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CHAPTER I

Introduction

Radiation is all around us. Most people are surprised to discover that the bananas

they eat are (slightly) radioactive or that the concrete walls in our buildings and the

roads and sidewalks under our feet also emit radiation. Natural-background radiation

is present in the Earth from uranium and its daughter products, and it is present in the

air from Radon. Cosmic rays are constantly showering us from outer space. However,

all of these sources of radiation are relatively weak, and most people never realize or

care that they are constantly absorbing these background emissions. Radiation is not

something to be feared. When understood and properly handled, radiation can be an

effective tool that can power a city, sanitize food, kill cancerous cells, or detect and

locate radiological threats.

1.1 Gamma-Ray Radiation

This work focuses on one specific type of radiation known as gamma rays which are

part of the electromagnetic spectrum. As seen in Figure 1.1, electromagnetic radiation

is a blanket term for may types of radiation including radio waves, microwaves, visible

light, X rays, and gamma rays. The main distinction between these parts of the

spectrum is the energy of the radiation. For example, radio waves have very low

energy per photon (about 10−9 to 10−6 eV); whereas gamma rays have very high
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Figure 1.1: Electromagnetic spectrum [1].

energy (about 106 eV and up). The energy of the photons (individual particles of

electromagnetic radiation) also determines how those photons interact with matter.

There are three main gamma-ray interactions with matter that are important

for this work: photoelectric absorption, Compton scattering, and pair production.

Figure 1.2 shows the relative probability of each type of interaction to occur as a

function of energy in CdZnTe. At low energies the photoelectric effect dominates, and

as the photon energy increases, Compton scattering is more likely. At energies much

higher than 1.022 MeV, pair production is the dominant interaction type. Although

the plot shows the probability for CdZnTe, which is the material of the detectors used

in this work, the trends are similar for all materials.

The photoelectric effect occurs when a photon interacts with and excites an atom

enough to eject an electron from the orbit of that atom. The photon deposits all of its

energy then disappears, and the excess energy from the photon after the excitation

of the atom is converted into kinetic energy of the ejected electron.

Compton scattering occurs when the gamma ray interacts with an electron di-

rectly, whether it is bound to an atom or not. Here the electron absorbs the full
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Figure 1.2:
Gamma-ray attenuation coefficient (interaction probability) for CdZnTe
[2].

energy of the photon initially. However, unlike photoelectric effect, a second pho-

ton of lower energy is emitted in a different direction than the original photon. The

electron then carries the difference in energy between the scattered photon and the

incident photon. The physics behind this interaction mechanism are described in

more detail in Chapter III.

Pair production is only possible when the incident photon has an energy greater

than 1.022 MeV (2x the rest mass of an electron). When a photon of adequate

energy interacts with the electromagnetic field of the nucleus of an atom, the photon

is converted into an electron and a positron (an anti-electron). The energy of the

original photon exceeding 1.022 MeV is shared between the electron and positron.

After the electron bounces around and loses its energy, it simply is absorbed by the

surrounding material and is bound by an atom. However, when the positron slows

down, it will annihilate with an electron and emit two new 511 keV photons.
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1.2 Gamma-Ray Detection and Applications

Despite the fact that these gamma-ray interactions are constantly occurring all

around us and even inside of us, humans cannot sense gamma-rays (or most other

forms of radiation) without the help of specialized detection equipment. Therefore,

many types of detectors have been developed over the years that allow us to measure

this radiation [3,4]. Most detectors work by either directly or indirectly converting the

gamma-ray radiation into electric charge. The charge is then measured and analyzed

to determine the amount or intensity of the gamma rays, their energy, and even the

location (or distribution) of their source.

Determining the location or distribution of gamma-ray sources is called gamma-

ray imaging. Many applications including nuclear medicine, decontamination, border

inspection, and nuclear nonproliferation can benefit from the use of gamma-ray imag-

ing. In each of these applications, one similarity is the potential for moving sources

and/or moving detectors. During medical procedures patients (or at least their or-

gans) are moving. In decontamination procedures it would be convenient to move

through a space with a detector to determine what objects show signs of contamina-

tion. Vehicles which could potentially carry illicit nuclear material are in motion as

they travel to and from the border, and nuclear material travels through production

facilities around the world.

