and multiple interactions under a single pixel. For a detector larger than 2.25
cm’ it may be necessary to include four-pixel tracks, but in this work these sequences are

discarded in the interest of reducing computation time.
4.5 Sequence Reconstruction in This Work

Both two- and three-event tracks are used for Compton imaging. They comprise

33% of the total sequences (50% of full-energy sequences) at 662 keV and 25% of all
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sequences (67% of full-energy sequences) at 2.5 MeV. Tracks with four or more
interactions occur with very low frequency and are not used in this work except where
otherwise stated. Two-pixel sequences are reconstructed using the simple energy test:
above 400 keV total energy deposited, the first interaction deposits more energy; below
400 keV the opposite is true. If the sequence is not kinematically possible, it is discarded.
Three-pixel sequences are reconstructed via the Minimum Squared Difference method,
which calculates the difference between the second scatter angle cosines using deposited
energies and observed interaction positions.

It is important to note that the performance of these methods were evaluated using
modified simulated data; sequences involving pair production and multiple interactions
under a single pixel were known and discarded, and charge sharing was not considered.
This was done to demonstrate the effectiveness of the methods for tracks that could
possibly be determined correctly. Thus, although the MSD method reconstructs 49.4% of
the useful three-pixel sequences correctly at 662 keV, only 53.9% of the three-event
sequences are useful at that energy. Thus, of all the three-event tracks, only 26.6% will
lead to correctly imaged sequences. Nearly 69% of full-energy two-event sequences are
properly determined at 662 keV, but only 76% of sequences are useful. Therefore, 53%
of full-energy two-event tracks will be correctly imaged. Clearly a reduction in efficiency
results from these effects. The effect on imaging due to pair production, charge sharing,

multiple events under a single pixel, and other factors is discussed in Chapter 6.
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CHAPTER 5
IMAGE RECONSTRUCTION

5.1 Introduction

Image reconstruction techniques typically fall into two categories: direct (Fourier)
and iterative methods. Direct reconstruction uses approximate deterministic expressions
to reconstruct an object from its forward projections. Iterative methods use statistical
models and can more accurately treat the physics of gamma-ray detection and account for
stochastic processes, although the iterative nature of the reconstruction necessitates
longer computation times than the direct methods.

The two most popular methods for reconstructing images from Compton scatter
data are backprojection and maximum likelihood estimation (ML). Backprojection is a
direct reconstruction method relying on fast Fourier transforms and has been used
extensively for 3-D tomographic imaging from x-ray projection data. It usually requires
first a backprojection step to obtain a blurred estimate of the image and then a filtering
step to remove the blurring. (Sometimes the filter is applied before the backprojection
step.) Because the projections from Compton scatter data are not straight lines as in x-ray
projections but rather conic sections, backprojection is not a precise image reconstruction
technique for Compton imaging. As a result, maximum likelihood estimation—an
iterative reconstruction method—has been used for Compton imaging since the 1980s
with much success. It is the success of ML in planar Compton imaging that motivates the

use of it in 47 imaging here.
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5.2 Backprojection Reconstruction

Backprojection gained popularity in early Compton imagers because of its
simplicity. The mathematics of backprojection were well understood in terms of
tomography, where a 3-D image is reconstructed from its 2-D forward projections. In
Compton imagers the forward projection is the observed data: deposited energies and
interaction locations. As briefly described in Chapter 1, the observed energies are used to
calculate the Compton angle for the first scatter in the detector. The initial direction of the
gamma ray can be localized to within a cone of probability, where the vertex is at the first
interaction location, and the half-angle is the calculated Compton angle. Reconstructing
images requires summing the backprojected cones on a surface, as illustrated in Figure
5.1

Usually, backprojection is performed in the source plane parallel to the front face

of the detector. The source distance must be known a priori. For sources far from the
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Figure 5.1. Illustration of backprojection imaging. Backprojected cones are summed in
the source plane. After many events, the intersection of the cones indicates the
source position.
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Figure 5.2. Illustration of 4x backprojection. The backprojected cones are summed on a
spherical image surface that intersects the source location. As in planar imaging,
the overlap of many cones indicates the source location.

detector (“far field imaging”) the errors from incorrectly estimating the source distance
are usually small. In 41 Compton imaging, the reconstruction surface is a sphere, as in
Figure 5.2. The image sphere surrounds the detector, and gamma-rays from any direction

can be used for imaging.

5.2.1 Event circle method

Backprojection is performed in the following manner. The axis of the Compton
cone is determined by drawing a ray from the second interaction through the first
interaction location. The cone vertex is the first interaction point, and the cone opens in
the direction of the axis ray with a half-angle equal to the first Compton scatter angle.
The cone has a finite width due to the uncertainty in both the axis direction and the
calculated Compton angle (see Section 5.2.3 for a discussion of angular uncertainty). The
projection of the cone shell on the image surface is determined by finding the image

pixels that also lie on the cone. Wilderman, et al.,[1] describe a process for determining
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the proper backprojections with a planar image surface. Rohe, et al.,[2] describe the
calculation for a spherical image volume inside a shell of detectors. Each image pixel that
intersects the backprojection cone is then given a value of 1 for that gamma-ray
sequence. All other pixels are assigned a value of 0. The image pixel values are then
normalized such that the sum of the intensities for each pixel in the ring equals 1. The
process is repeated for each set of measurements and the backprojections are summed.

This is called the “event circle” method.

5.2.2 Far-field approximation

The calculation of the exact intersection of the backprojected cones and the image
surface can be difficult and time consuming. To simplify the calculation, the cone vertex
is approximated at the center of the detector, rather than the center of the voxel
corresponding to the first interaction. In this way, the image sphere center coincides with
the backprojection cone vertex. The cone axis, which should be a ray from the second
through the first interaction, is then simply translated to the origin. This is known as the
“far-field approximation.”

The effects of this approximation can be estimated as follows. Let R equal the
(fixed) radius of the image sphere. Let d equal the separation distance between the true
interaction location and the center of the detector. The angular difference @ on the image
sphere between the true cone axis and the approximated cone axis can be estimated using

Equation 5.1. An illustration of the geometry is shown in Figure 5.3.
d
tang = — 5.1
0= CRY

The maximum difference in the intersection of the cone axis with the image
surface was calculated for radii from 1 to 100 cm. As seen in Figure 5.4, for source-to-
detector distances equal to or greater than 20 cm, the difference in the axes is less than

3.5°. By comparison, the average geometric uncertainty is about 5°. Thus, for source
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Figure 5.3. Illustration of the cone axis approximation. In the approximation the axis is
translated to the origin of the detector, which is the center of the spherical image
volume.
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Figure 5.4. Calculated error in the Compton cone axis by relocating the vertex to the
center of the image sphere. The effects are small for source distances above 20
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distances greater than 20 cm, the far field approximation holds. Note that at 1 m the error
is only 0.6°.

In addition to misregistration of the cone axis, the approximation also changes the
shape of the intersection of the cone with the sphere. For a cone vertex at the center of the
sphere, the intersection is always a circle. For a cone vertex located inside the sphere at
another location, the intersection is slightly egg-shaped. Due to the large geometric
uncertainties present in the 4n imager, the width of the cones is at least several degrees,
and the differences in the reconstructed images should be minimal compared with the
exact calculations. All backprojections performed in this work use the far field

approximation.

5.2.3 Calculating angular uncertainty

The width of the backprojection cone is given by the estimated angular
uncertainty. There are two independent components to the angular uncertainty: error in
the Compton scatter angle, calculated using deposited energies, and error in the cone axis
direction, calculated using interaction positions. The angular uncertainties due to energy
and position can then be added in quadrature to yield the total angular uncertainty, and
hence the width of the backprojection cone. Doppler broadening is not included in the
estimate of angular uncertainty, but the effect is small due to the dominance of the
position uncertainty contribution. Doppler broadening is discussed further in Chapter 6.

The uncertainty in angle calculated using energies, d6., is determined by applying
error propagation to Equation 4.8, which assumes that the total initial gamma-ray energy
is deposited. The angular uncertainty is calculated as in Equation 5.2, given the
uncertainty dE; in the energy AFE;, and is shown in Figure 5.5 for two-pixel sequences as a
function of scatter angle for selected energies. The energy uncertainty is calculated as in

Equation 4.2.
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Figure 5.5. Angular uncertainty of two-pixel sequences due to energy resolution
calculated as a function of scatter angle for selected energies.
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Figure 5.6. Illustration of the calculation of geometric uncertainty. A line connecting
randomly chosen points within the voxels forms an angle with respect to the
center line that is the angular deviation of the point from the voxel center. The
geometric uncertainty is the average angular deviation calculated over many
randomly chosen points.
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(5.2)

The angular uncertainty due to energy resolution becomes very large for both
small and large scatter angles. For small scatter angles the first event deposits very little
energy. In this case the error in the energy can be a large fraction of the deposited energy,
and thus the angular uncertainty is also very large. For backscattered gamma rays, the
deposited energy is not sensitive to large changes in scatter angles. As expected, the
effect of energy resolution on the angular uncertainty is most profound for lower energy
gamma rays.

Angular uncertainties based on interaction positions are estimated in the following
manner. The two interactions are assumed to occur somewhere inside voxels with
dimensions 1.24 mm x 1.24 mm x 0.5 mm, corresponding to the position uncertainties in
X, ¥, and z. A point is randomly chosen inside each voxel and a vector is drawn between
the points, as in Figure 5.6. The angular deviation of this vector from the line connecting
the centers of the voxels can then be determined. For each possible pair of two
interactions voxels, 10,000 points are randomly chosen within the voxel, and the angular
deviation is calculated for each point. As an example, the distribution for two interactions
separated by one pixel each in x and y and by 5 mm in z is given in Figure 5.7. The
average of this distribution is considered to be the geometric uncertainty. The geometric
uncertainties for all possible interaction pairs at the same depth is given in Figure 5.8, and
for interactions separated by 5 mm in Figure 5.9.

The calculated geometric uncertainty is about 15° for the case where two
interactions occur in neighboring pixels at the same depth. The maximum angular
deviation for this case is nearly 90°. This method takes into account the fact that more
volume is located near the line connecting the pixel centers than near the outer corners,

where the angular deviation is large.
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Figure 5.7. Distribution of angular deviation calculated for two points separated by 1
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Figure 5.8. Angular uncertainties due to geometry for two events occurring at the same

depth separated by the given number of x and y pixels.
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Figure 5.9. Angular uncertainties due to geometry for two events separated by 5 mm in
depth and by the given number of x and y pixels.

The geometric angular uncertainty values are calculated in advance for the given
geometry, tabulated, and stored for implementation in the image reconstruction program.
Angular uncertainties due to energy are calculated for each sequence during image

reconstruction.

5.2.4 Performance of backprojection reconstruction

A backprojection image of a simulated 662 keV point source is shown in Figure
5.10 for a source located above the detector. A slice through the center of the source in
this image is shown in Figure 5.11. Figure 5.12 shows the image reconstructed from a
source located to the side of the detector, and the central slice of this image is given in
Figure 5.13. In each image, the full energy two- and three-pixel sequences are imaged.

The slices show an angular resolution of 103° for the source above the detector and 55°
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Figure 5.10. Backprojection image of simulated 662 keV point source located above the
detector. Full-energy two- and three-pixel sequences are imaged.
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Figure 5.11. Central slice through the image in Figure 5.10. The estimated angular
resolution is 103° FWHM.
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Figure 5.12. Backprojection image of simulated 662 keV point source located to the side
of the detector. Full-energy two- and three-pixel sequences are imaged.

FWHM = 55 degrees

Intensity {-)

2 1 1 i L i { i |
0 20 40 60 80 100 120 140 160 180

Azimuthal angle (degrees)

Figure 5.13. Vertical slice through the image in Figure 5.12. The estimated angular
resolution is 55° FWHM.
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for the source to side of the detector. The cause for the discrepancy between resolution of
top and side images is discussed in Chapter 6. Despite the poor angular resolution, the
location of the point source is correctly determined in 47 in both cases. For applications
that do not require good imaging resolution, simply finding a point source may be
sufficient.

The simulated intrinsic imaging efficiency (defined as the fraction of incident
gamma rays that result in imageable full-energy sequences) is 4.4% for the source above
the detector and 5.5% for a source to the side of the detector. The difference in efficiency
is mostly due to the fact that the detector is not cubic. When a gamma ray is incident
from the side there is 50% thicker material in which to undergo interactions compared
with a gamma ray incident from the top. This effect alone would create nearly a 24%
reduction in efficiency for a source above the detector compared with a source to the side.
However, the track length of the scattered gamma rays relative to the dimensions of the
detector should not be neglected. After the initial scatter, a gamma ray originally incident
from the top will have a further distance in all dimensions to travel before escaping than
an equivalently scattered gamma ray originally incident from the side. This will
somewhat mitigate the effect of the non-cubic detector. As such, the total reduction in
stmulated efficiency for a source above the detector compared with a source to the side is

20%. Of course, if the detector were spherical, the efficiencies would be the same.

5.3 Maximum Likelihood Reconstruction

The goal of image reconstruction is to generate an estimate of the source
distribution f given a set of N measured sequences. The measurements are denoted A;,
A3, ..., An, where the dimension of 4; is given by the number of parameters observed in
each measurement. The task of maximum likelihood (ML) is to estimate the source

distribution given a model for the detector system. The source estimate (image) is
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discretized into M pixels, and p(4|j) denotes the system model, i.e. the probability of
observing the measurement set 4 given a gamma ray originating from source pixel j.

Conventionally, the measurements A4 are also discretized. A given set of observed
interaction locations and deposited energies for a measurement corresponds to one bin in
p(Alj). Many bins are required in order to account for all possible combinations of
locations and energies; for k& attributes in a given measurement with precision b measured
in bits, at least 2 elements are required.[3] One research group estimated that over
2x10" elements were required in the system model p(4j) per source pixel for their
system.[4] At even 1 byte per integer value in the bin (counting up to 255 events in a
single bin), the model would require nearly 20 GB of memory, which can be difficult to
obtain and is certainly an inefficient way to store the data.

In list-mode, the measurements are stored in a list during acquisition. Each
measured parameter is considered as a point in a continuous measurement space, and no
binning of data is required. As a result, information is retained throughout the
reconstruction that would otherwise be lost in the binning of positions and energies in
conventional ML. The total number of memory elements required in list-mode is only Nk.

280 >> Nk, and list-mode reconstruction becomes much more

Thus for large values of &,
efficient. The 4n Compton imager registers at least eight parameters per measurement:
the 3-D positions of at least two interactions, plus the energies deposited at those
locations. The number of detected sequences should be greater than 10* (see Section

5.3.2.) Thus, list-mode maximum likelihood reconstruction provides an increase in

computation speed over conventional ML techniques for the 4n Compton imager.
5.3.1 List-mode maximum likelihood

The list-mode maximum likelihood equations are derived by Parra and Barrett[5].

