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Filtered Back-Projection in 4� Compton Imaging
With a Single 3D Position Sensitive CdZnTe Detector
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Abstract—The Compton scattering camera can provide higher
detection efficiency since the use of a mechanical collimator is not
required. Several image reconstruction algorithms for Compton
scattering cameras, such as maximum likelihood method and ART,
can provide good imaging performance but are indirect and com-
putational intensive. A direct reconstruction algorithm, such as fil-
tered back-projection, is preferable if computational time is crit-
ical. Parra proposed an analytical inversion algorithm from cone-
beam projections for Compton scattering cameras with a complete
data set. In reality, a Compton camera is always limited by its con-
figuration and can only provide an incomplete data set with a finite
range of scattering angles. In this paper, we investigate a filtered
back-projection algorithm applied to single 3-dimensional position
sensitive CdZnTe detectors.

Index Terms—3-dimensional position sensitive CdZnTe detector,
compton imaging, filtered back-projection.

I. INTRODUCTION

ACOMPTON-SCATTERING gamma camera records two
or more interactions of each incident photon within the

detector. The scattering angle can be deduced from energy de-
positions at each interaction position, and the direction of the
incident photon is restricted on a cone with its vertex placed
on the first scattering location. Unlike Anger cameras used in
SPECT, this imaging technique does not require a mechanical
collimator, and therefore is sometimes referred to as electronic
collimation [1]. A Compton scattering camera usually holds
the promise of a much higher efficiency than Anger cameras
due to the elimination of the mechanical collimator, thus better
counting statistics. However, since the direction of each incident
photon can only be back projected onto a cone, there is less in-
formation provided by each event compared to mechanical col-
limation. Furthermore, the lack of a collimator complicates the
reconstruction algorithm since the angular uncertainty now is
related to energy resolution as well as position resolution, and
can vary from event tevent.

Various reconstruction algorithms have been proposed since
the introduction of Compton cameras [2], most of which are
iterative algorithms [3], [4] since direct reconstruction is more
difficult to implement in Compton imaging than traditional
computed tomography, in which filter back-projection has
found great success. However, the iterative algorithms are
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usually computationally intensive and their convergence points
are often ambiguous. Therefore it is necessary to explore the
possibility of applying direct reconstruction algorithms for
Compton imaging.

Cree and Bones [5] have developed a direct reconstruction
algorithm by severely limiting the scattering direction to be per-
pendicular to the detector array. Basko et al..[6] established an
analytical inversion method from cone surface projections using
spherical harmonics without considering the distribution of pos-
sible scattering angles. Parra [7] developed an analytical inver-
sion algorithm for the complete data set of all possible scattering
angles based on the Klein-Nishina formula. In practice, as Tomi-
tani and Hirasawa [8] pointed out, an actual Compton camera
is almost impossible to provide a data set with a full range of
scattering angles due to the limitation in the configuration of
the detector system, and the difficulty in detecting small-angle
scattering events. Tomitani further proposed an algorithm for
limited angle Compton camera data set. However, in an actual
Compton camera system, the detection efficiency varies at dif-
ferent scattering angles. This is partly due to the variation of
path length of the detection material at different scattering di-
rections, and partly due to the change of energy of scattered
photons at different scattering angles. Therefore, the measured
distribution of scattering angle will be different from that of the
Klein-Nishina formula. In our case, simulations were performed
to provide the point spread function (PSF) of the system. This
accounts for the influence of the detector geometry on the dis-
tribution of scattering angles. Furthermore, a simpler analytical
approach to the point spread function for limited angle Compton
camera is proposed in this paper, and the result is compared with
the point spread function obtained by simulations.