Compensating for unknown source motion can be somewhat of a nuisance when

performing image reconstruction, but a detector in motion has the potential to recon-

struct 3-D tomographic radiation images. Tomographic imaging gives the user more

information about the extent of the source and allows one to pinpoint the true 3-D

position of the source instead of just the direction of the source. This work discusses

the reconstruction of 3-D images but focuses on accounting for motion and using it

to perform better image reconstruction.
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1.3 Overview

Chapter II briefly describes the specific type of gamma-ray detectors used for this

work, pixelated CdZnTe. Pixelated CdZnTe can measure both the energies of gamma-

ray interactions and the positions of those interactions. It is the combination of

energy and position information that enables one to perform the gamma-ray imaging

described in this work.

Chapter III introduces the reader to Compton imaging and the reconstruction

methods used in this work. Many before me have written similar summaries on

Compton image reconstruction focusing on mathematical models, uncertainty calcu-

lations, and applications [5–7]. The focus of this review is more pragmatic. Important

assumptions and options for the reconstruction methods and their effects on the re-

sulting images follow a brief discussion on the basics of Compton imaging.

Chapter IV expands upon Chapter III to include 3-D image reconstructions. Sev-

eral different methods of producing 3-D images are discussed. The final method,

which uses moving detectors, introduces the first image reconstruction used in this

work that involves motion.

Chapter V describes a novel reconstruction method for imaging sources with

known motion. After a basic description of the benefits of the motion compensa-

tion scheme, this chapter focuses on the mathematical model of the reconstruction

methods followed by imaging results reconstructed by this new method using exper-

imental data.

The analysis in Chapter VI drops the requirement of knowing the path of the

source motion. In crowded areas with complicated motion, reconstructing Compton

images as a function of time becomes simpler than compensating for the motion of

many moving objects. However, this time-dependent reconstruction introduces its

own challenges which are addressed in this chapter.

Finally, Chapter VII discusses some areas of the image reconstructions that need
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more work or other directions in which this type of work may make an impact.

1.4 Contributions of this Work

The main novel contributions of this work are contained in Chapters IV-VI. The

focus of these contributions is to account for the presence of motion in the imaging

algorithms previously developed for static scenarios. The 3-D image-reconstruction

algorithms we describe in Chapter IV allow one to create tomographic images with

a moving detector system. In this case, the motion of the detector generates the

required parallax to reconstruct the 3-D distribution of radiation sources.

When instead the sources are in motion and the detector is stationary, this work

focuses on two different novel approaches to account for this motion which would

otherwise cause blur in the reconstructed image. The first reconstruction method

is for situations where the source motion is known or can be estimated, e.g., by

using optical tracking methods for cars at a border crossing. The addition of new

spatial-distribution bins that track the source motion allow the algorithm to faithfully

reconstruct the source distribution for multiple moving and stationary sources.

For the situation where the source motion is unknown, we add the time domain

to the image reconstruction and take several different approaches to reduce the sta-

tistical noise expected for low count rate scenarios. The first approach is to add a

regularization parameter to encourage the reconstructed image to be smooth in the

time domain. The other techniques involve using moving-average and median filter-

ing to reduce statistical fluctuation in the time domain which ultimately lead to a

reduction in artifacts found in the imaging domain.

All of the image reconstruction algorithms described in this work are implemented

in C++ and have been included in the UMImaging code package [8].
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CHAPTER II

Pixelated CdZnTe Detectors

Although the focus of this work is Compton image reconstruction, it relies on

the data recorded by gamma-ray detectors. In an appropriate configuration, many

types of gamma-ray detectors can produce the data required to perform Compton

imaging. However, pixelated CdZnTe detectors have several advantages over other

types of detectors including room-temperature operation, excellent energy resolution,

and 3-D interaction position sensitivity. The following sections briefly describe the

detector operation and configuration and are followed by a description of a Geant4

model of the detector system.

2.1 CdZnTe Operation

CdZnTe is a compound-semiconductor detector with a relatively wide band-gap

of 1.6 eV [3, pg. 492]. Like other semiconductor detectors, a bias voltage is applied to

the detector volume during operation to create a depletion region extending through

most of the volume in which all of the free electric carriers (electrons and holes) have

been swept out of the detector. The large bandgap means that at room temperature

the probability of thermal excitation of free charge carriers in this depletion region

is much lower than detector materials like high purity germanium (HPGe). This low

thermal carrier generation and high resistivity allow the detectors to operate at room
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temperature without excess noise from thermal carrier generation and the leakage

current through the bulk. This room temperature operation is one key advantage

CdZnTe has over materials like HPGe.