Their notations and conventions are adopted here. Consider a source distribution f = [f},
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S2 o> [is ---» fu, Where f; is the expected number of photons from source pixel ;. Let s; be
the probability that a gamma ray from source pixel j is detected anywhere. Then, the
probability of a detected gamma ray originating from source pixel j given the distribution

f is given by Equation 5.3.
138
M

> fis

The probability p(4|f) of observing a measurement 4 due to a gamma ray that originated

P(jIf) = (5.3)

from anywhere in the distribution f is given in Equation 5.4, where p(4|j) is the
probability of observing a measurement 4 given that the gamma ray originated in source

pixel j, also known as the system function or model.

p(A )= p(A| HP(|) (5:4)

=
The goal of maximum likelihood reconstruction is to maximize the likelihood that
the source estimate generated a given set of observed measurements. The log-likelihood
of observing the measurements given the source distribution, L(4;, ...,An|f), is given in
Equation 5.5.
L(A,,..., Ay [D)=Inp(A,,..., A [f) = ﬁ:lnp(A,. | £) (5.5)

i=1
After some algebra a detailed expression for the log-likelihood is obtained as in Equation

5.6.
L(A,,...A, |f) = Zln[z P(A L) f;s j] -N lnz £8; (5.6)

i=1
When the data are collected, typically the measurement time 7 is fixed and the

number of detected sequences N becomes a random variable that is drawn from a Poisson

distribution as in Equations 5.7 and 5.8.
(ATYY exp(-AT)
N!

A=Ysf (5.8)

P(N|T,f)=

(5.7)

94



Then the likelihood function is calculated via the product of the independent likelihoods
of observing A and N, as in Equation 5.9.

L(A,,...A,,N|T.f)=ln[p(A,,...,A, | £)P(N | T,1)] (5.9)
The likelihood function is then maximized with respect to the source distribution f. Since
f is unknown, an iterative process must be used to determine the estimate of f that
maximizes the likelihood of observing the given data. Various maximization procedures
can be used, but the expectation-maximum technique is used most often with maximum

likelihood reconstruction.

5.3.2 Expectation-maximum algorithm

The key principle for the expectation-maximum (EM) algorithm is the assumption
that the observed data are incomplete and are drawn from a set of (unknown) complete
data. Two assumptions are required: the source distribution is “a priori independent of
the parameters of the missing data process, and the missing data are missing at random”
[6]. The log-likelihood function of the complete data then provides all information
necessary to exactly reconstruct the source distribution. However, the complete data set is
unknown and it cannot be sampled. Instead, the expectation value of the log-likelihood
function is calculated based on the current estimate of the source distribution and the
observed data. The source distribution that maximizes the expected value of the log-
likelihood then becomes the current estimate, and the process is repeated until the log-
likelihood function converges or the process is artificially stopped. Thus the two steps in
the EM algorithm are first a calculation of the expectation of the log-likelihood function
based on the current source estimate and then a calculation of the source estimate that
maximizes the calculated log-likelihood function.

Suppose the observed data is expanded by the unobserved variables z;;, given in

Equation 5.10. In other words, assume there are some gamma rays emitted from the

95



source that were not detected. It is clear that z; has only one non-zero entry in each row

because a gamma ray can originate from only one source pixel.

1, if event i originated in pixel j

Zj = 10, otherwise (5.10)
The probability of observing measurement z; is then determined by Equation 5.11.
M M
P(z; |f) =2 p(z, | NP 1) =D 2,;P(j IT) (5.11)
J=1 j=1

The log-likelihood function for the complete data is then given by Equations 5.12 and
5.13, which reduces to the expression in Equation 5.14.

L(A,,Z,,, Ay, 2y, N | T,f) =In p(A,,2,,..,A,, 2y, N | T,f) (5.12)

N
L(A,Z,, s Ay,2y, N | T,) =Y Inp(A,, 2, | £) + n P(N | T,£) (5.13)

i=1

L(A,,z,,....,A,,2y,N|T,f) = iln(izﬁP(jlf)j+iln(izijp(Ai |j)]+1nP(N|T,f)

i=1 j=1 i=1 j=1
(5.14)
Since only one element per row of z;; is nonzero, the expressions inside the summation
over pixel number are only nonzero for one value of j. In addition, the nonzero entries of

z; are all equal to 1. This leads to the further simplification in Equation 5.15.

N M
LA, 2, Ay, 2y N | T,0) =Y z,(InP(j | ) + In p(A, | j))+ In P(N | T, 1)

i1 jal
(5.15)
As previously stated, the unknown data z; cannot be sampled. Thus, in the
expectation step of the EM algorithm, the expected value QO(f|f”) of the log-likelihood
function (defined in Equation 5.16) is calculated based on the measured data A4;,..., Ay
and the (fixed) current estimate f” of the source distribution f, where 7 indicates the
iteration number. The calculation involves simply replacing z; with its expected value,

given in Equation 5.17.
of £y = E[L(Al,zl,...,AN,zN,N | T,f) | Al,...,AN,N,f(’)] (5.16)
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P(J 1fYp(A, 1)) (5.17)
> PGk |£9)p(4, |)

z;(f) = P(j | A1) =

After the expectation step is complete the derivative of the expected value of the

likelihood is set to zero, while £ is fixed.

aQ(f[f(t)) 0 Zz U(f(t))ln f %lﬁNln(Tifksk]—Tifksk:I
— i . k=1

af} 5f} i=1 j=1 f k=1
; Sk
(5.18)
o N
1 i=1 et kzﬂ-fksk ;fksk

N
The two inner terms in Equation 5.19 cancel because Z z,s, =Ns, , and Equations 5.20
i=1

and 5.21 are obtained for the update algorithm

e Z (fm) (5.20)
@ N
fj(t+1) — f} Z — P(Az |.]) (521)
T P R [0,

k=

—

Thus, given any initial estimate f” a new source estimate can be calculated from the
system model and the sensitivity of the device. In practice only the update expression is
required and the expectation and maximization steps are performed simultaneously. The
initial estimate f” used in this work is always a uniform field.

Some authors [4, 7, 8] have performed the expectation step on the complete data,
rather than the likelihood function. Shepp and Vardi [7] have shown that this method also
converges to a maximum likelihood point. However, it leads to a slightly different result

for the iteration expression [4, 8] as given in Equation 5.22.

* N
f(m) ? z _ P(A; | )) (5.22)
U A DL
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The sensitivities s; are moved outside the summations. (The original MLEM algorithm by
Dempster, Laird, and Rubin[6]—which is nearly always cited as the original reference—
uses the expectation of the likelihood function, except in the special case of exponential
families where the vector of sufficient statistics is used.) It is believed that there may be
some small differences in the two methods, especially for systems in which the sensitivity
widely varies from pixel to pixel. Wilderman et al.[9] calculate sensitivity based on the
solid angle subtended by the scatter detector and the probability of the gamma ray
interacting inside it. Since the 47 imager is nearly a cube, the sensitivity should not vary
significantly for sources from different image pixel locations, and the difference between
the two EM algorithms should not be significant.

The EM algorithm has several advantages over other maximization procedures.
Dempster, Laird, and Rubin[6] showed that the likelihood after each step is
nondecreasing, meaning that successive iterations lead to a source estimate that is at least
as likely as the previous estimate to have produced the observed data. Any positive initial
source estimate automatically results in non-negative subsequent estimates[8].
Furthermore, under some reasonable conditions (such as N>M: the number of observed
sequences is greater than or equal to the number of image pixels) the log-likelihood
function is strictly convex and necessarily has a single global maximum([5]. In this case, it
has been proven that successive iterations of the expectation and maximization steps will
lead to global convergence[8]. Convergence is achieved when the global maximum of the
likelihood function has been reached. Lange and Carson proved that the image obtained
after convergence is independent of the choice of initial estimate f”[8]. In practice,
image reconstruction is rarely computed through all the iterations required to achieve
convergence, and stopping rules and other justifications for early termination of the

algorithm are often applied (see Section 5.3.4).
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5.3.3 Weighted list-mode maximum likelihood

Wilderman et al.[9] have proposed an analytical system model for list-mode
maximum likelihood of Compton scatter images. A value for P(A4|j) that can be
calculated on the fly is advantageous and preferable to a system matrix that bins the data
(resulting in lost information) and requires dedicated memory or a table look-up
(resulting in lengthy reconstruction times). The probability of observing a given
measurement A=/EyE’ E”’,...,ro;, 712,723, ...] glven a gamma ray incident from pixel j is

then given by Equation 5.23.
. do '
P(A]j) =exp(-o, (Eo)rm)—dgc exp(—o,(E")7r, ) (5.23)

where oy(E) is the total absorption cross section at energy E, Ey and E’ are the initial and
scattered gamma-ray energies, respectively, 7y; is the attenuation distance between the
source pixel and the first interaction, r;; is the attenuation distance between the first and
second interactions, and do¢/d(2 s differential Compton cross section, which is
approximated by the Klein-Nishina cross section divided by r;,°. Thus the system model
is the product of the probabilities of survival of the initial gamma ray to the first
interaction point, scatter at the observed angle 6, and survival of the scattered gamma ray
to the second interaction location. The Klein-Nishina cross section is given in Equation
5.24 [10], where a=Ey/m.c’ is the ratio of the initial gamma-ray energy to the rest mass

energy of an electron.

do, OC|: 1 :’2[1+cos20j[1+ a’(1-cos @) :l (5.24)

dQ |1+a(l-cosf) 2 (1+cos® )1+ a(l —cosd)]

In the above calculation, #is the angle of scatter that would be observed if the gamma ray
were incident from pixel j and interacted at the measured locations 7; and 7».

It is clear from the above discussion that higher probabilities are assigned to
measurements in which the interaction distances are small. Furthermore, image pixels

that lead to smaller apparent Compton angles, where the Klein-Nishina formula is peaked
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over the energy range of interest for Compton imagers, are also assigned a higher
probability. Thus the product f;P(A|j) is the forward projection and should produce the
measurements most likely to be observed. However, the most likely measurements are
also those with the most uncertainty. Small distances between interactions result in very
large geometric uncertainties. Forward scattered gamma rays lose a small fraction of their
energies, leading to large energy uncertainties as well. Thus, the reconstructed angular
uncertainties for the most likely sequences will be large.

Ideally, the sequences leading to high angular uncertainty should be weighted less
than those that lead to low uncertainty. A more accurate knowledge of the source location
should be possible through such weighting. To determine a proper weighting system, it is
first necessary to revisit conventional maximum likelihood estimation.

In the non-list-mode MLEM reconstruction, the update algorithm is given by
Equation 5.25[9], where Y; is the number of times (binned) measurement A; is observed.
Thus, the list-mode and conventional algorithms differ by a factor of Y; in the numerator
of the summation over events. In list-mode each measurement is observed only once due

to the continuous measurement space, and Y; is essentially set to 1.

w SPX YpA, )
f‘j(t n _ ].; Z — p( IJ) (5.25)
I p(A 1R AP
=

Using Y; to weight sequences appropriately seems an obvious choice. As given in
Equation 5.26, the Y; are the inverse of the estimated angular uncertainties A9;, which are
calculated as the quadratic sum of the energy and position components discussed in

Section 5.2.3.
Y =— (5.26)

The image must then be normalized to preserve absolute source intensity information, as

in Equation 5.27.
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Ts; 2. (A0)™ = > p(A; [B) £

k=1

Fo = (5.27)

5.3.4 Convergence and early termination

In practice, iterations of the MLEM algorithm are usually terminated before
convergence is reached. Images resulting from convergence of the likelihood function are
noisy because the data creating them is noisy[11]. Veklerov, Llacer, and Hoffman state
that because of the inherent statistical processes involved in radiation emission and
measurement “a source distribution identical to the recovered image could not have
possibly generated the data[12].” When Equation 5.22 or 5.27 is iterated until the
maximum likelihood solution is reached, the resulting image becomes unacceptably
noisy. Typically, the reconstruction process is stopped while the image is still relatively
smooth.

One possible way to determine the proper number of iterations is to monitor the
progress of the reconstructed image with increasing iterations. When the image begins to
degrade rather than improve, the user could stop the reconstruction process. This is a
dissatisfying method for early termination because it is user dependent. It is preferable to
use a statistical or at least disciplined method for determining the stopping point. One
simple method involves simply terminating the reconstruction after a given number of
iterations. However, the rate of convergence depends upon both the number of observed
events in the detector and the spatial distribution of the source[13]. Therefore, using the
same number of iterations for all source distributions will yield widely variable results. It
is necessary to determine an independent, case-specific stopping criterion. Several such
methods have been proposed.

In 1988, Veklerov, Llacer, and Hoffman proposed a method based on the Poisson

nature of radiation measurements[12]. After each iteration, the hypothesis that the
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observed data are a Poisson sample drawn from the source distribution given in the image
1s tested. If the hypothesis cannot be rejected, then the iterations are stopped. For a small
number of iterations, the image does not sufficiently fit the observed data; for a large
number of iterations, the image becomes too noisy to have generated the data. In this
way, the reconstructed image passes through a region of acceptable images which they
call “feasible images[14]. For computer generated Poisson random data the authors have
observed that the iterative process consistently passes through such a region. Choosing
any of the images in the region is acceptable, although with the test outlined above the
first image to satisfy the criterion is chosen.

The authors observed for real PET imaging data that a feasible image was never
found. With the computer generated data the same system function is used to perform the
generation and reconstruction of the data; this is not necessarily the case for real imaging
data. The system function used in the maximum likelihood estimation has some
uncertainty associated with it. This observation led to a weaker stopping criterion based
on the variance of the observed data and the reconstructed image[14]. This weaker
stopping criterion was found to be more robust and led to acceptable images from real
PET data.

Kadrmas uses a different statistic to test the nearness of the observed data with the
predicted data given the current image estimate[15]. He assumes that the difference
between the two sets of data should be Gaussian distributed. Then a two-tailed r-test can
be performed on the data. When a given pixel in the image demonstrates a statistically
significant difference between the observed and predicted data, its value is updated using
Equations 5.22 or 5.27. This is called “spatially adaptive updating,” and results in an
effective regularization of the reconstruction.

Another possible stopping criterion is to choose a solution near the maximum
likelihood solution. Vardi, Shepp, and Kaufman[16] have suggested calculating the

change in the likelihood value between iterations, and terminating the reconstruction
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when the difference is small (i.e. convergence is near). Thus, a sort of diminishing returns
approach can be used.

Kontaxakis and Tzanakos proposed a different stopping criterion based on the
factor that is multiplied by ﬁ(” in Equation 5.25[17]. This factor approaches 1.0 as the
image approaches the maximum likelihood estimate. The authors state that a value of 0.8
produces images that are close to the optimal image, “independently of image shape, the
number of counts in the image, and the system configuration.” The optimal image is
defined as having the minimum RMS error and also minimizing a y* distribution similar
to that used by Veklerov. There is no mention of the dependence on the initial source
estimate.

A reconstruction method which maximizes the likelihood and then terminates the
iterations before that maximum likelihood solution is obtained can be conceptually
difficult to accept, regardless of the way in which the stopping point is chosen[11]. The
maximum likelihood image does not depend on the choice of initial source estimate, but
if the reconstruction is halted early the independence will no longer hold. As a result,
there is still much debate about the use of maximum likelihood estimators for
reconstructing Compton imaging, emission tomography, and PET imaging data. Using a
stopping criterion with MLEM may not be the theoretically optimal reconstruction
method, but it has been shown via simulations and experiments to produce low-noise,
high-resolution images.

In this work, the controversy of using MLEM without requiring full convergence
is acknowledged. To limit the bias introduced by early termination, the initial source
estimate used here is always a uniform field. Further, although it is recognized that a
scientifically defensible termination criterion is important, none of the above termination
criteria is implemented in this work. A constant number of iterations is always performed
on the simulated and measured point source data. The effect of the number of iterations

on the image of a point source is demonstrated in the next section.
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5.3.5 Performance of maximum likelihood reconstruction

The simulated data used previously for reconstructing backprojection images
were used with maximum likelihood reconstruction. Figure 5.14 shows the image of a
662 keV source located along the x-axis after 1, 5, 10, and 20 iterations of list-mode
maximum likelihood. Figure 5.15 shows the same data reconstructed using weighted list-
mode maximum likelihood. The weighted method converges faster than the traditional
method. Figure 5.16 provides a comparison of the two methods in terms of the central
slice of the image obtained after 10 iterations. The traditional method yields an angular

resolution of 18° FWHM, whereas the weighted method improves this to 16° FWHM. It

Figure 5.14. Images of a simulated 662 keV point source reconstructed using MLEM
after 1, 5, 10, and 20 iterations.
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Figure 5.15. Images of a simulated 662 keV point source reconstructed using WMLEM
after 1, 5, 10, and 20 iterations.

would take 15 total iterations of traditional MLEM reconstruction in order to obtain the
same angular resolution as 10 iterations of weighted MLEM.