Three-dimensional position sensitive CdZnTe detector is a
novel device in Compton imaging. The detector used in this
work is 15 mm 15 mm 10 mm in dimension and employs
an 11 11 pixel anode array on one 15 15 mm surface.
The depth of interaction is obtained by measuring the electron
drifting times from the interaction positions to the collecting
anodes. On this device, the position resolution is about 1.2
mm in each direction, and energy resolutions are 1.1% FWHM
for single pixel events and 1.6% FWHM for two pixel events
at 662 keV [9]. Since virtually each point within the detector
volume can act as both the scattering detector and the absorp-
tion detector as on a conventional two layer Compton imager,
the efficiency of this device is much higher than traditional
two detector systems given the same total detection volume.
Since the order of gamma-ray interactions cannot be obtained
from time-of-flight measurement due to the poor timing res-
olution on CdZnTe and the small separation distance between
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scattering positions, sequence reconstruction must be applied
based on energy depositions. Various sequence reconstruction
algorithms have been examined and good results have been
achieved [10], [11].

Since the size of a single detector is small, the ability to per-
form 3D source imaging is limited to the vicinity of the device.
When the source is far away from the detector, the imaging can
be approximated by shifting the first interaction position to the
center of the detector. In this case, the cone-beam is projected
onto a unit sphere and forms a ring. Thanks to the recent devel-
opment in fast Fourier transform algorithms on the 4 -sphere
[12]–[14], the transform from a 4 -sphere image into spherical
harmonics is no longer a computational barrier. As a result, the
reconstruction algorithm discussed in this paper is based on the
cone-beam projection on the unit sphere.

II. IMAGE GENERATION

For simplicity, we first assume that the detector system has
perfect position and energy resolutions, large enough size so that
no secondary scattered photon can escape, and the ability to pro-
vide correct interaction sequences. We also assume that enough
counts are collected so that any artifact caused by statistics is
ignored. For a given source distribution , the summation
image of the cone-beam projections obtained by the mea-
surement is a convolution of the source distribution with
the point spread function, which is the summation image of a
point like source. Since the point spread function is azimuthal
symmetric, we can write it as .

(1)

in which is the angle between and .
Considering an arbitrary function defined on the

4 -sphere, it can be expanded in the spherical harmonics
domain by the following transform equations:

(2)

in which, the spherical harmonics coefficients can be cal-
culated by:

(3)

Here, are the spherical harmonics on 4 -sphere space
and are the complex conjugate of the spherical har-

monics:

(4)

in which are the associated Legendre polynomials.

According to the spherical convolution theorem [14], we can
get from (1): s

(5)

where and are the transformations of
and in the spherical harmonics domain, respectively.

From (3),

(6)

For a function defined on such as , it can also
be expanded into the sum of the Legendre polynomials:

(7)

The coefficients are defined by:

(8)

By comparing (6) and (8), we find:

(9)

After replacing with (9) in (5), the following equation is
derived:

(10)

So, to deconvolve the point spread function from the
summation image of cone-beam projections , we need to
first transform the summation image into spherical harmonics
domain to obtain , then by (10), the spherical harmonics co-
efficients of the source image can be computed. The source
image is obtained by the inverse transformation of the co-
efficients into the 4 -sphere space. This is analogous to the
deconvolution procedure in Cartesian coordinates.

Comparing (10) with (1) and (5), the following deconvolution
formula is obtained:

(11)

in which is a function with Legendre polynomial co-
efficients:

(12)

The summation image is the sum of many cone-beam
projections from individual events, as we do the reconstruction



XU AND HE: FILTERED BACK-PROJECTION IN COMPTON IMAGING 2789

Fig. 1. Summation of cone-beam projections on the unit sphere.

in list mode (Fig. 1). For a specific event i, the projection of
the cone beam on the unit sphere is a ring defined by cone axis
direction , and cone half angle . This ring is the projection
image of event i.

(13)

According to the linear property of the spherical convolutin,
(11) can be rewritten as:

(14)

which means the filtering can be done event-by-event, which
makes real-time imaging possible. The price is the requirement
of doing Fourier transform on the 4 -sphere for each event.
However, the spherical convolution is rotation invariant, and

is a function which is azimuthal symmetric around the
cone axis , which means that only Legendre polynomial ex-
pansion is needed. With the help of fast Fourier transform algo-
rithms on the 4 -sphere developed in recent years, the compu-
tational cost is minimized.