As discussed in the previous chapter, when gamma-rays interact with matter

they excite and ionize atoms. In semiconductors, this ionization process generates a

quantity of electron-hole pairs proportional to the energy deposited by the gamma

ray. Normally these would simply recombine in the absence of an electric field, but

the bias voltage applied to the detector causes an electric field to form which attracts

the electrons to the anode surface and holes to the cathode surface. The goal is to

measure the amount of charge generated by the interaction to determine the energy of

the incident photon and the position at which the interaction occurred by observing

the electrical signals produced by the charge moving through the detector.

2.2 Charge Collection and Measurement

A key difference between CdZnTe and materials like HPGe is poor hole mobility.

HPGe detectors have relatively high mobility for electrons and holes allowing them

to use the induced signal from both carriers moving through the bulk. CdZnTe has

poor hole mobility compared to its electron mobility to the point that the holes are

essentially stationary during the time in which the electrons are completely collected

by the anode. This lack of hole motion means that CdZnTe detectors must rely solely

on the motion of electrons to determine the deposited energy.

Before we can analyze how the lack of hole motion affects the measured signal,

we must have an understanding of the charge-induction process. The Shockely-Ramo

Theorem [9–11] states that the charge Q induced on an electrode by point charge q is

Q = −q
[
φ0(~r2)− φ0(~r1)

]
(2.1)
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where φ0 is the weighting potential, ~r1 is the location where the charge is created,

and ~r2 is the final location of the charge. The weighting potential is unique to each

electrode and is calculated by setting the electrode of interest to unit potential while

grounding all other electrodes and solving Poisson’s equation ignoring space charge

(including q)

∇φ0 = −ρ
ε

= 0 (2.2)

where ρ is the space charge and ε is the permittivity of the medium. If there is a

magnetic field present, this analysis assumes that it is constant. The implication of

this result is powerful. It means that the charge induced on an electrode depends on

the change of the weighting potential between the time the charge is generated and

when it is collected but is completely independent of the actual applied bias, the path

taken by the charge, and any space charge that may be present.

2.2.1 Planar Detectors

Consider a cubic detector geometry with a simple planar cathode and anode seen

in Figure 2.1. The weighting potential calculated using (2.2) for both electrodes is

shown as a function of depth in Figure 2.2. For simple planar electrodes, the weighting

potential is uniform in the lateral directions. Assume that the detector material is

HPGe and a gamma-ray interacts at some depth d in the detector generating n

electron-hole pairs which have unit charge ±q0. If we focus on the induced charge on

the cathode, (2.1) combined with Figure 2.2 predicts that the induced charge from

the holes is

Qh = (1− d/D)nq0 (2.3)

where D is the total depth of the detector. Similarly, the induced charge from the

electrons is

Qe = (0− d/D)n(−q0) (2.4)
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Figure 2.1: Diagram of a 2×2×1.5 cm3 planar detector.

since electrons have a negative charge, and the total induced charge is

Qt = Qh +Qe = nq0 (2.5)

which is proportional to the total energy deposited by the gamma-ray interaction.

However, if we instead assume that the material is CdZnTe, there is no hole movement

and the total induced charge is only (d/D)nq0. Now the signal is proportional to both

the deposited energy and the depth-of-interaction (DOI).

2.2.2 Pixelated Detectors

Several different methods of overcoming this depth dependency (all of which take

advantage of the Shockley-Ramo theorem) have been explored [12–14], but this work

uses a pixelated anode approach [15]. Figure 2.3 shows a diagram of a pixelated

CdZnTe detector with dimensions of 2 × 2 × 1.5 cm3. The cathode is still a simple
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Figure 2.2:
Weighting potential as a function of depth for the anode and cathode of
a planar detector.

planar electrode as in the previous example, but the anode now consists of 11 × 11

square pixels with a pixel pitch of 1.72 mm and a grid electrode that surrounds each

of the pixels. With an appropriate negative bias, the grid helps steer the charge to

the pixels for better charge collection.

Figure 2.4 shows the weighting potential as a function of depth underneath the

pixel that collects the charge for the cathode, the collecting anode pixel, and a nearby

non-collecting anode pixel. The weighting potential for the cathode is exactly the

same as it was for the planar detector. However, because of the small-pixel effect [16],

the weighting potential for the anode pixels stays almost flat for most of the bulk of

the detector. At about a distance of one pixel pitch from the anode side, the weighting

potential for the collecting anode increases sharply to one, but the weighting potential

for the non-collecting anode initially rises and then drops to zero.