Determining the number of iterations is important. The FWHM of the central slice
of the image as a function of iteration number for the traditional and weighted maximum
likelihood reconstruction methods is shown in Figure 5.17. As the iterations progress, the
angular resolution improves from 53° after 1 iteration to 13° FWHM after 20 iterations of
WMLEM, while the traditional MLEM improvement is from 53° to 15°. The rate of

improvement diminishes with increasing iteration number, leading to the exponential
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Figure 5.16. Comparison of the central slices of images calculated with traditional and
weighted maximum likelihood reconstruction after 10 iterations for a simulated
662 keV point source.

shape observed. If a statistically defensible convergence criterion is not being used, it is
necessary to make a value judgment on the improvement in the image compared with the
reconstruction time. The speed of the maximum likelihood reconstruction program is
approximately 9.6 sequences per second per iteration on a personal computer with a 1.1
GHz Pentium III processor. With a minimum requirement of 32,400 sequences (the
number of sequences must be greater than or equal to the number of pixels in the
180x180 image, as stated in Section 5.3.2), each iteration requires a minimum of 56
minutes. Because the improvement in angular resolution between 10 and 20 iterations is
only 3° with the weighted MLEM method, the improvement in the image is not
considered to be worth the extra 10 hours of computation time. For all weighted MLEM

reconstructed images in this work, a total of 10 iterations are performed.
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Figure 5.17. FWHM of the central slice of the image as a function of iteration number of
simulated 662 keV source reconstructed using WMLEM. The angular resolution
improves with iteration number.

Requiring at least 32,400 sequences can be prohibitive in some applications. It
may require counting for a long time or reducing the number of pixels in the image
(resulting in a smaller required number of sequences) in order to perform maximum
likelihood reconstruction. In reality the images are improved relative to backprojection
even if only 1000 sequences are used with the 180x180 image surface, and it may be
tempting to use MLEM or WMLEM for low-count imaging measurements. One must be
careful, however, because global convergence is no longer ensured with a small number

of sequences.
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CHAPTER 6
FACTORS THAT DEGRADE IMAGING EFFICIENCY AND RESOLUTION OF
THE 4n COMPTON IMAGER

6.1 Introduction

There are several factors that can degrade the image quality or efficiency of the
4 Compton imager. Some of these are physics related, such as Doppler broadening or
the occurrence of pair production or coherent scattering. Others are caused by the
detector system itself. The geometry of the anode structure, which allows multiple
interactions to occur under a single pixel, reduces the observed number of events in a
sequence. Charge sharing between pixels can have the opposite effect and make one
interaction appear as multiple events. The anode threshold reduces the efficiency of the
imager by requiring at least 100 keV be deposited in each event. Furthermore, the
dynamic range of the ASICs limits the observable energies to less than 1 MeV with the
VAS2/TAT2 system and 1.6 MeV with VAS3/TAT3 system. In addition, the imaging
reconstruction methods can cause degradation in the efficiency and resolution of the
imager. The techniques used for reconstructing sequence orders limit the observable
scatter angles and introduce artifacts in the image. Finally, there is some anisotropy in the
backprojection image, such that an image of a source located above the detector appears
different than a source to the side. The effects of these phenomena on the performance of
the Compton imager are tested using Monte Carlo simulations (see Appendix). Finally,

the imaging resolution and efficiency are predicted.
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6.2 Physics Processes

6.2.1 Doppler broadening

The Compton scatter formula (given in Chapter 1) was used for determining the
sequences order of three or more events (as described in Chapter 4) and for calculating
the opening angle of the backprojection cone (as in Chapter 5). This formula is derived
under the conditions that the electron is unbound and at rest. However, these assumptions
are typically false. The impact of electron binding and motion is discussed in this section.

The assumption of free electrons has very little effect on Compton imaging. The
effect of including the binding energy is to restrict Compton scatter to only those
electrons whose binding energy can be overcome by the energy deposited in the scatter
event. A reduction in the electron shell cross section results, and the electron Kinetic
energy is reduced by the binding energy of the shell. A deexcitation x-ray is emitted from
the atom with an energy equal to the binding energy. In CdZnTe, the highest energy shell
is only 31.8 keV. With pixel sizes of 1 mm very little x-ray escape is predicted, and the
total energy lost by the gamma ray is same as the total energy deposited under the pixel
from the initial ejected electron and the absorption of the x-ray. In this way, the energy
observed under one pixel is equal to the recoil electron energy calculated using the
Compton scatter formula.

The momentum of the electron before the scatter, on the other hand, has a much
more significant effect on Compton imaging. The Compton scatter formula predicts a
one-to-one relationship between the scatter angle and the scattered gamma-ray energy. If
the finite electron momentum is included, for a fixed scatter angle the scattered gamma-
ray energy will deviate from that predicted by the Compton scatter formula. The

relationship between the initial gamma-ray energy Ey, scattered gamma-ray energy £, the
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scatter angle @, and the electron momentum in the scatter plane p; is given in Equation
6.1[1, 2].
E,-E'-E,E'(1-cos)/mc*

(6.1)
VEZ + E" —2E,E'cosf

p, =—mc

If the initial electron momentum were known, then Equation 6.1 could be used in
place of the Compton scatter formula to calculate the precise scatter angle. However, the
initial electron momentum cannot be known a priori. It may be possible in some detector
designs to measure the electron momentum after the scatter and deduce the initial
momentum from the measured energies, but this is not possible in the CdZnTe detector
used in this work. As a result, there is no recourse except to use the Compton scatter
formula given in Chapter 1 and account for the additional uncertainty due to the motion
of the electron in the calculated scatter angle.

The electron momentum vector can be oriented in any direction. In some scatters
it will have an additive effect, increasing the scattered gamma-ray energy; in others it will
reduce the scattered gamma-ray energy. The result is a distribution of possible energies
centered about the value predicted by the Compton scatter formula. Similarly, for a fixed
deposited energy the actual Compton scatter angle will also vary about the mean
predicted value. This is called “Doppler broadening.”

The effect of Doppler broadening is to degrade the angular resolution of the
instrument. Doppler broadening is most severe for high electron momentum, which
occurs in materials with high atomic numbers. Figure 6.1 shows the scattered gamma-ray
energy distribution in several detection materials for a 90° scatter of 662 keV photons.
Shown in Figure 6.2 is the scatter angle distribution for a scattered gamma-ray energy of
288 keV (corresponding to 90° scatter). These distributions are calculated analytically
using Equation 6.1 and the Hartree-Fock Compton profiles[3], using the method
described by Ribberfors and Berggren[2]. The Compton profile for each element is the

average of the profiles for each atomic shell weighted by the number of electrons in the

112



002 T T T T T T T T

— Hgl2
L — Xe i
0.018 H — CdznTe
| — Ge

0.016} - 1
B 0.014r :
Yo
8
S 0.012f .
&
o)
Z 001} .
c
s
[ =4
E o008} :
2
k. 1
S 0.006

0.004} .

0.002} 1

—r

0 . === : . .
200 220 240 260 280 300 320 340 360 380 400
Scattered gamma-ray energy (keV)

e

Figure 6.1. Scattered gamma-ray energy distribution due to Doppler broadening of a 662
keV photon at 90° in selected detector materials.
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Figure 6.2. Scatter angle distribution due to Doppler broadening of a 662 keV photon
depositing 374 keV in selected detector materials.

113



shell, and the total CdgoZngTe; o and HgI, profiles are the averages of the elemental
profiles weighted by the atom fractions.

Due to their similar atomic numbers, Doppler broadening in CdZnTe and Xe is
about the same. Hgl, has a slightly wider profile due to the 80 protons present in the Hg
nucleus. With low atomic numbers Ge and Si demonstrate less variation in the scattered
gamma-ray energy. Also, the shape of the distribution for each material is dependent
upon the filled electron levels in the atom. For example, consider the shapes of the curves
for Ge and Xe in Figure 6.2. All electron levels through the 5p shell are filled in Xe,
whereas Ge has a partially filled 4p shell. The Ge curve has wide “shoulders” from 88 —
92°; this phenomenon is not observed in the Xe curve. This is clear evidence that the
shape of the Doppler broadened distribution varies by the element involved in the scatter.

Also evident from the distributions in Figure 6.1 and 6.2 is that the Doppler
broadening is not a Gaussian effect. Although the Compton profile of each electron shell
is Gaussian, the total atomic distribution is the weighted sum of the profiles and not the
convolution of them. As such, using a full-width at half-maximum (FWHM) value to
estimate the uncertainty due to Doppler broadening will greatly underestimate the effect.
In addition, because the profiles differ for each element the FWHM will result in a
variable measure of the Doppler broadening effect. In a Gaussian distribution, 68% of the
distribution is contained within the FWHM. For the non-Gaussian distributions from
Doppler broadening a 68% containment value can also be reported[4]. Fig 6.3 shows the
estimated energy uncertainty due to Doppler broadening reported as the FWHM and as
the 68% containment value as a function of scatter angle for CdZnTe. Figure 6.4 shows
the estimated angular uncertainty due to Doppler reported in the same manner. The
choice of uncertainty metric is somewhat arbitrary, but it is clear that the FWHM will
underestimate the Doppler broadening contribution. As such, a 68% containment value
for the angular uncertainty due to Doppler will be considered equivalent to the FWHM

angular uncertainty values reported for the position and energy resolution contributions.
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The 68% containment curve in Figure 6.4 demonstrates that the minimum angular
uncertainty achievable with CdZnTe is at least several degrees, even if the scatter angles

are limited.

6.2.2 Pair production

Pair production is the conversion of a gamma-ray to an electron-positron pair.
Sequences involving pair production are not useful for Compton imaging. According to
Geant4[5] simulations (see Appendix), pair production occurs in the detector in 19% of
the two-event sequences at 2.5 MeV. (At 1.5 MeV, it occurs in less than 2.5% of two-
event sequences.) A two-pixel sequence involving pair production includes the
conversion event plus the scatter or absorption of one of the annihilation photons. If the
annihilation photon is absorbed, then the presence of the 511 keV energy deposition can
indicate that a pair production occurred. The sequence can then be rejected. Only 23% of
two-pixel pair production sequences at 2.5 MeV involve the absorption of an annihilation
photon. Thus, in 15% of two-pixel tracks, pair production is not identifiable and will
contribute to the image background.

In three-event sequences the fraction of pair production events for 2.5 MeV
gamma rays incident on the detector increases to 28%. In over half (53%) of these
sequences, one of the annihilation photons deposits full energy. These can be identified.
Thus, 13% of three-event sequences will result from unidentifiable pair production
processes and will be reconstructed incorrectly.

All full-energy pair production sequences are identifiable because both
annihilation photons are absorbed. Clearly, if the gamma-ray energy is known and only
full-energy sequences are imaged, then unidentifiable pair production sequences from
this gamma-ray energy cannot contribute to the image. All unidentifiable sequences

deposit only partial energy. However, if either the gamma-ray energy is unknown or
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Figure 6.5. Comparison of calculated Compton angle distributions for simulated pair
production and non-pair production two-pixel sequences at 2.5 MeV. The spike
corresponds to identifiable sequences (511 keV is deposited).

multiple gamma-ray energies are present in the source spectrum, then unidentifiable pair
production events will contribute to the background of the image. The pair production
contribution to the image is not necessarily diffuse.

When unidentifiable pair production sequences occur (or if no attempt is made to
discard pair production sequences) then the sequence will be reconstructed according to
the rules outlined in Chapter 4 and then imaged using the process described in Chapter 5.
A Compton scatter angle will be erroneously calculated. The distribution of calculated
Compton angles for pair production and non-pair production two-pixel sequences is
given in Figure 6.5. The low-angle cutoff near 40° in the non-pair production distribution
is due to the sequence reconstruction method for two-pixel events, as discussed later in
Section 6.4.1. The spike in the pair production distribution is due to sequences in which

one of the annihilation photons is directly absorbed. (These can be identifiable.) In fact,
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Figure 6.6. Compton angles (incorrectly) calculated for simulated two-pixel sequences in
which pair production is followed by the absorption of an annihilation photon.
This determines the location of the spike in Figure 6.5 for 2.5 MeV.

the location of the spike yields information about the initial gamma-ray energy. Figure
6.6 shows for gamma-ray energies up to 5 MeV the location of spike in the distribution of
calculated Compton angles. The remainder of the pair production distribution in Figure
6.5 consists of sequences in which the photon is scattered and escapes, depositing a
maximum of 340 keV in a backscatter event. In this case, the total energy deposited in the
detector is (2500 — 1022) + 340 = 1819 keV. The pair production event deposits more
energy than the photon scatter event, and is therefore decided to be the first event
according to the two-pixel sequencing technique discussed in Chapter 4. The calculated
Compton angle for this sequence is then 102°, corresponding to the minimum angle of
the broad pair production distribution in Figure 6.5.

The unidentifiable pair production sequences can be eliminated, then, by

excluding calculated Compton scatter angles above a given threshold. Figure 6.7 shows
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Figure 6.7. Minimum (incorrect) calculated Compton angle for simulated unidentifiable
two-pixel pair production sequences as a function of incident gamma-ray energy.
Excluding sequences with scatter angles above this threshold will eliminate all
otherwise unidentifiable pair production sequences, but will also reduce imaging
efficiency.

for gamma-ray energies up to 5 MeV the apparent minimum scatter angle due to
unidentifiable pair production events. There is a sharp spike in the function at 1362 keV.
This is the gamma-ray energy at which the energy deposited in the backscatter of an
annihilation photon is greater than the energy deposited in the pair production event
itself. Thus, the sequence order switches, and the backscatter is considered to occur first.
By excluding all sequences with a calculated Compton angle above 80°, it is possible to
eliminate all otherwise unidentifiable pair production sequences. Or, given that pair
production does not frequently occur at the lower energies, the threshold could be
increased to 90° or even 100°. Of course, this will also eliminate useful events and reduce

the efficiency of the system. If sequences with a calculated scatter angle greater than 100°
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Figure 6.8. Comparison of calculated Compton angle distributions for simulated pair
production and non-pair production three-pixel sequences at 2.5 MeV. The spike
corresponds to identifiable sequences (511 keV is deposited in two events).

are eliminated, then the efficiency at 2.5 MeV for two-pixel sequences decreases by
about half (see Figure 6.5).

The situation for three-pixel sequences is not as clear cut as for two-pixel
sequences. Figure 6.8 shows the calculated Compton angles at 2.5 MeV for three-pixel
sequences with and without pair production. Sequences in which one annihilation photon
is absorbed in one or two events are identifiable. The spike in Figure 6.8 is due to those in
which one annihilation photon scatters and then is absorbed. This is the same calculated
angle as for two-pixel sequences in which the photon is absorbed. When one annihilation
photon is absorbed immediately and the other scatters, the sequence can be identified as
containing pair production due to the observance of a 511 keV event, although there is no
correlation between the Compton angles calculated from these sequences. Three-pixel

sequences in which neither photon is ultimately absorbed also result in a broad
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distribution of scatter angles. There is no way to clearly identify these sequences as
involving pair production.