III. POINT SPREAD FUNCTION

The point spread function is determined by the fundamental
principles of Compton scattering cameras. Without considering
the detector noise, the summation image of the many cone-beam
projections from a point-like source is a distributed image rather
than a delta function at the source direction. This is due to the
fact that the source direction information provided by each event
is distributed on a cone. Fig. 2 shows the contribution of a cone
back-projection to the point spread function.

Parra gave the point spread function of a Compton camera
from simple back projection based on an assumption that each
point on all back projection rings has the same value [7]. Here
we give another simpler approach to calculate the point spread
function.

Suppose a mono-energetic source irradiates an idealized
detector from above. When the detector detects an event with

Fig. 2. The contribution of a cone-beam projection with cone axis ~
 and half
angle ! to the PSF.

scatter angle , the cone-beam projection will generate a ring
with half angle on the unit 4 -sphere. Since the detector is
perfect, the reconstructed cone should always pass the true
source location, which is at the zenith of the unit sphere. When
many rings are reconstructed on the sphere, the back projection
summation image is formed, which is also the point spread
function of the Compton camera. Since the system is symmetric
around axis, the point spread function thus is only related to
the polar angle . Therefore, the point spread function is also
written as a function of a single variable, .

The values assigned to different pixels on the projection ring
should be uniform, since the gamma ray could come from any
direction on that ring, provided that there is no polarization in-
formation obtained. If we assume that each event carries the
same amount of information, the sum of the values on each back
projection ring should be normalized. Since the perimeter of
each ring is proportional to , the values on each back projec-
tion cone should be proportional to . If a back projection
ring with half angle intersects a ring on the unit sphere with
half angle at angle as shown in Fig. 2, the contribution of
this ring to the point spread function from to is pro-
portional to . Therefore, the sum of the point spread
function between and is proportional to the integral
of all possible scattering angles:

(15)

in which is the Klein-Nishina cross section formula and
is proportional to the probability density function of

scattering angle , as shown in (16) at the bottom of the page,
in which is the classical electron radius, and
is the ratio of the initial gamma ray and rest mass energy of an
electron.

As a result, the contribution of cone-beam projections to the
point spread function at angle can be evaluated by:

(17)

(16)
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In triangle , and
. The law of cosine gives:

(18)

Therefore, the following geometrical relationship is obtained:

(19)

As a result, (17) becomes:

(20)

We notice when the scatter angle is smaller than or
greater than , the back projection cone will not con-
tribute to the point spread function at , and the integral in (20)
can be rewritten as:

(21)

This result differs from Parra’s result with a term of be-
cause of the assumption that each back projection ring contains
the same amount of information.

Tomitani pointed out that in real Compton camera, the distri-
bution of the scattering angle is always limited [8]. In our 3D
position sensitive CdZnTe detector, this is especially true be-
cause of the sequence reconstruction algorithm. For events with
scattering angle between and , the point spread
function can be obtained by replacing with in (21),
in which is defined as:

(22)

In this case, the point spread function is a complicated integral
and needs to be solved numerically. For a specific situation in
a 3D position-sensitive CdZnTe detector, the point spread func-
tion for incident photons with energy greater than can
be derived analytically (see Appendix), as shown in (23) at the
bottom of the page, in which and are
defined as:

(24)

(25)

(26)

(27)

(28)

Fig. 3. The simulation shows that the actual scattering angle distribution of
662 keV gamma rays in our 3D CdZnTe detector is different from the theoret-
ical prediction based on Klein-Nishina formula, thus the actual PSF should be
different from (23).