The anode pixels are relatively insensitive to the movement of charge in most of

the detector volume since the change in their weighting potential is almost negligible

until the sharp rise near the anode surface. Thus, assuming electron trapping is

negligible, the induced signal on the collecting pixel is almost independent of the

DOI unless the interaction occurs within a pixel pitch of the anode surface. In this
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Figure 2.3: Diagram of a 2×2×1.5 cm3 pixelated CdZnTe detector.
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Weighting potential as a function of depth for the anode pixels and cath-
ode of a pixelated detector corresponding to the lateral position directly
underneath the collecting pixel.

simple example where all of the charge is collected by one pixel, the non-collecting

pixels will result in a slightly negative signal depending on the DOI.

Now we have the amplitude of the cathode signal, which is proportional to the DOI

and the energy deposited, and the amplitude of the collecting-anode signal, which is

only proportional to the energy deposited. If we compute the ratio of the cathode

signal amplitude to the collecting-anode signal amplitude, a method pioneered by He

et al. [17], we get the DOI. With the depth information and the 2-D position of the

collecting-anode pixel, we can calculate the 3-D position of the gamma-ray interaction

in the detector volume. This method works when only one interaction occurs in the

detector volume during the signal integration time. However, later work introduced

the measurement of electron-drift time to determine the DOI of multiple interactions

resulting from a single incident photon [18].

2.3 Non-Ideal Characteristics

Of course in reality there are many non-ideal characteristics about the system that

cause reduced performance and ultimately affect the images reconstructed using the
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methods described in the following chapters. Some of these limitations are a result of

the detector itself, and others can be attributed to the readout electronics. The next

two sections describe a few of these limitations.

2.3.1 Detector Limitations

Pixel jumping is an effect recently observed in pixelated CdZnTe detectors [19]

that refers to the process of charge moving laterally in the bulk of the detector so

that it is collected by a pixel other than the pixel under which it was originally gener-

ated. The obvious implication here is that the true position of the interaction differs

from that recorded by the detector system. This inaccurate position information can

cause problems for image-reconstruction methods that require this information. For-

tunately, Compton imaging is less affected by this phenomenon than other imaging

modalities, but it is still adds to the uncertainty of the image reconstruction.

Dead layers and/or pixels are present to some extent in all pixelated CdZnTe

detectors. The volume just below the anode surface is essentially a dead region

because of the relatively small change in the weighting potential between the initial

and final positions of the electrons. The detector cannot sense gamma-ray interactions

in this region, and therefore it does not contribute to the active volume of the detector.

This dead layer is present for every pixelated detector and causes a loss of efficiency

and some non-uniformity in the detector response.

Dead anode pixels are not uncommon and can vary in severity. Some pixels are

dead to interactions of all energies, and some are just dead to low energy interactions

(on the order of 60 keV). These dead pixels are usually a result of poor fabrication of

the anode pixels and again cause non-uniformities and loss of efficiency.

Finally, some detectors have regions of active volume in which the electron drift

velocity is non-uniform [20]. Since we use that drift time to reconstruct the DOI

for events where more than one anode pixel collects charge, if the magnitude of the
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electron-drift velocity is relatively low in a particular region, the uncertainty in the

reconstructed DOI increases because of the slower initial rise of the induced signal.

This degradation in depth resolution can cause significant degradation in the quality

of the image reconstruction.

2.3.2 Readout Electronic Limitations

The VAS UM/TAT4 application specific integrated circuit (ASIC) designed by

Gamma-Medica Ideas [21] is at the front end of the readout electronics for the exper-

imental results shown in this work. This piece of circuitry contains 129 channels, each

of which reports the pulse amplitude and timing information which are then read out

by an FPGA board and eventually to a computer for analysis. Despite the excellent

performance this ASIC technology can achieve, there are some limitations that affect

the imaging performance.

As with any circuit, some level of electronic noise and interference between sig-

nals is present in the output from the ASIC. This noise and interference ultimately

manifests itself as uncertainties in the measurement of the deposited energies and

interaction depths. The uncertainty in the energy measurement for the current sys-

tem does not limit the current imaging reconstructions, but the uncertainty in the

DOI does have some significant effect on the image quality for reasons discussed in

Chapter III.