A backprojection image was generated using only unidentifiable pair production
sequences for a 2.5 MeV source located above the detector. No energy or position cuts
were made. The result is shown in Figure 6.9. The image, which contains about 2500
sequences, is not a diffuse background; it has high intensities in some regions, and low
intensities along the -z and +z directions (where the source is located). Compare Figure
6.9 with the image reconstructed from non-pair sequences (about 16000 sequences) under
the same conditions in Figure 6.10. Figure 6.9 demonstrates that pair production
sequences can interfere in the image reconstruction of high-energy gamma-ray sources.
The degree of this interference is application specific, depending on the source spectrum
and the reconstruction parameters.

In this work, identifiable pair production sequences are sought and discarded
when the initial gamma-ray energy is known to be above 2 MeV. Unidentifiable pair
production sequences, which do not deposit the full gamma-ray energy, are discarded

through full-energy windowing.

Right

o T o
id

Figure 6.9. Backprojection image of simulated unidentifiable pair production sequences
using two- and three-pixel sequences without energy or position cuts for 2.5 MeV
gamma rays.
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Figure 6.10. Backprojection image of simulated non-pair production sequences under the
same conditions as in Figure 6.9.

6.2.3 Coherent scatter

Coherent (or Rayleigh) scatter occurs when a photon scatters from an atom and
changes direction without losing any energy. The coherent scattering cross section
decreases with increasing energy, as shown in Figure 6.11[6]. Also shown are the cross
sections for photoelectric absorption, Compton scatter, and pair production. The coherent
scattering cross section is nearly equal to the Compton scattering cross section for 100
keV photons in CdZnTe. Therefore, for gamma-rays with energies up to a few hundred
keV, coherent scatter can occur with non-negligible frequency. The energy range of
interest for gamma-ray imaging in this work is from 300 keV to 2.5 MeV. Coherent
scatter is not common for gamma rays in this energy range. However, these gamma rays
will Compton scatter into lower energies where coherent scatter is common. When a
gamma-ray Compton scatters, coherent scatters, and then is absorbed, the full energy of
the gamma-ray is deposited, and the Compton scatter angle is correctly determined from

energies. However, the cone axis is incorrectly determined from the two observable
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Figure 6.11. Interaction cross sections for gamma rays between 10 keV and 10 MeV in
CdZnTe. Rayleigh scatter can be important for gamma rays with energies below
several hundred keV.

interaction locations because the Rayleigh scatter changes the direction of the gamma ray
between the scatter and absorption events.

If two events occur in the detector and deposit the full gamma-ray energy, the
backprojection will be incorrect regardless of when the coherent scatter occurs in the
sequence. For three events, however, if the coherent scatter occurs between the second

and third events, it is still possible to get the sequence correct. The first scatter angle will
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be correctly determined from energies, and if the sequence is correct, the cone axis
connecting the first and second interaction locations will also be correct. Only if the
Rayleigh scatter occurs before the second interaction will the sequence always yield the
improper backprojection. Table 6.1 gives for selected gamma-ray energies the fraction of
full-energy two-pixel sequences involving Rayleigh scatter and the fraction of full-energy
three-pixel sequences in which the Rayleigh scatter occurs before the second interaction.

Sequences in which coherent scatter occurs before the second interaction do not
necessarily result in lost efficiency. The distribution of coherent scatter angles observed
in sequences of 662 keV photons is given in Figure 6.12. For most of these sequences the
scatter angles are small (<10°). In this case the observed gamma-ray direction is not too
different from the actual gamma-ray direction, and the gamma-ray source location can
still be determined. Figure 6.13 shows the image generated from two- and three-pixel
sequences in which coherent scatter occurs for a 662 keV source located above the
detector. As expected, the true source location is found.

Coherent scatter is always included in the simulations in this work. Although
coherent scatter cannot be observed in a sequence, the scatter event does change the
direction of the gamma-ray which results in an incorrect cone axis. Fortunately, the
scatter angles are relatively small, deflecting the gamma rays only slightly. The correct

source location can still be identified.

Table 6.1. Percentage of Full-Energy Sequences with Coherent Scatter before the
Second Interaction

Energy (keV) | Two Events | Three Events
300 7.5% 7.2%
662 3.5% 4.0%
1500 2.2% 2.1%
2500 1.4% 1.4%
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Figure 6.12. Distribution of coherent scattering angles for simulated sequences of 662
keV photons.

Figure 6.13. Simulated backprojection image of full-energy sequences involving
Rayleigh scatter for 662 keV photons. The correct source location can still be
found.
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6.3 Detector System

6.3.1 Multiple interactions under one pixel

The sequence reconstruction techniques discussed in Chapter 4 were tested using
simulated data in which sequences were discarded if more than one interaction occurred
under the same pixel. The fraction of two- and three-event sequences in which this occurs
was given in Chapter 4: 24% of two-event sequences and 46% of three-event sequences
for 662 keV gamma rays. The effect on image reconstruction due to these sequences is
examined here.

When both events of a two-event sequence occur underneath the same pixel, the
track is observed as a single event with the summed energy and averaged depth. This
track cannot be used for Compton imaging, which results in loss of efficiency. When two
events of a three-event sequence occur underneath the same pixel, only two events are
observed. Figure 6.14 shows the image of full-energy two-pixel sequences resulting from
three-event sequences for a 662 keV source above the detector. The backprojection yields
the correct source location even though the sequencing was wrong.

Figure 6.15 shows a similar image for a point source located in front of the
detector. In this case the source location is also correctly determined. (The source
distribution above the detector appears broader than when the source is located to the side
of the detector. This effect is discussed in Section 6.4.2.) To explain why the source is
still correctly located, it is necessary to examine the difference in depths of interaction
when more than one event occurs under a pixel. The distribution for top irradiation is
shown in Figure 6.16. In nearly 90% of sequences, the two events under the same pixel
are separated by 1.5 mm or less. With a depth resolution of about 1 mm, these events
appear to occur at virtually the same position (see Figure 6.17). Consider a sequence

consisting of a two scatters followed by a photoelectric event in which the last two
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interactions occur under the same pixel. This appears as a two-pixel event. If the first
interaction deposits more than half the gamma-ray energy, the sequence order selection
rules state to choose (correctly) this event as the first. The calculated cone axis will be
almost correctly determined, while the cone angle (which depends only on the energy
deposited in the first event and the total energy) will be truly correct. Nearly 50% of
sequences with multiple interactions under a pixel resemble this case. If the first events in
these sequences deposit more than half the gamma-ray energy, then the sequences will be
determined correctly and the backprojection cones will include the correct source
location. There are two other possibilities for a three-event sequence. Either the first and
second events or the first and third events can occur under the same pixel. In the former
case, the correct source location will only be found if one of the deposited energies is low
such that the error in using the summed energies to calculate the scatter angle is small.
When this is true, both the calculated Compton angle and the cone axis are wrong, but
within the limits of the uncertainties. In the latter case, the correct source location cannot

be found.

Figure 6.14. Backprojection image of 662 keV source located on top of the detector using
simulated full-energy three-event sequences in which more than one interaction
occurs under a single pixel, resulting in an observed two-pixel sequence. Despite
the incorrect sequence reconstruction, the source location can still be found.
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Figure 6.15. Backprojection image of 662 keV source located in front of the detector
using simulated full-energy three-event sequences in which more than one
interaction occurs under a single pixel, resulting in an observed two pixel
sequence. Despite the incorrect sequence reconstruction, the source location can
still be found.
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Figure 6.16. Simulated difference in interaction depths observed when multiple
interactions occur under one pixel.
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Figure 6.17. Illustration of a sequence with multiple interactions under one pixel that will
contribute to the gamma-ray source location in the image due to the small
difference in depth between the second and third interactions.

When multiple interactions occur under one pixel, there is no recourse. The
sequences cannot be identified, and the only way to reduce the frequency of occurrence is
to decrease the pixel pitch of the anodes. From the above results, however, this effect is

not crucial because many sequences can still reconstruct to the correct source location.

6.3.2 Charge sharing between pixels

In the simulations used in this work, only the deposited energies have been
considered. The finite extent of the charge cloud has not been considered. In the actual
detector, as the deposited energy increases, the size of the charge cloud (which is subject
to the range of the recoil electron and diffusion through the material) also increases, and

there is a higher probability that an electron cloud near the pixel edge will split and be
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collected by two neighboring pixels. This is illustrated in Figure 6.18. In this case, a
single event is observed as two or more.

Multiple-pixel sequences due to charge sharing can be distinguished from actual
multiple-event sequences in some instances by comparing the depths of interactions.
Events resulting from charge sharing should share the same depth, while true multiple-
event sequences will have varying depths. Figure 6.19 shows the measured difference in
depths for the events in two-pixel sequences in which the pixels collecting charge are
neighbors. Also included on the graph is a similar curve from simulations, normalized to
the same total number of sequences as the first curve. The measured curve shows a
narrower peak at small depth differences, which is an indication of charge sharing.

One way to reduce charge sharing is to increase the size of the anode pixels. If the
pixel pitch is increased, however, the position resolution worsens and the frequency of
multiple interactions occurring under a single pixel will increase. Thus there is a tradeoff

that must be made in designing the anode structure to balance the competing effects of

Cathode

Figure 6.18. Illustration of charge sharing. When the electron charge cloud is large, it can
be split and collected by two neighboring pixels. In this case, a single event
appears as two.
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Figure 6.19. Comparison of simulated and measured interaction depth differences for
two-pixel sequences in which neighboring pixels collect charge (normalized to the
same number of sequences).

charge sharing and multiple events. Du et al. have shown the effect of pixel size on
charge sharing and multiple events under one pixel in CdZnTe detectors [7]. They
estimate that at 662 keV a 1.3 mm pixel pitch leads to charge sharing in 18% of single
events. About 23% of all full-energy sequences involve more than one interaction under a
single pixel at that size. As was shown in the previous section, sequences with multiple
events under one pixel are not necessarily destructive to the Compton imaging process.
Thus, in designing the anode structure for medium-energy applications it would be
beneficial to err on the side of less charge sharing, and a 1.3 mm pixel pitch is sufficient
according to the calculations of Du ef al. For higher energy applications, a larger pixel
size would be necessary. The anode pixel design should be tailored to the desired energy

range of the imager.
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In order to eliminate the effects of charge sharing in a detector with a given pixel
size, it is necessary to exclude sequences in which nearest neighbor pixels both collect
charge. This will also eliminate some useful events, thereby reducing the efficiency of
system. The simulated fractions of useful full-energy sequences lost by requiring
anticoincidence with four nearest and eight nearest neighbors for the current anode
configuration are given in Table 6.2 for selected incident gamma-ray energies. The
reduction in efficiency is almost uniform across energies: between 15-19% if only the
nearest four neighbors are rejected, and almost 30% if the nearest eight neighbors are
included in the comparison. In this work for 662 keV gamma rays the efficiency is more
important than reducing charge sharing sequences by rejecting sequences in which
neighboring pixels collect charge. Only at high energies (greater than 2 MeV) are

attempts made to reject charge sharing sequences.

Table 6.2. Percentage of Useful Full-Energy Sequences Lost by Requiring
Anticoincidence with Nearest Four and Nearest Eight Neighbor Pixels

Energy (keV) | Nearest Four Pixels | Nearest Eight Pixels
300 15.3% 25.0%
662 18.5% 28.5%
1500 18.5% 29.5%
2500 15.9% 27.2%
6.3.3 Anode threshold

The threshold on the anodes of the VAS2/TAT?2 system is approximately 100
keV. As discussed in Chapter 3, if a pulse with amplitude greater than about 100 keV is
observed on a pixel, the system is triggered to hold the signal and register the event. If
less than 100 keV is deposited under a pixel, the system will not trigger. The threshold
varies from pixel to pixel, but in this section it will be assumed that each anode has the

same threshold.
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The effect of this threshold can be significant. Imaging 300 keV gamma rays, for
example, cannot be done with three or more events if 100 keV is required in each event.
Furthermore, only two-event sequences in which both events deposit at least 100 keV
will register as two-pixel events; all others are observed as single-pixel tracks and are not
imageable. Sequences in which only two of three events are observed cannot be excluded
except through full-energy windowing. If only full-energy sequences are imaged, the
effect of the threshold is to decrease the imaging efficiency. The loss in efficiency is
calculated for 300, 662, 1500, and 2500 keV, and is tabulated in Table 6.3. Not
surprisingly, the greatest reduction in efficiency occurs for 300 keV gamma rays, where
none of the three-pixel sequences can be observed with a 100 keV threshold. A total
reduction of about 54% was observed at this energy. For 662 keV, about 15% of
efficiency is lost due to the high anode threshold. This percentage decreases to about 7%
for 2500 keV gamma rays. Note that for full-energy two-pixel sequences, only the first
event can deposit less than 100 keV at any of the energies tested. For gamma-ray energies
above 400 keV, this means that the two-pixel sequences lost are those that would be

incorrectly sequenced.

Table 6.3. Percentage Reduction in Efficiency Due to 100 keV Anode Threshold

Energy (keV) | Efficiency Reduction
300 53.9%
662 14.7%
1500 7.45%
2500 7.44%

Figure 6.20 shows the expected reduction in efficiency for 662 keV gamma rays
given various threshold levels. The VAS3/TAT3 system, for example, has an anode
threshold of about 60 keV. This means that only 8% reduction in efficiency should be

observed at 662 keV. This is an improvement over the VAS2/TAT2 system. If the anode
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Figure 6.20. Simulated reduction in efficiency for 662 keV gamma rays due to the given
anode threshold levels. The VAS3 system has a threshold near 60 keV, while the
VAS2 system threshold is about 100 keV.

thresholds could be reduced even further to 30 keV, then the efficiency loss would be

reduced to only 4%.

6.3.4 Dynamic range of the ASICs

As discussed in Chapter 3, the application-specific integrated circuits (ASICs)
used to measure the voltage and timing information for each anode pixel have a limited
dynamic range. If the voltage signal from a pixel is sufficiently high, the corresponding
channel in the ASIC will saturate. In the VAS2/TAT2 system, the maximum energy that
can correctly be measured is about 1000 keV. In the VAS3/TAT3 system the range is
increased to 1600 keV. The limited dynamic range does not affect imaging for gamma-
ray energies within the range, for example 662 keV. As the gamma-ray energy increases,

however, the dynamic range can have a major impact on the image reconstruction.
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The most significant effect of the limited dynamic range is to limit the observable
energies in a full-energy two-pixel sequence. For example, consider a source of 2.5 MeV
gamma rays. If one event deposits a maximum of 1600 keV, the other event must deposit
a minimum 900 keV if the gamma-ray deposits its full energy. Only gamma-ray
interactions that deposit between 900 and 1600 keV can contribute to the photopeak of
the two-pixel energy spectrum, as illustrated in Figure 6.21. The figure shows the
distribution of energy deposited in the first and second events for simulated full-energy
two-pixel sequences. There is a 96% reduction in observable two-pixel sequences at 2.5
MeV due to the limited dynamic range. In addition, energy distributions of the first and
second event overlap in this range. Rather than correctly choosing the event order in 97%
of sequences at 2.5 MeV, the two-pixel sequencing technique succeeds in only 65% of

simulated sequences observed due to the limited dynamic range.
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Figure 6.21. Distribution of simulated first and second energy depositions in full-energy
two-pixel sequences. The 1600 keV dynamic range on the VAS3 system reduces
the useful energy region to 900-1600 keV.
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As aresult of the reduced energy range, there is also a limitation on the
observable scatter angles for two-pixel sequences. If the first event deposits 900 keV, the
Compton scatter angle is approximately 27°. Likewise, a scatter angle of 50° corresponds
to 1600 keV deposited in the first event. Only scatter angles between 27°-50° can lead to
observable full-energy sequences, as shown in Figure 6.22. Furthermore the event
ordering algorithm for two-pixel sequences limits the calculated Compton angles to the
range 39°-50° (see Section 6.4.1). The resulting backprojection image from full-energy
two-pixel sequences of a 2.5 MeV point source located above the detector is shown in
Figure 6.23. The granularity in the image results from the poor statistics (only 232

sequences). The source location can still be found.
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Figure 6.22. Distribution of actual and calculated Compton scatter angle in simulated
full-energy two-pixel sequences at 2500 keV. The ASIC dynamic range and
sequence reconstruction method limit the observable scatter angles to 39°-50°.
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Figure 6.23. Backprojection image of simulated full-energy two-pixel sequences for a 2.5
MeV point source above the detector. The limited dynamic range results in an
efficiency loss of 96% of two-pixel sequences.