However, the measured distribution of scattering angle on a
real detector does not follow the Klein-Nishina formula because
in a detector with limited size, not all Compton scattering events
will be recorded. The detection efficiency varies for events with
different scattering angles. For example, scattered photons at
smaller scattering angles have higher energy than photons scat-
tered at large angles, thus they are more likely to escape the
detector. In another word, the actual scattering angle distribu-
tion favors large scattering angles comparing with the theoret-
ical prediction of the Klein-Nishina formula. Fig. 3 shows the
difference of scattering angle distributions between the predic-
tion by the Klein-Nishina formula and our simulation on the 3D
CdZnTe detector using Geant4 simulation package [15].

Therefore, the theoretical prediction of the point spread func-
tion using the Klein-Nishina formula cannot be applied directly
on an actual Compton camera. Monte Carlo simulations using
Geant4 packages were performed to provide the point spread
function of a 15 mm 15 mm 10 mm 3D CdZnTe detector. In
our simulations, charge sharing problem between neighboring
pixel anodes caused by the finite initial electron cloud size and
the diffusion of electrons were not modeled. The detector was
idealized with perfect depth and energy resolution. The anode
of the detector was still divided into an 11 11 pixel array to
account for the pixellation effect. A 662 keV gamma ray source
was placed 20cm away from the side of the detector, and only
two-pixel full energy deposition events were recorded. Those
two pixel events with correct sequences were reconstructed
using simple back-projection to generate the point spread func-
tion image. The information carried by each event was set to be

(23)
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Fig. 4. Simulated PSF. A 662 keV gamma ray source was placed at the side of the detector, and only two-pixel full energy deposition events were reconstructed.

Fig. 5. The upper figure shows the simulated PSF of a 3D CdZnTe detector at 662 keV. Due to the azimuthal symmetry of the PSF, the Fourier transform of the
PSF into the spherical harmonics domain only has Legendre polynomials. The coefficients of those Legendre polynomials are shown in the bottom figure.

the same, i.e., the contribution of each event to the summation
image was normalized. The reconstructed point spread function
from the simulated data is shown in Fig. 4.

When calculating the PSF from simulated data, it is desired
to get the PSF as close as the true PSF of the system. Fac-

tors that can affect the PSF include scattering angle distribu-
tion, Doppler broadening, detector position and energy uncer-
tainties, and sequence reconstruction. In the calculated PSF of
Fig. 5, only scattering angle distribution, Doppler broadening,
and detector pixellation were included. Because the energy and
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Fig. 6. Reconstructed images of simulated data for five Cs-137 point sources.
(a). Simple back-projection. The five sources can not be distinguished. (b). Fil-
tered back-projection with the theoretical PSF using (23). The five sources can
be distinguished. (c). Filter back-projection with the simulated PSF shown in
Fig. 4. It has better angular resolution than the image reconstructed with the
theoretical PSF.

depth resolutions can vary from detector to detector, and dif-
ferent sequence reconstruction algorithms might be developed
and applied, other factors were not included.

IV. RESULTS

The filtered back-projection algorithm described in previous
sections has been applied to both simulations and measure-
ments. In the simulations, five 662 keV points sources were
placed in a cross shape at the side of the detector. The distances
between the center source and four corner sources were 10 cm,
and the distance between the center source and the detector
was 25 cm. The detector was set to have a 5 keV FWHM
electronic noise, an average ionization energy of 5 eV for each
electron-hole pair, and a depth resolution of 1 mm FWHM.
The point spread functions from both theoretical calculation
using (23) and simulation were used to reconstruct the images.
Low pass filtering is not needed for the theoretical point spread
function since it does not vanish at high orders. However, as
shown in Fig. 5, for the simulated point spread function, the
coefficients of the Legendre polynomials vanish quickly as
the order increases. To avoid instability problem in the filtered
back-projection reconstruction, a low pass filter is usually
adapted. However, a low pass filter with bandwidth will limit
the angular resolution to . Therefore, if the bandwidth is
too low, the system cannot achieve good angular resolution. In
our algorithm, coefficients for orders greater than 15 were set
to be constant which equals the value at the order of 15. This
way, the system can achieve better angular resolution and avoid
the instability problem. Fig. 6 shows the reconstructed image