“Charge sharing” refers to when an electron cloud created by a gamma-ray in-

teraction is collected by two or more pixels. This sharing can happen when an in-

teraction occurs midway between two pixels or when the charge cloud is so large it

spills over to neighboring pixels. When charge is shared between pixels, the uncer-

tainty in the energy measurement is increased because of the addition of noise in

multiple ASIC channels. There is also the possibility that the charged shared on a

pixel is too small to trigger the channel which would cause that energy information
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to be lost entirely. Charge sharing also makes it difficult to differentiate between

true multiple-interaction events and single-interaction charge-sharing events. How-

ever, recently Wang et al. [22] have shown that the best way to handle these events

is to simply combine the information from the triggered pixels by summing the en-

ergies and setting the interaction location to be the energy-weighted centroid of each

individually-reconstructed position.

One other limitation of the VAS UM/TAT4 ASIC is that it can only measure

a single interaction under any one pixel. Because the induced-charge signal is sent

through a shaping filter, when two interactions occur under a single anode pixel, the

induced charge simply piles up and the resulting shaped signal is roughly proportional

to the sum of the energies deposited. This effect reduces the number of events that

can be used for imaging, but this loss of events is relatively small affecting about

5% of single-pixel events [23] (although this percentage does as a function of source

energy and position).

2.4 18-Detector Array

To improve overall efficiency, we made an array consisting of 18 2×2×1.5-cm3

pixelated CdZnTe detectors. The geometry of the detectors which consists of two

3×3 planes of detectors is shown in Figure 2.5. The ASICs are connected to the

anode side of the detectors and are depicted as light grey squares on mounted on the

green printed circuit boards. This arrangement places the dead layer near the anode

surface on the inside of the array so that any low energy gamma-rays interacting near

the outer surface of the array can be detected.

The system operates at room temperature and triggers as a single detector unit.

The triggering scheme allows a photon that scatters between detectors or detector

planes to be treated as a single multiple-pixel event instead of several individual

events. This improves full-energy deposition efficiency and imaging efficiency since

16



Figure 2.5:
Diagram of the 18-detector array. The pixelated detectors are arranged
in two 3×3 planes with the cathode surfaces facing out to increase low-
energy gamma-ray detection efficiency.
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Compton imaging requires the use of multiple-interaction events. It can achieve better

than 1% energy resolution at 662 keV for single-pixel events and about 1.4% energy

resolution at 662 keV for all events combined and has a relative efficiency of about

30% at 1333 keV compared to a 3×3 inch NaI(Tl) scintillation detector.

This detector array is the main source of experimental data for the results pre-

sented in this work.

2.5 Geant4 Simulation

Some analysis in this work requires the use of simulated data. A simulation

package written in the C++ programing language and based on the Geant4 toolkit [24]

is used to generate gamma-ray interaction-event data similar to that recorded by real

pixelated CdZnTe detectors. Many geometries including the 18-detector array are

supported as well as many source types including parallel beams and isotropic point

sources that are stationary or in motion.

The simulation uses physics packages that include not only the gamma-ray inter-

actions described in the previous chapter, but also the electron cloud production. The

electric field and charge transport are not included in the model, but pixelation and

charge sharing effects are included as well as realistic energy and DOI uncertainties.
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CHAPTER III

Gamma-Ray Imaging

Gamma-ray imaging is fundamentally different than optical imaging because gamma

rays cannot be focused easily. When someone takes a picture of the sunset with their

camera, the light incident on the camera lens is bent and directed toward the film

or light sensor. However, despite some recent work [25], it is still impractical to im-

age gamma rays this way due to the nature of gamma-ray interactions with matter.

Because of this key difference, gamma-ray imaging requires a different approach.

In general, gamma-ray detectors record information about the photon interactions

inside the detector volume, but the data itself is not natively an image (except in

transmission imaging like an x-ray of a broken leg). Therefore, the recorded data has

to be processed in order to reconstruct a useful image. This chapter describes two

Compton image reconstruction methods that are used to generate meaningful images.

3.1 Definitions

The goal of the following reconstruction methods is to use the list-mode data

(event-by-event data that includes the energies and positions of each photon inter-

action) recorded by the detector, υ1, . . . ,υn, to reconstruct the source intensity as a

function of direction and energy, λ(~r, E), where E is the incident photon energy and

~r is the direction from which the photon originated, and n is the number of recorded
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events.