6.4 Image Reconstruction Methods

6.4.1 Sequence reconstruction techniques

For two-pixel sequences, the sequence reconstruction method can have a
significant effect on the image. A minimum allowable scatter angle is artificially set by
requiring that the first interaction deposit more energy than the second interaction for
two-pixel sequences depositing a total energy above 400 keV. For example, at 662 keV
the minimum amount of energy deposited in the first event of a full energy sequence is
331 keV. If less energy than this is deposited in the first event, the order of the two events
is reversed, and the higher energy is assumed to be deposited first. The minimum scatter
angle is then 76°. This is observed in Figure 6.24, where the simulated distribution of
calculated scatter angles is plotted for correctly sequenced tracks and for tracks
sequenced using the two-pixel rules outlined in Chapter 4. As the incident gamma-ray
energy increases, the minimum allowable scatter angle decreases, as shown in Figure

6.25. Below 400 keV, the sequence order rules change, and the first interaction must
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Figure 6.24. Simulated distributions of calculated Compton angles for simulated two-
pixel sequences at 662 keV that deposit full energy using both two-pixel tracking
rules and the correct sequences. When the first event must deposit at least half the
gamma-ray energy, a minimum observable scatter angle is set.

deposit less energy than the second. In this case, there is a maximum observable scatter
angle imposed. Note that below 256 keV, where the sequence can be absolutely
determined, all scatter angles are allowed.

The effect of the two-pixel sequencing technique is to limit the allowable scatter
angle, and to reduce the imaging efficiency. Figure 6.26 shows the backprojection image
that results from incorrectly sequencing the tracks in which the first event deposits less
energy than the second. The backprojection image from correctly sequencing these tracks
is shown in Figure 6.27. Figure 6.28 shows an image similar to Figure 6.26 for a source
to the side of the detector. In both 662 keV source geometries, the result of guessing the

wrong sequence is a ring-shaped hot spot in the correct hemisphere. (The differences
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Figure 6.25. Threshold scatter angles for two-pixel sequences as a function of incident
gamma-ray energy. Below 400 keV, the sequence selection rules dictate a
maximum scatter observable scatter angle; above 400 keV, a minimum angle is
imposed.

Figure 6.26. Simulated backprojection for incorrectly sequenced full-energy two-pixel
sequences at 662 keV in which the first event deposits less energy than the second
event (source above the detector).
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Figure 6.27. Simulated backprojection image for correctly sequenced full-energy two-
pixel sequences at 662 keV in which the first event deposits less energy than the
second event (source above the detector).

Figure 6.28. Simulated backprojection image for incorrectly sequenced full-energy two-
pixel sequences at 662 keV in which the first event deposits less energy than the
second event (source to the side of the detector).
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observed between the image shown in Figure 6.26 and that shown in Figure 6.28 are due
to the anisotropy of the backprojection process, which is discussed later in Section 6.4.2.)
When the sequence order is wrong, the cone axis points opposite of the correct
direction. However, the calculated Compton angle is also incorrect. In a full-energy
sequence for 662 keV gamma rays if the first energy is less than 287 keV (less than 65°
scatter angle), the Compton angle is calculated to be greater than 90°. In this case, the
incorrect cone axis direction and the obtuse Compton angle combine to put the cone in
the correct hemisphere of the image. For example, if the first event deposits 250 keV and
the second event deposits 412 keV, the correct scatter angle is 57.9°. Reversing the
sequence order results in a calculated scatter angle of 105.8°. The difference in the
backprojection cones is only 17.4°. The two effects do not exactly cancel, which causes

the ring shape in Figures 6.26 and 6.28.

Incorrect backprojection

Figure 6.29. Illustration of a two-pixel sequence where the incorrect sequence order
yields the same backprojection cone as the correct sequence order. This occurs
only for some sequences from 511 keV photons if the far-field approximation is
used for backprojection.

141



There is a single exception to the above case. For 511 keV gamma rays, the
sequencing error for two-pixel tracks is almost exactly offset by error in the cone axis,
and the source location is almost correctly reconstructed even when the sequencing
algorithm fails. The sequencing error causes a 180° rotation of the Compton cone axis.
Thus, to obtain the same backprojection cone for the correct and incorrect sequences, the
two Compton angles must sum to 180°, as shown in Figure 6.29. This is only true for far-
field imaging, where the backprojection cones for the two sequence orders have the same
vertex. Figure 6.30 shows the sum of the correct and incorrect calculated Compton angles
for full-energy 511 keV sequences over the energy range in which both angles are
defined.

For deposited energies near 256 keV, which corresponds to a 90° scatter, the
correct and incorrect sequence orders will result in nearly the same backprojection cone.
If the first event deposits at least 200 keV, then the error is less than 10°. The sequence is
rejected if the first event deposits less than 170 keV due to the Compton edge test as
discussed in Chapter 4, and if the first event deposits more than 256 keV, the sequence is
correctly determined. Thus, only if the first interaction deposits between 170 — 200 keV
will the incorrect sequencing significantly detract from imaging the 511 keV photon
source. The image from incorrectly determining the sequence order is given in Figure
6.31. Figure 6.32 shows the image generated if the tracks are correctly sequenced.

When the sequence order is wrong, the hot spot in the image is more diffuse,
incorporating 30-40° from the pole center. The extent of the hot spot is only 10-20° when
the sequences are correctly determined. Thus, although only 60% of two-pixel sequences
are correctly determined at 511 keV, the other 40% still contribute to the correct source

position with marginal blurring of the true source location.
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Figure 6.30. Sum of correct and incorrect Compton scatter angles for two-pixel full-
energy sequences of 511 keV photons. When the first energy is lower than 256
keV, the sequence is incorrectly reconstructed, but the error in the backprojection
cone can be small.

Figure 6.31. Simulated backprojection image for 511 keV photons of incorrectly
sequenced full-energy two-pixel sequences in which the first event deposits less
energy than the second event.
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Figure 6.32. Simulated backprojection image for 511 keV photons of correctly sequenced
full-energy two-pixel sequences in which the first event deposits less energy than
the second event.

For other gamma-ray energies, the location of the incorrectly reconstructed ring,
as in Figures 6.26 and 6.28 for 662 keV, is solely a function of the incident gamma-ray
energy and can be predicted. For full-energy sequences in which an equal amount of
energy is deposited in the first and second interaction, the sum of the calculated Compton
angles for the two possible sequence order is greater than 180° for gamma-ray energies
below 511 keV. The opposite is true for gamma-ray energies above 511 keV. The
difference between this angle sum and 180° gives the location of the ring artifact for
incorrectly sequenced events. Figure 6.33 shows the predicted location of the ring for
gamma-ray energies from 260 — 2500 keV, measured in degrees from the true source
location. For 662 keV gamma rays, the predicted ring position is about 30° from the
source location, which is confirmed by examination of Figures 6.26 and 6.28. For
gamma-ray energies above 1760 keV, the ring artifact appears in the hemisphere opposite
the true source location. Fortunately, as the incident gamma-ray energy increases, the
probability of correctly sequencing two-pixel sequences increases, and the relative effect
of reconstructing the wrong sequences is small. At the same time, the two-pixel

sequencing technique has the poorest performance for medium energies. Thus, for
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imaging gamma-ray energies near 511 keV, this artifact can help increase the effective
efficiency of the imager. Of course, the imaging resolution will become poorer as was
observed even for 511 keV gamma rays.

The sequence reconstruction method for determining the order of three observed
events in the detector can also affect the imaging performance. Shown in Figure 6.34 are
the distributions of calculated Compton scatter angles using the reconstructed and correct
sequence orders for 662 keV. The sequencing technique tends to overestimate the
contribution of small-angle scattering, specifically at angles less than 45°. Unlike two-
pixel sequencing, there is no limit on the observable scatter angles. An image of full-
energy three-pixel sequences was created using the MSD sequencing method outlined in

Chapter 4; this is shown in Figure 6.35. Figure 6.36 shows the image generated using the
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Figure 6.33. Location (measured in degrees from the true source location) of
reconstructed ring due to incorrectly sequencing full-energy two-pixel events.
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Figure 6.34. Simulated distributions of calculated Compton scatter angles using the
reconstructed sequence order and the correct sequence order for full-energy three-
pixel tracks at 662 keV.

Figure 6.35. Simulated backprojection image of full-energy three-pixel sequences at 662
keV using the MSD sequence order technique.
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Figure 6.36. Simulated backprojection image of full-energy three-pixel sequences at 662
keV using the correct sequence orders.

correct sequence orders. The image quality is slightly better (especially in the tails of the
source distribution) when the correct sequences are used, as the addition of incorrect

sequences blurs the source location.

6.4.2 Backprojection image anisotropy

There are significant differences observed in the backprojection image resolution
for point sources located to the side of the detector compared with sources located above
or below the detector. (This effect is not observed for WMLEM reconstructed images.)
Compare, for example, Figure 6.37 and Figure 6.38, which show backprojection images
from simulated 662 keV point sources above and to the side of the detector, respectively,
using the known correct sequence orders. The image of the source at the top of the sphere
(Figure 6.37) has much poorer quality than the image where the source is along the
equator (Figure 6.38). The source appears to be larger in the first image.

The difference in appearance is due to the choice of normalization in the
backprojection process. As discussed in Chapter 5 for an observed sequence the value of

the image pixels intersecting the backprojection cone are normalized such that the total
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Figure 6.37. Simulated backprojection image of full-energy two-pixel sequences (with
known sequence orders) at 662 keV with the source located above the detector.

Figure 6.38. Simulated backprojection image of a full-energy two-pixel sequences (with
known sequence orders) at 662 keV with the source located to the side of the
detector.
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ring sums to one. In this way the sum over all pixels in the image yields the total number
of sequences observed. This is a “conservation of sequences” normalization. There are at
least two other options that could be used.

If normalization is not performed at all, image pixels on the cone are set to a value
of 1 regardless of the number of pixels involved. The resulting image using the same
simulated data is shown in Figure 6.39 for a source located above the detector. This
image is very similar to the image shown in Figure 6.38 for a source to the side of the
detector. However, the image for a source to the side of the detector when there is no
normalization, shown in Figure 6.40, does not appear similar to Figures 6.38 and 6.39. In
fact, the hotspot in Figure 6.40 is elliptical in shape. This is actually a result of the
pixellation in the detector. Two events occurring under the same pixel cannot be
distinguished, and thus the backprojection cone axis can never be pointed directly up or
down. When the same simulated data with exact positions are reconstructed, the result 1s
a circular image, as shown in Figure 6.41. If a minimum distance of 1.3 mm is required
for the lateral coordinates (forcing events to occur under different pixels) but exact
position data is still used, the result is peanut-shaped image as shown in Figure 6.42.
Additional blurring of the position data would produce an image similar to that in Figure
6.40. (See Section 7.5.2 for an example of this effect at high energies.)

Another normalization option is “conservation of information.” In this case, the
value given to the image pixels that intersect the backprojection cone are normalized by
the total area of the intersected pixels. There would be more confidence that a source is
located at a particular image pixel if the ring is small (i.e. there is more information about
the source location). The small ring would therefore be given a higher weight than a large
ring. The resulting image for a source above the detector is shown in Figure 6.43. Figure

6.44 shows the corresponding image for a source to the side of the detector.
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Figure 6.39. Simulated backprojection image using the reconstruction parameters from
Figure 6.37 except without backprojection ring normalization. The resolution
improves when no normalization is performed.

Figure 6.40. Simulated backprojection image using the reconstruction parameters from
Figure 6.38 except without backprojection ring normalization. The hotspot
appears elliptical.
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Figure 6.41. Simulated backprojection image using the reconstruction parameters from
Figure 6.40 except using exact interaction locations. The hotspot appears circular
when exact position data is used.
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Figure 6.42. Simulated backprojection image using the reconstruction parameters from
Figure 6.41 except events are required to occur at least 1.3 mm apart in the lateral
dimension. The hotspot appears peanut shaped.
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As observed with no normalization, the conservation of information method
produces an elongated image when the source is located to the side of the detector, but a
circular image when the source is located above the detector. This shape is attributed to
the pixellation in the detector. It may also be due to the use of a symmetric angular
uncertainty in conjunction with the detector pixellation. The assumption made in Chapter
5 is that the angular uncertainty is symmetric about the backprojection cone axis. This
means that the width of the cone in the azimuthal direction is the same as that in lateral
direction. However, this may not be a proper representation of the backprojection
cone[8]. It may be appropriate to assign different widths to the cone in each direction.
This issue warrants further investigation.

The conservation of sequences normalization does not show an elongated image
for a source to the side of the detector despite the pixellation effects in the detector. This
is due to the varying pixel sizes on the image sphere. Pixels are smaller at the top of the
image than near the equator. When a ring intersects at the zenith, more pixels are
intersected than at the equator, and the normalization results in a lower weight being
assigned to the ring. This reduced weighting near the poles counteracts the elongation of
the hotspot in the image to produce a circular image. When the image sphere is rotated by
90° such that the poles are located along the +x and —x axes (and the detector position is
held constant), an elliptical source distribution is observed, as shown in Figure 6.45 for a
source located to the side of the detector.

Regardless of the choice of backprojection normalization, there exists an
anisotropy between sources imaged above the detector and those imaged to the side of the
detector. It may be preferable to use the conservation of information normalization;
although it produces elongated hotspots for sources near the equator, it results in the best
resolution. Due to the poor overall resolution, backprojection is typically not used to

determine the spatial distribution of a source—only the presence or absence of the source.
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Figure 6.43. Simulated backprojection image using the reconstruction parameters from
Figure 6.37 except with normalization by image pixel area.

Figure 6.44. Simulated backprojection image using the reconstruction parameters from
Figure 6.38 except with normalization by image pixel area.
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Figure 6.45. Simulated backprojection image using the reconstruction parameters from
Figure 6.38 except with the image sphere rotated by 90°.

In this case the shape of the response, whether it is circular or elliptical—is less important
than the ability to distinguish two sources, and the method that produces the best
resolution should be chosen. However, the conservation of sequences normalization is
used throughout the backprojection reconstruction in this work, and it is recognized that
the resulting resolutions are therefore conservative. Furthermore, the preceding analyses
regarding other factors that degrade the performance of the imager are unaffected by the
shape of the point source response, and can be illustrated with any of the backprojection

normalization methods.