Fig. 7. Reconstructed images of measured data from two Cs-137 sources sep-
arated by 15 degrees. (a). Simple back-projection of the reconstruction cones.
The two sources can not be distinguished. (b). Filtered back-projection with the
theoretical PSF using (23). The two sources can barely be distinguished. (c). Fil-
tered back-projection with the simulated PSF shown in Fig. 4. The two sources
can be distinguished clearly.

of the simulated data with simple back-projection, filtered
back-projection with theoretical point spread function, and
filtered back-projection with simulated point spread function,
respectively.

This algorithm was also applied to the actual measurement.
Two 10 Ci Cs-137 sources were placed 15 degrees apart and
10 cm away from one side of the detector. Only two-pixel events
with full energy deposition were used to reconstruct the image.
Neighboring pixel events with depth separation less than 2 mm
were excluded since most of those events were charge sharing
events. About 40 k good events were used in the reconstruction.
The images reconstructed from the measured data are shown in
Fig. 7. From Figs. 6 and 7 we can see that the filtered back-pro-
jection algorithm with the simulated point spread function has
better angular resolution in the reconstructed image from both
simulated and measured data. This indicates that the simulated
PSF represents the actual PSF better than the theoretical PSF
obtained from (23).

V. CONCLUSION

Filtered back-projection technique for Compton imaging
reconstruction has been implemented on a real CdZnTe de-
tector with 3D position sensing capability. The measured
distribution of scattering angle differs from the prediction of
the Klein-Nishina formula because of the detector geometry
and variation of detection efficiency for photons scattered at
different angles. As a result, the point spread function obtained
by theoretical analysis based on the Klein-Nishina formula
has limitations for practical Compton camera systems. In this
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Fig. 8. Two possible sequences in a two-pixel event. � and � are the two
possible scatter angles.

work, the theoretical PSF from the Klein-Nishina formula was
derived, and the practical PSF for the 3D CdZnTe detector was
obtained by Monte Carlo simulations. Both the theoretical and
the simulated PSFs were used in our filtered back-projection
reconstruction. The reconstructed image using the simulated
PSF showed better angular resolution both for simulated and
actual measured data. Currently, due to the limited size of our
detector system, the PSF is very poor and limits the angular
resolution of the filtered back-projection algorithm. Better
detector system design with improved PSF will benefit the
performance of the filtered back-projection algorithm in future
Compton cameras.

In both the measurement and the simulation, the source is at
662 keV and placed at the side of the detector. The PSF was cal-
culated based on the simulation result with this configuration. If
the source is at different locations, the distribution of the scat-
tering angle might be different, thus the PSF can be changed.
However, since the asymmetry in the geometry is not signifi-
cant for a 15 mm 15 mm 10 mm CdZnTe detector, the PSF
of a point source at the side can still be applied to other source
locations. For a detector configuration with large asymmetry,
simulations should be performed to obtain the PSFs at different
source locations. Different PSFs at different energies also need
to be calculated from separate simulations, which could require
a large amount of work. For each source location at each energy,
the PSF can be discribed by a few coefficients of the Legendre
polynomials. Therefore, it does not require a huge database to
store a complete set of PSFs.

The filtered back-projection algorithm was performed in
the spherical harmonic domain. With the recent advance in
fast spherical harmonic transforms, the computational cost
of the filtered back-projection algorithm was significantly
reduced. Because of the linear property of the algorithm,
the filtered back-projection reconstruction can be performed
event-by-event, which enables the detector to perform real-time
imaging.