A typical event υm recorded by the detector system contains the 3-D positions

and energies of the individual photon interactions that define it. For example, a

photon may enter the system, Compton scatter, and get absorbed. This event would

contain the position and energy-deposition information at the scatter site as well as

the position and energy deposition information at the absorption site.

In this chapter, the imaging domain is restricted to the 2-D directional space

surrounding the detector. This space can be visualized as a sphere with the detector

centered at the origin as seen in Figure 3.1(a). Spherical coordinates at a fixed radius

are used to describe the space in terms of polar and azimuthal angle. The energy

domain is typically a simple histogram of energies ranging anywhere from 0-3 MeV.

3.2 Simple Back Projection Reconstruction

The simple back projection (SBP) method uses the gamma-interaction data to

project the possible incident directions (e.g., a Compton cone) back into the imaging

space. Generally, because of its simplicity (i.e., it does not include calculations to

estimate attenuation and interaction probabilities and it is not iterative) SBP is fast,

but for Compton imaging the quality of the reconstructed source distribution is not

as good as the more advanced reconstruction techniques.

3.2.1 Compton Imaging

Compton imaging is based on the kinematics of a photon that undergoes Comp-

ton scattering. Traditionally, Compton imaging systems required two 2-D-position-

sensitive planes of detectors: one to scatter the incident photons and one to absorb

those scattered photons [26, 27]. However, Compton imaging using 3-D-position-

sensitive detectors differs from traditional Compton imaging or even other imaging

modalities like CT, PET, SPECT, or coded-aperture imaging, because it does not re-
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quire collimation or a specific detector geometry. A single pixelated CdZnTe detector

(like those used in this work) can perform Compton imaging by itself because it can

record the 3-D positions and energies of each photon interaction in the active volume.

In fact, any gamma-ray spectrometer with the ability to record the 3-D locations of

multiple-interaction events can be used as a Compton imager.

3.2.2 Kinematics

Assume that a gamma ray incident on the detector interacts through Compton

scattering and that the scattered photon is then captured by a photoelectric absorp-

tion. A line drawn between the two interaction locations represents the axis of a cone

whose surface defines the set of possible origins of the incident photon (see Figure 3.2).

The half angle of the cone, θ, is determined by the kinematics of the Compton scatter

interaction. Through conservation of energy and momentum and assuming that the

photon interacts with an unbound electron at rest, one can derive the following simple

expression:

E ′ =
E0

1 + E0

m0c2
(1− cos(θ))

(3.1)

where E0 is the energy of the incident photon, E ′ is the energy of the scattered photon,

m0 is the rest mass of an electron, and c is the speed of light. In this example, the

sum of the energies deposited in the two interactions is equal to the energy of the

incident photon, E0, and the energy deposited in the photoelectric absorption is the

energy of the scattered photon, E ′. One can then easily solve for the scatter angle θ.

As mentioned earlier, this calculation only determines the half angle of a cone

that defines a set of possible source directions. A single event alone will not reveal

the direction of a single point source. This ambiguity is the result of not knowing the

initial direction of the scattered Compton electron, φ. If this direction is known, the

Compton cone collapses to a line connecting the initial interaction location and the

source location.
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Figure 3.2: Example of a Compton scatter and Compton cone.

Unfortunately, tracking the initial direction of the scattered electron is difficult

because of the sporadic path that electrons take. Until recently, the ability to record

the scattered electron track was limited to gas detectors [28] where the low density

reduces the probability of the electron to undergo a high angle scatter. Ironically,

however, their low density also makes them poor gamma-ray detectors since gas has

such a low stopping power. Some recent work [29] shows promise of recording the

electron track in a solid state system using silicon charge-coupled devices (CCDs)

which allow the reconstruction to restrict the possible set of incident directions to a

small cone segment. However, this type of system requires an absorption plane like

traditional Compton cameras, and the readout and processing of the CCD data is

slow. Both of these factors reduce efficiency, but each event carries more information

since much of the ambiguity of the Compton cone is eliminated.

For most Compton imaging detector systems, including the CdZnTe based detec-

tor systems used for this work, the electron track information is unknown. In this case,

several Compton cones must be reconstructed to reveal the true direction of a point

source. As seen in Figure 3.3, all of the reconstructed Compton cones intersect in the

source direction, but some also overlap in other chance locations. Thus, because of

these chance intersections combined with measurement uncertainties and interference

from other sources and background, many cones are required to determine the true
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Figure 3.3: Compton cones overlap to reveal the source direction.

source direction in practice.