6.5 Predicted Performance of the 47 Compton Imager

6.5.1 Imaging resolution

Most of the factors discussed in this chapter were taken into account in generating
the images shown in Chapter 5, and the imaging resolutions presented there (55° FWHM
for backprojection and 16° FWHM for 10 iterations of WMLEM at 662 keV) should
nearly predict the performance of the 4t Compton imager. Doppler broadening, pair

production, and Rayleigh scatter were modeled in the simulations. When multiple
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interactions occurred under a single pixel, the energies were summed and the depths were
averaged such that the two events appear as one. The true sequence orders from the
simulated data were ignored, and sequence reconstruction techniques were used to
determine the order of events. The anode threshold and limited dynamic range were not
modeled in Chapter 5, and those effects are examined here. In addition the imaging

resolution is predicted at other gamma-ray energies.

Table 6.4. Backprojection Imaging Resolution in Degrees FWHM for Simulated
Source to the Side of the Detector with the Given Anode Threshold/Dynamic Range

Energy (keV) | 0 keV/unlimited | 100 keV/1600 keV
300 44.5° 47.0°
662 57.0° 61.5°
1500 40.5° 44.0°
2500 39.5° 27.0°

Table 6.5. Weighted MLEM Imaging Resolution in Degrees FWHM for Simulated
Source to the Side of the Detector with the Given Anode Threshold/Dynamic Range

Energy (keV) | 0 keV/unlimited | 100 keV/1600 keV
300 14.5° 24.5°
662 16.0° 16.0°
1500 15.0° 10.5°
2500 15.5° 6.0°

Backprojection imaging resolutions, given in Table 6.4, were calculated for a
simulated source to the side of the detector given 0 keV anode thresholds and unlimited
dynamic range as well as 100 keV anode threshold and a 1600 keV dynamic range. The
worst performance was 62° at 662 keV, where backprojecting the incorrect two-pixel
sequence orders creates a ring around the true source location and widens the point
source response. In most cases the imaging resolution was worsened when the anode
threshold was considered. The best simulated resolution occurred at 2.5 MeV, where the
backprojection imaging resolution was 27°. In this case the limited dynamic range

prevents the large scatter angle sequences from being observed. The backscatter
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sequences have high uncertainty, as previously discussed in Chapter 5. Eliminating these
sequences actually improves the angular resolution, although the imaging efficiency is
greatly reduced.

The imaging resolutions calculated for the same data reconstructed with the
weighted maximum likelihood method after 10 iterations are given in Table 6.5. These
resolutions are calculated for a constant source strength, not a constant count rate. Thus,
the predicted value is the imaging resolution that can be expected for sources with the
same gamma-ray emission rate at a constant distance from the detector for the same
amount of acquisition time. As discussed in Chapter 5, the convergence speed of the
image using maximum likelihood is dependent on the number of counts in the image.
Comparable resolutions are obtained at all energies with no threshold and unlimited
dynamic range, despite the fact that more sequences are included in the 300 keV image
than in the 2500 keV image.

At 1500 keV the resolution improved from 15.0° to 10.5° when the 100 keV
threshold was considered. At 2500 keV the improvement was even more drastic: from
15.5° to 6° FWHM. With fewer counts in the image, it is expected that the resolution
should improve: fewer counts result in faster convergence. At 662 keV the limiting factor
is the backprojection of incorrectly sequenced events, and no change was observed with
and without accounting for the anode threshold.

The surprising result is at 300 keV, where the resolution worsened despite the
decrease in the number of events. The unobservable events are those in which the first
interaction deposits less than 100 keV. Thus, the only two-pixel sequences that are
observed and correctly sequenced are those in which the first scatter deposits between
100 and 150 keV, corresponding to a range of scatter angles from 81° to 135°. The 200
keV scattered gamma-ray will not travel far, and will most likely be absorbed in one the
eight surrounding pixels. The geometric uncertainty for these sequences is about 15°,

with a minimum added energy contribution of 5° FWHM, as seen in Section 5.2.3. For
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larger scatter angles, the energy uncertainty quickly increases and dominates the total
angular uncertainty for 300 keV gamma rays. The backprojection imaging resolution is
too poor to see a dramatic effect, although it did worsen somewhat when the threshold

was considered.

6.5.2 Imaging efficiency

The concept of imaging efficiency for this detector is not straightforward.
Typically, the intrinsic efficiency is defined as the fraction of incident gamma rays that
contribute to the image. In the case of the 4t Compton imager, some sequences result in
an incorrect backprojection cone due to charge sharing, multiple events, incorrect event
sequencing, etc.; these sequences are still imaged. It is possible to count instead the
number of backprojection cones that intersect the true source location. However, even
when the backprojection cone is not correctly determined it is possible for the ring in the
image to accidentally intersect at the true source location. This effect is especially
pronounced for physically large sources and for high-uncertainty sequences, where either
the object or the backprojected cone subtend a significant fraction of the field-of-view.
Furthermore, each correctly backprojected sequence also contributes to noise in the
image outside of the true source location. If the sequence order were known, the pixel
size were small, the anode threshold were very low, and the dynamic range of the ASICs
were infinite, then almost all sequences would be correctly imaged, and it would be
sufficient to predict the fraction of incident gamma rays that yield full-energy two- or
three-pixel sequences. In reality this will overestimate the performance of the imager.

In this work efficiency losses calculated in simulations have been discussed as
fractions of what would otherwise have been useful sequences. It is possible to adopt a
strict definition of imaging efficiency: the fraction of incident gamma rays that result in

useful sequences. A useful sequence would be one in which the full gamma-ray energy is
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deposited, the sequence order is correctly determined, pair production does not occur, the
effect of multiple interactions under one pixel is small, there is no charge sharing, and all
events deposit energies between the anode threshold and the maximum observable energy
due to the ASIC dynamic range. In reality it is impossible to determine if the correct
sequence order was chosen, if the gamma ray interacted more than once under one pixel,
or if charge sharing occurred. If the gamma-ray energy is known, all that can be
determined absolutely is that the total energy was deposited in the observed events, no
pair production occurred, and the sequence passed the Compton edge test. Thus, the
intrinsic imaging efficiency must be defined as the fraction of incident gamma rays that
satisfy those three criteria. This provides the best measurable metric for efficiency, and in
fact is identical to the first definition of intrinsic efficiency discussed in this section. Only
sequences that satisfy the three criteria are imaged, and thus the fraction of incident

gamma rays resulting in imaged sequences is the intrinsic imaging efficiency.

Table 6.6. Intrinsic Imaging Efficiency for Simulated Source to the Side of the
Detector with the Given Anode Threshold/Dynamic Range

Energy (keV) | 0 keV/unlimited | 100 keV/1600 keV
300 14.2% 6.3%
662 5.5% 4.6%
1500 2.4% 2.2%
2500 1.4% 0.14%

Efficiencies are calculated for the 47 imager assuming 0 keV threshold and
unlimited dynamic range as well as 100 keV threshold and 1600 keV dynamic range. The
latter represents the current detector design, while the former represents what the imager
is capable of if the electronics were perfect. The intrinsic imaging efficiencies are listed
for selected energies in Table 6.6. At 300 keV, the anode threshold is the main cause for
the reduction in efficiency from 14% to 6%. At 2500 keV, the loss in efficiency is a

direct result of the limited dynamic range. At 662 keV, the 41 Compton imager is
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expected to have an intrinsic imaging efficiency of 4.6% for a source to the side of the

detector.
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CHAPTER 7
MEASURED PERFORMANCE OF THE 41 COMPTON IMAGER

7.1 Introduction

The performance of the 41 Compton imager was measured using sealed point-like
radiation sources with gamma-ray energies ranging from 276 keV to 835 keV. These
sources were used individually to measure imaging efficiency and resolution as well as
combined to test the response of the imager to multiple sources. In addition, a Th disk
source (2.6 MeV) was also imaged to test the high-energy imaging capabilities. Finally, a
large "H(n,y)*H spherical gamma-ray source (2.2 MeV) was used for demonstrating
imaging of extended sources. This chapter describes the experiments performed and

characterizes the measured performance of the imager.

7.2 Intrinsic Imaging Efficiency

The intrinsic imaging efficiency was measured using calibrated sealed '**Ba,
22Na, 137Cs, and >*Mn sources placed to the side of the detector. The known activities of
the sources were used with the geometric efficiency to determine the rate at which
gamma rays are incident on the detector. The fraction of incident gamma rays that are
imageable (i.e. all the energy is deposited and the sequence passes the Compton edge
test) is the measured intrinsic efficiency. The geometric efficiency (£24 ) is calculated
from Equation 7.1 for a detector width and depth specified by 2x and 2z, respectively, and
a source-to-detector spacing of d. This equation can be derived from basic geometry

considerations.
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The geometric efficiency for a point source 20 cm from the 1.5 cm x 1.0 cm side

(7.1)

of the detector is 0.03%. The measured intrinsic imaging efficiencies are given in Table
7.1 for selected energies. At 662 keV, the efficiency is 1.84%. This is much larger than
that of the previous two-detector design, which had an efficiency of 0.00153%[1].
However, the measured efficiency is less than half the predicted value of 4.6% (discussed
in Chapter 6). Charge sharing, which was discussed in Chapter 6 but not taken into
account in estimating the efficiencies, should cause a reduction in efficiency (due to two-
and three-pixel sequences appearing as four or more events) on the order of 18%, not

60% as observed here.

Table 7.1. Measured Intrinsic Imaging Efficiency for Source to the Side of the

Detector
Energy (keV) | Efficiency
356 3.07%
511 2.45%
662 1.84%
835 1.28%

There are six unused channels on this detector. When these pixels are taken into
account in the simulated data, the predicted efficiency at 662 keV reduces by 10% of the
previous value to 4.2%. There is still a 56% discrepancy between the measured and
predicted values for efficiency.

A predicted 86% of sequences should be imageable (i.e. pass the Compton edge
test after sequencing). In the measured data only 78.1% of observed sequences were
imageable. If the same number of sequences were observed for both simulated and
measured data, this difference would account for a 9% difference in efficiency. However,
the same number of sequences was not observed in the measured and predicted data. In

measurements only 18254 two-pixel and 4287 three-pixel full-energy 662 keV sequences
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were observed in 10800 seconds. For the given source strength (349.4 kBq), geometric
efficiency, and acquisition time, simulations predict 42537 and 6427 counts, respectively,
for two- and three-pixel full energy sequences (taking into account the anode threshold
and unused pixels). The total reduction in observed two- and three-pixel sequences from
simulation to measurement is 54% of the predicted value. This decrease in observed
events—and not any sequencing or image reconstruction process—accounts for most of
the 56% discrepancy in the predicted and measured efficiencies.

In fact comparing the intrinsic peak efficiencies between simulations and
measurements also yields a large discrepancy. This efficiency includes all observed full-
energy sequences, regardless of the number of interactions or imageability. The simulated
intrinsic peak efficiency was 11.8%, while a value of 4.4% was measured. However, the
intrinsic total efficiencies (number of sequences at all energies) are comparable at 33.8%
simulated and 35.8% measured. Total efficiencies are highly subject to surrounding
material in which the gamma rays may scatter before interacting in the detector; no
surrounding materials were included in the simulations. Furthermore, these external
scatter sites only add to the total observed count rates. If surrounding materials were
included in the simulations, the simulated total efficiency would increase, resulting in a
higher estimated efficiency than the measured efficiency, as is the case with the peak
efficiency and the imaging efficiency discussed above.

The reduction in events may be partly due to the material between the source and
detector, which was not modeled in the simulations. The detector is encased in an
aluminum box approximately 2 mm thick. This expected attenuation of 662 keV gamma
rays through the box is less than 4%. For stability the detector is anchored to the hybrid
card with a polyvinyl chloride (PVC) mounting structure that is approximately 4 cm
thick. Very little attenuation of gamma rays is expected in the material due to the low
atomic numbers (C,H;Cl) and low density (~1.4 g/cm®). Upon further investigation, it

was discovered that the PVC may include a Pb additive for stability and rigidity. The
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concentration of lead in the PVC is unknown, but would be typically below 10%. In the
worst case, the attenuation coefficient of the lead filled PVC is 0.0824 cm®/g at 662
keV[2], and the expected loss of gamma rays in the mount is about 37%.

If the PVC were the main cause for the reduced efficiency, the effect would be
more pronounced for low energy gamma rays. However, this is not observed. At 356
keV, lead-filled PVC would have an attenuation coefficient of 0.122 cm?/g. The expected
reduction in gamma-ray flux at this energy is nearly 50%, compared with 37% for 662
keV photons. The difference between the predicted and measured efficiencies should
therefore be more than that observed at 662 keV. At 300 keV, the predicted efficiency
was 6.3%, while the measured efficiency at 356 keV was 3.07%, resulting in an estimated
discrepancy of 52% before taking into account charge sharing and the six unused pixels.
This is less than the 56% discrepancy at 662 keV, indicating that the PVC may not be the
most significant factor.

In addition, as shown previously in Figure 3.4, the PVC mount does not
completely encase the detector. There is a circular hole in the mount at the top such that
the cathode surface is visible. This hole exposes only 35% of the cathode surface, but the
thickness of PVC near the edges of the detector is only 5 mm when the detector is
irradiated from the top. Thus, a comparison between calculated and measured efficiencies
can be made using a source above the detector. The predicted efficiency is 3.8%, but an
efficiency of 1.9% is measured. Only an estimated 5% of gamma rays could be attenuated
in the lead-filled PVC, and yet the measured efficiency is still only half of the predicted
value (before charge sharing and unused pixels are taken into account).

Another possible cause for the difference between simulated and observed
efficiencies is the estimated density of the material. A value of 6 g/cm’ was used in
simulation, but the true density of the CdZnTe crystal used in the detector is not known.

However, a 10% error in the density causes only a 4% error in the attenuation of gamma
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rays through the detector. This cannot be the full cause for the discrepancy, although it
may make a small contribution.

It is also possible that some events, particularly those near the anode surface, are
not measured. As discussed in Chapter 2, when an interaction occurs very close to the
anode, the signal measured on the anode will be small. If the anode timing signal does not
exceed the set threshold, it will not trigger, and the event will not be registered. For the
maximum observable energy in a Compton event (477 keV for 662 keV photons) the 0.2
mm nearest the anode are unusable. This decreases the total detector volume by 2%. For
a 200 keV energy deposition, the final 0.5 mm are unusable, resulting in a volume
decrease of 5%. This effect cannot account for the discrepancy alone.

In the end it is difficult to explain why the measured efficiency is less than half
the predicted efficiency at all energies. This effect was observed for sources both above
and to the side of the detector. It is clear that the major culprit is the loss of two- and
three-pixel sequences overall, and the discrepancy was not caused by the sequencing or

image reconstruction techniques.

7.3 Imaging Resolution

The imaging resolution at different energies was tested with standard sealed
sources: > 7Cs, 133 Ba, 22Na, and >*Mn. The sources were placed 20 cm from the detector
along the x-axis. The backprojection image of the *’Cs point source (662 keV) is shown
in Figure 7.1, and the weighted maximum likelihood (WMLEM) image after 10 iterations
1s shown in Figure 7.2. Full-energy two- and three-pixel sequences were imaged. The
imaging resolution is given by the full-width at half-maximum (FWHM) of a slice
through the center of the image in the x-z plane. The measured imaging resolutions were

68° FWHM and 17° FWHM, respectively, for backprojection and WMLEM. The
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Figure 7.1. Backprojection image of measured 137Cs source. Full-energy two- and three-

pixel sequences are imaged.

Figure 7.2. Weighted maximum likelihood image of measured 37Cs source. Full-energy
two- and three-pixel sequences are imaged.