APPENDIX

In our 3D position sensitive CdZnTe detector system, the se-
quence of interactions in a multiple pixel event must be recon-
structed solely based on energy depositions. For simplicity, only
the case of two-pixel events is considered in this paper. For those
two pixel events, there are two possible interaction sequences
and the sequence must be reconstructed before the back-pro-
jection (Fig. 8). The current sequence reconstruction algorithm
performs the Compton edge test first. Those events with an en-
ergy deposition greater than the Compton edge of the incident
gamma ray must deposit the smaller amount of energy first. For

Fig. 9. The contribution of an incorrectly sequenced event to the PSF. The
event generates a cone-beam projection with cone axis ~
 and half angle �� �

other events, although both sequences are possible, the inter-
action with higher energy deposition is chosen to be the first
interaction since the possibility of these events is higher for in-
cident photons with energy greater than 400 keV [16]. Other
algorithms, such as deterministic algorithm by comparing the
predicted probabilities of the two possible sequences, have been
examined. Because of the small size of the detector, those algo-
rithms show little advantage over the simple comparison algo-
rithm.

Two angles, and , are defined in (25) and (26). From the
definition, when . When the
scattering angle is between 0 and , the energy deposition of
the second interaction must be higher than the Compton edge.
Since the reversed sequence is physically impossible, the se-
quence can always be reconstructed correctly. When the scat-
tering angle is between and , the first interaction deposits
less energy than the second one, therefore the sequence is in-
correctly determined by our algorithm. For these events, the re-
versed sequence is physically possible, and has higher proba-
bility if the incident direction of the gamma ray is unknown.
Our algorithm selects the higher energy deposition as the first
interaction. For events with scattering angle between and ,
the first interaction deposits more energy than the second one
and their sequences are correctly reconstructed.

When the energy of the incident gamma ray is less than
and are less than . This means that

the first interaction always deposits less energy than the second
one and the sequence can be correctly reconstructed if the
strategy of the sequence reconstruction algorithm is reversed
for this energy range. So, our discussion here will only focus
on scatterings with initial photon energy greater than .

Suppose the correct sequence is , then we have:

(29)

(30)
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Fig. 10. The upper figure shows the PSF of all two-pixel events at 662 keV with sequence reconstruction algorithm applied. The bottom figure shows the Legendre
polynomial coefficients when the PSF is Fourier transformed into spherical harmonics domain.

From (29) and (30) we get:

(31)

For events which can be correctly sequenced by our al-
gorithm, i.e., events with scattering angle in region
or , their contribution to the point spread function

can be calculated by (21) and (22). Now we
need to calculate the contribution of those incorrectly se-
quenced events to the point spread function.

The sequences corresponding to the two possible scatter an-
gles are opposite, so when calculating the contribution of the
incorrectly sequenced events to the point spread function, the
angle between the cone and the vector is . The
reconstructed cone based on an incorrectly sequenced event will
not pass the true source position, unless exactly equals
to . The contribution of an incorrectly sequenced event to
the point spread function is shown in Fig. 9. As a result, (21) is
not valid anymore. The PSF of the incorrectly sequenced events
should be recalculated from (17).

In triangle , and
. By the law of cosine, the following geometry

relationship is obtained:

(32)

As a result:

(33)

in which,

Since is the true scatter angle, . The contribution
of those events with scattering angles between and to the
point spread function is:

(34)

where is defined in (24).
The overall PSF for incident photons with energy greater than

now can be written as:

(35)

in which and are defined in (25), (26), (27)
and (28), respectively.
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The overall analytical point spread function at 662 keV and
its Legendre polynomial coefficients of our 3D position sensi-
tive CdZnTe detector are shown in Fig. 10. The scale in this
figure differs from the scale in Fig. 5 because the PSF in this
figure is calculated directly from (23) while the PSF in Fig. 5
is from the simple back-projection image, which depends on
how many events are used in the reconstruction. By comparing
the Legendre polynomial coefficients in Fig. 10 and Fig. 5 we
can see that the PSF from the simulated data has much lower
values for high-frequency components than the PSF from the
theoretical calculation. This is because the pixellation of the de-
tector blurs the simple back-projection image and suppresses the
high-frequency components.
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