3.2.3 Full-Energy Assumption

An important assumption made for this reconstruction is that the incident photon

deposits all of its energy in the active volume of the detector. E0 is unknown and

is estimated by summing the energies of all of the interactions in the event. This

assumption is obviously far from reality since a large fraction of incident photons

deposit some energy and escape the detector system entirely (especially for relatively

high energy photons and/or small detector volumes).

Therefore, when using SBP, it is important to use energy windowing to only recon-

struct full energy photopeak events. This filtering can be set before the reconstruction

has started if an isotope of interest is known a priori. However, a quick look at the

energy spectrum of the recorded events may reveal other sources of interest, and the

window could be adjusted to accommodate them. Also, if the source energy is known

(or is revealed after a look at the spectrum), the reconstruction can be performed

using that known energy for E0 and the known energy minus the energy deposition of

the initial Compton scatter for E ′ in 3.1. This substitution will result in the correct

cone angle calculation despite the possibility that the full energy was not deposited
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assuming the photon did not undergo any scattering before reaching the detector.

3.2.4 Sequence Reconstruction

One seemingly simple yet important piece of information required for Compton

imaging is the ability to know which interaction occurred first and which one was

second. The first interaction defines the vertex of the reconstructed cone, and the

first interaction combined with the second interaction defines the cone axis. Although

they carry important energy information, the interactions beyond the first and second

are irrelevant for defining the geometry of the Compton cone. Unfortunately, the

detectors used for this work cannot resolve the time-of-flight information to determine

which interaction occurred first. The interactions happen almost simultaneously since

the average distance between interactions is on the order of a few millimeters which

corresponds to about a 10 ps time difference.

Without the time-of-flight information, there are N ! different possible interac-

tion sequences, where N is the number of interactions in the event. To correctly

reconstruct the Compton cone a sequence reconstruction algorithm must be used to

estimate the correct interaction sequence. We use three different sequence reconstruc-

tion algorithms for this purpose: simple comparison, deterministic, and mean-squared

difference (MSD). The following sections give a brief introduction to these methods.

3.2.4.1 Simple Comparison Method

The simple comparison algorithm is designed to work with 2-interaction events

only. In this case there are only two possible sequences. Under the assumption that

the incident photon deposited its full energy in the two interactions, one can use

(3.1) to determine if a sequence is physically possible. Based on the kinematics, the

maximum energy that a photon can deposit in a Compton scatter, Emax, occurs when
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the scattering angle is 180◦:

Emax =
E0

1 + m0c2

2E0

. (3.2)

The first step in the simple comparison method is to check both energy depositions to

see if one of them deposits more energy than Emax. If one does, then that interaction

must have been the second interaction, and the true sequence is found.

If both energies are below Emax, then another approach must be taken. At this

point Xu [30] proposes comparing the two deposited energies and picking the one

with the higher energy to be the first interaction. This proposal was based on a

simulation that suggested a larger fraction of photons deposit more energy in their

first interaction for 15 mm x 15 mm x 10 mm CdZnTe detectors. This result is not

immediately obvious, but if more energy is deposited in the first interaction, less

energy is left for the scattered photon, making it more likely to be captured. Despite

the fact that the detectors used in this work are larger and are part of an array, the

simple comparison method still works well for the larger geometry.

3.2.4.2 Deterministic Method

The deterministic sequence reconstruction method, unlike simple comparison,

works for events with an arbitrary number of interactions. Of course, there is a

practical limit since the number of possible sequences is N !, which quickly gets out

of hand for events with more than just a few interactions. Luckily, for the photon

energies of interest in this work (0-3 MeV), the probability of having more than 5

interactions is usually negligible for CdZnTe detectors.

This algorithm calculates the probability of each interaction sequence and chooses

the sequence that has the highest likelihood of occurring. The factors used in the

calculation include attenuation and scatter cross-section probabilities for interaction
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positions ~r1 . . . ~rn and energies E1 . . . En:

Prseq =Pr[Incident photon reaches ~r1] ·

Pr[Compton scatter deposits energy E1] ·

Pr[Scattered photon travels ~r1 → ~r2] ·

Pr[Compton scatter deposits energy E2] ·
...

Pr[Scattered photon travels ~rn−1 → ~rn] ·

Pr[Photoelectric absorption deposits energy En], (3.3)

For 2-interaction events, the Compton edge test is performed first to determine if one

of the sequences is invalid.