Table 7.2. Measured Imaging Resolution in Degrees FWHM using Backprojection
and WMLEM for Source to the Side of the Detector

Energy (keV) | Backprojection | WMLEM
356 39.5° 17.0°
511 69.5° 19.0°
662 68.0° 17.0°
835 60.5° 14.5°
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backprojection resolution is worse than the predicted value of 61.5° (discussed in Chapter
6), although the measured WMLEM image is close to the predicted 16° resolution. As
discussed in Chapter 5 the convergence speed of any MLEM reconstruction algorithm is
dependent on the source distribution and the number of events in the image. The
predicted resolutions in Chapter 6 were calculated for a constant gamma-ray emission
rate, source distance, and acquisition time. In the measurements performed here the
acquisition time is adjusted to account for the variability in the gamma-ray emission rates
of each source. The source distance is held constant at 20 cm. The measured imaging
resolutions for selected gamma-ray energies are given in Table 7.2 for backprojection and
weighted maximum likelihood.

The worst imaging resolutions for both backprojection (69.5° FWHM) and
WMLEM (19.0° FWHM) were measured at 511 keV. This is not surprising because
many sequences are incorrectly ordered, and the result is a broadening of point source
response, as discussed in Chapter 6. The best performance for backprojection was
observed for 356 keV photons from '**Ba. This is predicted from simulations where the
lowest gamma-ray energy tested resulted in the best backprojection performance. The
best WMLEM imaging resolution was 14.5° observed for >*Mn at 835 keV, again
following the predicted behavior that the highest energy tested yields the best imaging
resolution for WMLEM.

7.4 Multiple Gamma-Ray Sources

7.4.1 Two-source resolution test

The resolutions measured in the previous section were calculated using the point
source response of the system. To test the measured resolution at 662 keV two '*’Cs

sources were placed 9° degrees on either side of the x-axis at 20 cm from the detector for
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a total of 18° separation. The backprojection image is not expected to resolve the two
sources, and as shown in Figure 7.3 the sources cannot be distinguished. The WMLEM
reconstructed image is shown in Figure 7.4, and the two sources are just barely resolved.
The source on the right in the image has a higher activity than the source on the left, and
this is reflected in the brightness of each source. A slice through the center of the image,

shown in Figure 7.5, shows that the two sources are just barely resolved.

Figure 7.3. Backprojection image of two '>’Cs sources separated by 18° at 20 cm from
the detector. The two sources cannot be resolved.

Figure 7.4 WMLEM image of two "*’Cs sources separated by 18° at 20 cm from the
detector. The two sources can be resolved.
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Figure 7.5. Slice of the WMLEM image shown in Figure 7.4. The two sources can be

resolved.
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Figure 7.6. Illustration of source configuration for multiple source imaging.
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7.4.2 Multiple gamma-ray energies

Three sources (*’Cs, **Na, and 133Ba) were placed near the detector in the
configuration shown in Figure 7.6. The backprojection image generated using all
imageable events is shown in Figure 7.7. No energy windows are used. The B7Cs source
to the front of the detector appears much brighter than the other sources, due to a
difference in source activities and the anisotropy discussed in Chapter 6, but all sources
are visible.

Separate images can be generated for each isotope by only reconstructing the
appropriate full energy windows. Figures 7.8 and 7.9 show the three images generated by
simple backprojection and WMLEM, respectively, using energy windows of 340-370
keV ("**Ba: 356 keV), 480-450 keV (**Na: 511 keV), and 630-700 keV (*’Cs: 662 keV).
Each source is easily identified when only the photopeaks are reconstructed in separate
images. The WMLEM image in Figure 7.9 shows better imaging resolution, for all
sources, as expected. The **Na source below the detector appears slightly broadened
compared with the other two sources.

This analysis indicates that the preferred method of imaging sources with varying
activities and energies may be to generate a three-dimensional backprojection image
using the two angular coordinates that define a sphere and an additional energy
coordinate based on the observed total energy in the sequence. Each backprojection ring
would contribute to only one energy coordinate. Summing over all energies would yield
an image similar to that shown in Figure 7.7. It would also be possible to sum over a
small range of energies and achieve the images shown in Figures 7.8 and 7.9 without
requiring that the data be reconstructed individually for each energy. A similar concept

has been proposed for coded aperture imaging[3].
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Figure 7.7. Backprojection image of multiple sources without energy selection viewing a)
the front and back and b) the top and bottom of the detector.
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Figure 7.8. Backprojection image of multiple source data reconstructed separately with
different energy windows: a) 340-370 keV, b) 630-670 keV, and c¢) 480-540 keV.
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Figure 7.9. WMLEM image of multiple source data reconstructed separately with
different energy windows: a) 340-370 keV, b) 630-670 keV, and c) 480-540 keV.
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7.5 High-Energy Imaging

7.5.1 2Th disk source

Detection of enriched uranium is important in many defense applications. All
enriched uranium produced in the United States contains some amount of **U, which is
preferentially selected during the low-mass isotopic separation[4]. The decay scheme of
#2(J is shown in Figure 7.10. Most of the alpha decays do not have an associated gamma
emission; however, the beta decay of 2*®T1 to 2®Pb (stable) is followed by a 2.614 MeV
gamma ray. Thus, observing a 2.6 MeV photopeak in the energy spectrum can indicate
the presence of enriched uranium. >**Th also enters the 2**U decay chain, as shown in
Figure 7.10. In this way, a ***Th source can mimic the high-energy signature of *2U. In
this section the response of the detector to 2.6 MeV gamma rays is examined with the use
of a thorium disk source.

Because the dynamic range of the VAS2/TAT?2 system is only 1000 keV, the
VAS3/TAT3, which has a dynamic range of 1600 keV, was used for measuring the

response to 2.6 MeV gamma rays. With this system, two events can sum to the full

232(7
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¥Ra 28R,

220Rn

Figure 7.10. Decay scheme for 2*?U. The 2.6 MeV gamma rays are emitted by ***T1.
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gamma-ray energy. An uncalibrated thorium disk source was placed 3 cm above the
detector. The observed energy spectra for two-, three-, and four-pixel sequences are
shown in Figure 7.11. The 2.6 MeV peak is evident along with its single and double
escape peaks, as are peaks at other various energies. These are gamma rays released in
the decays of other daughter products in the decay chain. Note that the double escape
peak is still prominent in the four-pixel spectrum. This is due to charge sharing. At 1.6
MeV, the electron range is larger than the pixel pitch, and more than one pixel may
collect charge. When charge sharing is significant, it is necessary to exclude sequences in
which neighboring pixels both collect charge.

Using two-pixel sequences, the backprojection image was obtained as in Figure
7.12. The source location cannot be determined due to the charge sharing. The axis of the

backprojection cone will always be parallel with either the x- or y-axis because
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Figure 7.11. Thorium disk two-, three-, and four-pixel energy spectra measured using the
VAS3/TAT3 system.
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neighboring pixels both collect charge at the same depth. However, when nearest
neighbor pixels are excluded from contributing, the backprojection appears as in Figure
7.13. Now, clearly the image points to the correct source location.

The efficiency of the 4n imager at 2.6 MeV could not be accurately measured
because the activity of the thorium disk was unknown, but an order-of-magnitude

estimation can be made. The emission rate of the 2.6 MeV gamma ray was estimated
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Figure 7.12. Backprojection image of the thorium disk source using two-pixel sequences.

This image behavior is typical of charge sharing events, in which the cone axes
are always located along the x- or y-axis.

Figure 7.13. Backprojection image of the thorium disk source using two-pixel sequences

with non-neighboring events. Much of the charge sharing contribution has been
eliminated.
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using a standard 2"x2” Nal(T1) scintillator detector. Efficiency curves for these detectors
are well known[5]. The observed count rate at 2.6 MeV in the Nal(T1) detector was 933
cpm. With a known Nal(T1) absolute efficiency of 0.04 and a peak-to-total ratio of 0.125
for a source at 2.5 cm, the estimated emission rate of 2.6 MeV gamma rays from the
thorium disk is 2634 y/s. The dynamic range of the ASIC and effects of charge sharing
limited the imageable two-pixel sequences in the CdZnTe detector to 187 over 36 hours
of measurement. The geometric efficiency of a point source 3 cm from a square detector
with sides 1.5 cm is 0.0187. The calculated intrinsic efficiency is then 2.9x107. This is
two orders of magnitude lower than the calculated efficiency using simulated 2.5 MeV
data. The discrepancy between the simulated and measured data is clear: charge sharing
was not modeled in the simulations. Although the simulations did take into account the
reduction in efficiency due to eliminating sequences in which neighbor pixels collect
charge, the simulations did not model the effects of two-pixel sequences appearing as
three- or four-pixel sequences. At 2.5 MeV the number of full-energy two-pixel
sequences is predicted to be double that of the three-pixel sequences, but this is not
observed in the 2.6 MeV peak areas in Figure 7.11. Charge sharing is the major culprit

for the reduction in the two-pixel peak efficiency from the predicted value.

7.5.2 High-energy distributed source

Mapping hydrogen concentrations can be very important for interplanetary rover
missions. The presence or absence of water is key to understanding the formation of
planets in the solar system. One common way to detect the presence of hydrogen in water
is to bombard the surface with neutrons, which are thermalized in the hydrogen. The
neutrons can be captured by the hydrogen nuclei forming deuterium, which deexcites via
a 2.2 MeV gamma ray. Therefore, observing a 2.223 MeV gamma ray is indicative of the

1H(n,y)zH process.
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In this experiment a 1-Ci 2%puBe neutron source was placed at the center of a
high-density polyethylene sphere, as shown in Figure 7.14. Neutrons are thermalized and
captured throughout the sphere, which becomes a large and nearly isotropic emitter of 2.2
MeV gamma rays. Some of these gamma rays reach the detector and interact in
observable sequences that can be used for imaging. The center of the sphere was located
approximately 45 cm from the detector. The single-, double-, triple-, and quadruple-pixel
energy spectra observed from this source are shown in Figure 7.15. There 1s a full-energy
peak at 2.2 MeV, as expected, and its associated single and double escape peaks can also
be seen. The limited dynamic range is evident in the single-pixel spectrum, which rapidly
decreases above 1600 keV. There is a gamma-ray peak at 511 keV due to pair production
events occurring outside the detector; the associate annihilation photons can be absorbed
in the detector. There are also two prominent low-energy gamma-ray lines visible in the
spectrum at 560 keV and 651 keV. These are the two most likely gamma-ray emissions
from the absorption of thermal neutrons by cadmium, which is obviously present in the
CdZnTe detector. Also shown in the three- and four-pixel spectra is a peak near 3.4 MeV.
This is most likely the double escape peak from the 4.4 MeV gamma ray generated by the

PuBe neutron source itself.

Detector

‘,I*"'

High Density
Polyethylene

Figure 7.14. Ilustration of the high-energy distributed source experiment. The PuBe
neutron source is placed inside a high-density polyethylene sphere, which is
located to the side of the detector.
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Figure 7.15. One-, two-, three-, and four-pixel energy spectra observed from the

"H(n,y)*H spherical gamma-ray source. The effects of limited dynamic range are
evident in high-energy cutoffs for each spectrum.

Figure 7.16. Backprojection image of 2.2 MeV spherical source located to the side of the
detector.
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Figure 7.17. Illustration of the revised high-energy distributed source experiment. The
moderating sphere is placed above the detector.

Using only the two-pixel sequences at 2.2 MeV and rejecting nearest neighbor
pixels yields the backprojection image shown in Figure 7.16. The source appears in the
correct location in the image, although the statistics were too poor to observe the
spherical shape of polyethylene. The ring-like structure on the front hemisphere is due to
incorrectly sequencing the two-pixel sequences, as discussed in Chapter 6. Note that it
occurs about 105° away from the true source position as predicted.

To obtain better statistics, the experiment was repeated with the moderating
sphere above the detector, as illustrated in Figure 7.17. In this experiment the center of
the sphere was only about 34 cm from the detector. The count rate increased
dramatically, and the size of the source in the field-of-view also increased. The
backprojection image of the source is shown in Figure 7.18 using full-energy two-pixel
sequences in which events are separated by at least one pixel. The correct source location
can be found. The diamond shape present in the background around the hotspot is a result

of charge sharing between corner pixels. These sequences have not been eliminated.
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Figure 7.18. Backprojection image of spherical gamma-ray source located above the
detector. Sequences with two events in x and y neighboring pixels have been
discarded.

Figure 7.19. Backprojection image of spherical gamma-ray source above the detector
discarding sequences in which two events occur in pixels that neighbor in any
direction.
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Figure 7.20. Distribution of the difference in event depths in two-pixel sequences. The
average difference in depth is just over 2 mm.

If an attempt is made to eliminate even the charge sharing between corner pixels,
a much different image is obtained, as seen in Figure 7.19. In this backprojection image if
any of the eight neighboring pixels collect charge, the sequence is discarded. There is
actually a cold spot at the top of the image sphere where the source should be. Although
it may be possible to accept that the source is above as opposed to below the detector, the
image in Figure 7.19 would appear to be due to a ring source, as opposed to spherical.

This effect is caused by several phenomena occurring in the detector
simultaneously. First, the dynamic range of the ASICs and the sequence reconstruction
algorithm limit the calculated Compton scatter angles to the range 40°-70°. Second, the
difference in depth between any two interactions is not typically large. Figure 7.20 shows
the measured depth difference for two-pixel sequences in which events do not occur in

any neighboring pixels. The average difference in depth between events is just over 2
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mm. (This is comparable to simulated data which shows an average depth difference of
2.5 mm under similar conditions.) Finally, sequences with neighbor pixels collecting
charge are excluded.

To illustrate the effect that these factors have on imaging the sphere above the
detector consider Figure 7.21. The red and blue cones represent the minimum and
maximum backprojection cone angles, respectively. With small depth differences and at
least 2.4 mm lateral spacing between events the inclination angle is typically only
between 20° and 30°. In this way few backprojection cones reach the center of the sphere,
and only gamma rays that originate from the periphery of the sphere will be imaged. The
gamma rays from the central region of the sphere can only be observed if the lateral

distance between events is small or the depth difference is large.

———mm——— _ typically 20°-30°

Figure 7.21. Illustration of the effects of limited dynamic range and small depth
differences in two-pixel sequences for a source above the detector. The red and
blue cones represent the minimum and maximum cone angles, respectively.
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Figure 7.22. Illustration of the effects of limited dynamic range and small depth
differences in two-pixel sequences for a source to the side of the detector.

The effects of the dynamic range and charge sharing on a sphere located to the
side of the detector are not as severe. As illustrated in Figure 7.22 the backprojection
cones can overlap the entirety of the sphere because the cone axis can rotate in the x-y
plane. Two events can occur in the same row of pixels, whereas two events cannot occur
under the same pixel. This is defining difference between a source located above the
detector and one located to the side. It is important to note that the inclination angle of the
backprojection cone with respect to the image sphere equator is still limited for a source
located to the side, and some blurring is expected in the image along the azimuthal
direction. This is observed somewhat in Figure 7.16, where the source hotspot extends

over 40° in the azimuthal direction and only about 20° in the lateral angular dimension.
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The experiments discussed in this chapter demonstrate that a single CdZnTe

detector can be operated successfully as a Compton imager. The intrinsic efficiency

measured at 1.84% is less than predicted by simulations, but is still three orders of

magnitude better than the previous two-detector design. The imaging resolution of 17°

FWHM was experimentally confirmed using two sources, and sources with different

energies were easily distinguished. The high energy experiments were successful as well,

despite the significant loss in efficiency due to the limited dynamic range. For the current

detector system, high-energy sources to the side of the detector yield better images than

sources above the detector due to eliminating neighbor sequences (in an attempt to reduce

charge sharing effects) in conjunction with the limited dynamic range.

[1]
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CHAPTER 8
SUMMARY AND FUTURE WORK

8.1 Project Summary

The CdZnTe 4n Compton imager was the first successful demonstration of
Compton imaging in a single detector with a full 4z field-of-view. The imager consists of
al.5cm x 1.5 cm x 1.0 cm CdZnTe detector operated at room temperature. The detector
has a planar cathode on one square face, and an array of pixellated anodes on the opposite
face. The detector relies on single-polarity charge sensing in which only the motion of
electrons generates signals in the detector; holes are severely trapped in CdZnTe. The
anodes provide position sensitivity for gamma-ray interactions in two dimensions. The
third coordinate is determined by the drift time of electrons. For every gamma-ray
interaction in the detector the energy deposited and the three-dimensional interaction
position is determined. The position resolution in the lateral dimensions is determined by
the pixel pitch of 1.3 mm, while the depth resolution is determined by timing (~1mm).
Energy resolution in this detector for two-pixel sequences at 662 keV was measured at
1.91% full-width at half-maximum (FWHM).

Unlike other Compton imaging devices, the sequences of gamma-ray interactions
in the detector are not known a priori. Two methods were explored to determine the
correct sequence order. In two-pixel sequences, the event that deposits the highest
(lowest) energy was assumed to occur first if the total energy deposited is higher (lower)
than 400 keV. This method worked increasingly well with higher gamma-ray energies. At

662 keV the two-pixel technique succeeded in 73% of simulated full-energy sequences.
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For three events in which there are six possible sequence orders a different technique was
used. Each sequence was assumed to terminate with a photoelectric event (all of the
gamma-ray energy was deposited). Then, the second scatter angle could be calculated for
each possible order using the known position information and the known energies
independently. The sequence order that minimized the difference between the
independently calculated scatter angles was chosen to be the correct sequence. This
method, which is highly subject to the position resolution in the detector, was successful
at 662 keV in 51% of full-energy sequences. The method improved as the gamma-ray
energy increased.

Once the order of interactions in the detector was determined, it was possible to
reconstruct the source distribution using the principles of Compton imaging. Two
methods were used in this work: backprojection and maximum likelihood estimation. In
backprojection each sequence of events results in a cone of probable incident gamma-ray
directions. The sum of these cones over many sequences yields the position of the source.
The image resolution using backprojection was very poor at 662 keV (~68° FWHM
measured for a source to the side of the detector). Backprojection was only useful for
imaging point sources that were widely separated. Maximum likelihood estimation was
also used in this work in order to improve the imaging resolution. A weighting method
was introduced that emphasizes the contribution of sequences in which the angular
uncertainty was small and reduces the impact of sequences with less information. The
weighted maximum likelihood technique (WMLEM) was shown to converge faster than
traditional maximum likelihood reconstruction, and yielded a measured imaging
resolution at 662 keV of only 17° FWHM after 10 iterations. The WMLEM
reconstruction method required approximately 0.1 seconds per sequence per iteration
when performed on a personal computer with a 1.1 GHz Pentium III processor. The

backprojection method was nearly eight times faster.
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Several factors that can degrade the performance of the 47 imager were analyzed.
Physics processes, such as Doppler broadening, coherent scatter, and pair production, can
degrade the imaging resolution. Coherent scatter was found to have little effect on the
backprojection because the scatter angles were found to be less than 10° for most
sequences. Pair production sequences will not interfere with imaging if full-energy
windowing is performed. Doppler broadening had the largest effect on imaging, and set
the minimum angular resolution to a few degrees FWHM in CdZnTe. The anode
threshold and dynamic range of the detector system reduced the efficiency by requiring
all events to deposit greater than 100 keV and less than 1600 keV. The effect was largest
for 300 keV and 2500 keV photons. The techniques used to determine the order of
interactions in the detector also affected the performance by limiting the observable
angles and creating ring artifacts in the image when the sequences were incorrectly
ordered. Finally, an anisotropy was observed when imaging using backprojection sources
above the detector compared with sources to the side of the detector. This was a result of
the normalization method used in the backprojection process.

The resolution of the imager was tested with two *’Cs sources separated by 18°.
The two sources were resolved in the WMLEM image after 10 iterations. No formal
stopping criterion was implemented to determine the number of iterations that should be
performed. However, the improvement in resolution after 10 iterations was insufficient to
justify the additional reconstruction time.

The measured intrinsic efficiency of the detector—defined as the fraction of
incident gamma rays that result in imageable sequences—at 662 keV was 1.86%. This
was only 44% of the value predicted from simulations. An 18% difference could be
explained by the fact that charge sharing was not considered in the simulations, but
examination of other factors did not reveal other major causes for the discrepancy. The

reduced number of sequences observed in detector compared with the simulations
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indicates that the simulation parameters—and not the sequence ordering and image
reconstruction technique—were most likely to blame for the difference.

Measurements with multiple sources were performed. By using backprojection
three point sources with different energies could be identified in the image, although one
source dominated due to its high activity. When the image was reconstructed using
specific windows for gamma-ray energy the individual point sources were easily
identified.

High-energy measurements using the 4m imager were also performed. In one
experiment a 2**Th disk source was placed above the detector, and the source was
successfully located using the emitted 2.6 MeV gamma rays. In another experiment a 1-
Ci PuBe neutron source was placed inside a large high-density polyethylene sphere. The
neutrons were moderated in the sphere and some were absorbed by hydrogen nuclei,
which then deexcited via a 2.2 MeV gamma ray. The sphere was placed to the side and
above the detector, and in both cases the location of the sphere could be determined. The
dynamic range of the system (1600 keV) limited the imaging efficiency at high energies
because many sequences could not be observed. Also, when combined with techniques to
reduce the influence of charge sharing on the image, the dynamic range limited the
capability to image sources directly above or below the detector. Sources to the side of

the detector appeared elongated in the images, but could still be identified.

8.2 Suggestions for Future Work

There are several topics regarding the 4n Compton imager that should be explored
in future work. Improvement in the detector system, including reducing the anode
thresholds and increasing the dynamic range, will increase the efficiency of the imager.
At 2.5 MeV there is a 96% reduction in efficiency due to the dynamic range, and the

fraction of observable sequences that are correctly sequenced decreases from 97% to
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65%. Also, for high-energy imaging it may be necessary to increase the pixel pitch in
order to reduce the charge sharing among pixels. The presence of a double escape peak in
the four-event spectrum from 2.2 MeV gamma rays indicates that a 1.2 MeV recoil
electron can traverse many pixels.

The sequencing techniques can be improved by including additional information.
For example, a probabilistic approach could account for survival probabilities and
distances between interactions for both two- and three-pixel sequences. With the current
method only 51% of three-event sequences at 662 keV are correctly determined. There is
much room for improvement.

The backprojection algorithm currently employs a step response; image pixels
that intersect the backprojection cone are given a value of 1 for that sequence, while all
other pixels are given a value of 0. It is possible to use a smooth function—perhaps a sum
of Gaussian functions, as proposed by Wilderman et al.[1]—to improve the resolution
obtained through backprojection. Also, defining a proper de-blurring filter, similar to
those used in x-ray tomography, would greatly improve the resolution by removing the
blur introduced by the backprojection step. In addition near-field imaging can be
performed by backprojecting cones from the first interaction site rather than the center of
the detector. The imaging resolution should improve as a result. Finally, real-time
backprojection reconstruction is possible if the data acquisition software and image
reconstruction software are connected. Then, it would be possible to track a slowly
moving source near the detector.

There is also more to explore in maximum likelihood reconstruction. First, in this
work there was no defined stopping criterion. Determining an appropriate criterion for
this detector is important and should be investigated. Furthermore, it may be possible to
do almost real-time imaging using the ordered subset techniques proposed by Hudson and
Larkin[2] or the block-iterative methods proposed by Byrne[3]. With these methods the

data can be separated in time groups, and the resulting maximum likelihood image after
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one iteration from the first group is used as the starting image of the next group. This
process accelerates the convergence of the image. It may be possible to reduce
computation time to minutes rather than hours.

Employing the 3-D f{6,4,F) imaging techniques discussed in Chapter 7 should be
possible with both backprojection and maximum likelihood. With this capability the
image for any peak in the energy spectrum can be individually identified without having
to perform a separate reconstruction for each energy. Furthermore, it should be possible
to generate a spectrum based on a section of the field-of-view. This capability would
allow a source in the image to be identified by its energy spectrum. Thus, every pixel in
the image would have a corresponding energy spectrum, and every energy bin in the
spectrum would have a corresponding image. Summing over all energies or all image
pixels would give the total image or total energy spectrum, respectively.

This work is the first successful demonstration of 4n Compton imaging in a single
detector. The concept has been proven, but there are some areas of detector design, event

sequencing, and image reconstruction that can be improved.
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APPENDIX: Geant4 Simulation Parameters

Geant4[1] is a Monte Carlo physics simulation package available free from the
European Organization for Nuclear Research (CERN). It was originally designed for
high-energy physics simulations (up to GeV), but a low-energy patch can be included to
extend the physics of gamma-ray and charged particle interactions to as low as several
keV. However, the effects of finite electron momentum are not included in the model for
Compton scatter. As a result, a different patch that properly treats Compton and Rayleigh
scatter including the effects of electron momentum (called G4 Low Energy Compton
Scattering G4LECS package[2]) at low energies was used.

The purpose of this appendix is to detail the assumptions made in the simulations
used throughout this work. Clearly, results reported from simulations have little meaning
without a discussion of the parameters under which they were obtained. The modeling of

the detector geometry, physics processes, and gamma-ray sources is discussed.

A.1 Detector Geometry

The detector is modeled as a bare crystal with dimensions 1.5 cm x 1.5 cm x 1.0
cm. The square face of the detector is parallel to the x-y plane. The material is
Cdo.9Zny 1 Te; o with a density of 6 g/cm3. The center of the detector is located at the
origin. The contacts, ceramic plate, and PVC mount are not included in the simulations.
The contacts are extremely thin, only about 100 um, and the ceramic plate is made of
low-atomic number materials. In addition, the 2-mm thick aluminum housing in which
the detector sits is also not modeled. In this way, the results presented in this work are not

dependent on the particular choice of detector package.
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A.2 Physics Processes

Rayleigh scatter, photoelectric absorption, Compton scatter, and pair production
are all modeled in the simulations. As previously stated, the effects of finite electron
momentum on Compton scatter are included in the simulations. This is extremely
important for modeling Compton imagers, in which the Doppler broadening can
contribute a significant fraction of the overall angular uncertainty. The effective range cut
off is 100 um, meaning that gamma-rays are not created if their energies are sufficiently
low such that they will not travel on average at least 100 um.

In any real interaction in which the gamma ray loses energy, the electron is
gjected and given a kinetic energy equal to the energy lost by the gamma-ray minus the
binding energy of the electron. The electron then undergoes multiple scattering in the
detector, creating a shower of electrons—an “electron cloud”—and radiating
bremsstrahlung as it decelerates. The bremsstrahlung photons also interact in the detector,
ejecting more electrons, and the cycle continues until the electrons have less kinetic
energy than the binding energy of the outermost atomic shell. Meanwhile, the binding
energy from the initial electron ejection is transferred to the ion. The ion traps another
electron and deexcites by emitting an x-ray with an energy equal to the binding energy.
The x-ray then interacts some distance away from the original interaction site, ejects an
electron from another atom, depositing more energy. The location of the initial gamma-
ray interaction is blurred by the size of the electron cloud, and if the x-ray energy is large
enough to travel outside the electron cloud, then two electron clouds can be created from
the single gamma-ray interaction. In this case a single interaction can appear as two.
Thus, the proper way to model the energy deposited in the detector is to measure the total
energy deposited by all electrons ejected by the gamma ray, bremsstrahlung photons, and

x-rays, in addition to all those involved in multiple scattering.
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Fortunately, modeling all these processes is not necessary to accurately predict the
the performance of the CdZnTe detector. With a pixel pitch of 1.3 mm the highest energy
x-ray (Te k,, at 32 keV) rarely escapes from one pixel into the next. The location of the
interaction is only known to be under the pixel at some depth within 1 mm. Thus, it is not
necessary to track the x-ray interaction locations. Furthermore, if all the energy is
deposited in the same location, it is not necessary to add up all the individual energies
deposited by electrons. Rather, the energy deposited in the whole process can be
determined by simply tracking the energy lost by the gamma ray. This is the method used
in the simulations in this work.

Because the electrons are not tracked in the detector, charge sharing is not
modeled. When the electron cloud is large enough and the interaction occurs near a pixel
boundary, the cloud can divide and be collected by neighboring pixels. Thus, a single
interaction may appear as two events if the energy collected by each pixel exceeds the
anode threshold. If the energy collected by one pixel is less than the anode threshold, the
energy observed on the other pixel will still be reduced from the total energy deposited in
the event. See Chapter 6 for a discussion of the effects of charge sharing.

In the case of pair production, the gamma ray loses all of its energy, but this
energy is not all deposited at the interaction site. When pair production occurs, the
deposited energy is then calculated as the energy of the gamma ray minus 2mec’ (1022
keV). The 511-keV annihilation photons can travel large distances relative to the pixel
size. If a photon is created by annihilation, it is treated like a gamma ray in that its energy
loss and interaction locations are tabulated. A single pair production event may result in
several observable interactions in the detector.

The number of interactions, positions, and energies deposited from each gamma
ray are written to a file during the Geant4 simulations. With data analysis software the
precise position and energy data are blurred to better model the actual detector

conditions. The pixel under which the interaction occurred is determined, and the x and y
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interaction positions are replaced with the location of the center of the pixel. The depth
coordinate is blurred with a Gaussian distribution using an uncertainty of 0.5 mm, taking
care not to allow depths that are outside the detector volume. The energy, E, is blurred
with a Gaussian whose FWHM is given by the relation: a +b vE, where a and b are fit to
the measured energy resolution data for two-pixel events. This energy spread accounts
for variability in charge generation and collection, as well as system noise. In this

manner, the precise Geant4 data is altered to better simulate detector conditions.

A.3 Gamma-Ray Sources

The gamma-ray source is usually modeled as a monoenergetic single gamma-ray
emitter. Coincident emissions are not considered. Most of the simulations involve 662
keV gamma rays, which are emitted from 137Cs. Technically, '*’Cs is a beta emitter. The
daughter nucleus 137Ba then deexcites via gamma-ray emission at 661.7 keV. The true
source emits some beta radiation, the 662 keV gamma rays, and also bremsstrahlung
from the decelerating betas. In the interest of reducing comptutation time and simplifying
the program only the gamma rays are modeled in the source distribution here. Because
the beta and bremsstrahlung energies are low, the modeling of full-energy sequences are
not affected by neglecting this radiation. For simulating polyenergetic sources like 3*Ba
and **Na, the gamma-ray energy chosen for a specific history is chosen based on the
relative probabilities of observing each energy. Again, no beta or bremsstrahlung
radiation is simulated.

The source is modeled as an isotropic emitter. The emission direction is sampled
using two angles. The lateral angle is randomly sampled linearly in the interval [0,27].
The cosine of the azimuthal angle is then randomly sampled linearly in the interval -1,
1]. In this way an emission direction is chosen. The sources modeled here are emitted

from a point at a distance of 20 cm such that the cathode face is irradiated, unless
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otherwise stated. Only gamma rays whose trajectories intersect the detector are
generated; when any other emission direction results from the 4r sampling, it is
discarded, and a new direction is chosen. This technique saves computation time because
the gamma rays directed away from the detector are not generated and tracked. A total of

10° gamma-rays that intersect the detector are generated for each simulation.
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