In practice, the deterministic method performs slightly better than the simple

comparison method, but it is slightly more computationally expensive. Thus, if speed

is not of the utmost importance, the deterministic method should be used for 2-

interaction events.

3.2.4.3 Mean Squared Difference Method

The mean squared difference sequence reconstruction method only works for events

with three or more interactions (with the same practical upper limit as the determin-

istic method). It requires three or more interactions because it compares the scatter

angles determined energetically using (3.1) to those determined geometrically by

cos θr =
(~r2 − ~r1) · (~r3 − ~r2)

‖(~r2 − ~r1)‖‖(~r3 − ~r2)‖
. (3.4)

Thus, with only two interactions, no geometric calculation is possible.

The figure of merit (FOM) for each interaction sequence is described by Xu et
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al. [30] to be the square of the difference between the scatter angle determined by

energy and geometry divided by the variance in that difference:

FOMseq =
(cos θe − cos θr)

2

σ2(cos θe − cos θr)
(3.5)

where θe is the scatter angle calculated using the energy information, θr is the scatter

angle calculated geometrically, and σ2(cos θe− cos θr) is the variance in the difference

described in [30]. For events with more than three interactions, this ratio can be

calculated for multiple scatter locations. In that case the FOMseq is simply the

product of those ratios. The sequence with the lowest figure of merit is selected as

the “correct” sequence.

As shown by Thrall et al. [31], the MSD method performs better than the deter-

ministic method and is also less computationally expensive. Thus, for events with

three or more interactions, MSD is the sequence reconstruction method of choice.

3.2.5 Key Reconstruction Options

Xu [5] describes in detail how Compton cones are reconstructed when considering

measurement uncertainties from the detector, and Section 3.3.2.2 describes the system

response function to calculate the distribution of a single ring. The resulting ring

distributions of each recorded photopeak event are then added together to reconstruct

the SBP image. However, here we focus on several options one can set that affect

both how the cone is drawn and what type of events are used in the reconstruction.

These options can be set to fit a specific need when using this reconstruction method.

3.2.5.1 Cone Width

Determining the width of the back projected ring is one such option that can be

tailored to a given problem. The standard ring width is calculated to correspond
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to the uncertainty of the measurement. The two uncertainties that affect the simple

back projection reconstruction are the energy uncertainty and the interaction position

uncertainty. The recorded energy primarily affects is the cone angle, θ. In contrast,

the interaction position uncertainties mostly affect the direction of the cone axis.

To demonstrate the relative importance of each type of uncertainty, an SBP recon-

struction using rings with a constant narrow width is used to reconstruct simulated

data that isolates each type of uncertainty. Figure 3.4(a) is the resulting image from

an SBP reconstruction using data from a Geant4 simulation that reported exact in-

teraction energy and position information of 662 keV photons emitted from a point

incident on the detector array described in section 2.4. Figure 3.4(b) displays the

SBP image reconstructed using data from the same Geant4 simulation with an added

energy blur consistent with the experimental energy resolution of the CdZnTe detec-

tors. Finally, Figure 3.4(c) shows the reconstructed SBP image using data from the

Geant4 simulation with an added pixellation uncertainty and 0.5 mm depth blur on

the interaction locations (but still perfect energy). Doppler broadening effects due to

the initial motion of the Compton electron are ignored for this study.

One can see from the figures that the position uncertainty is the dominant source

of blur in the reconstructed image. The angular resolution only degrades from about

2.5◦ to 6◦ FWHM when energy uncertainty is included, but the position uncertainty

increases the resolution to about 30◦ FWHM. This result is expected since the average

separation distance of interactions in CdZnTe from 662 keV incident photons is only

a few millimeters. Remember that the pixel pitch of the detectors is 1.72 mm, and

the depth uncertainty is about 0.5 mm. Thus, the position uncertainty is of the

same order of magnitude as the separation distance of the interactions, yielding large

uncertainty in the cone axis.

The inclusion of this uncertainty in the ring reconstruction is an essential part of

the model-based reconstruction methods described later in this chapter; however, it
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Figure 3.4:
(a) SBP reconstruction with perfect energy and position information. (b)
SBP reconstruction including energy uncertainty only. (c) SBP recon-
struction including position uncertainty only.
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may seem strange, intuitively, to add blur to the image by increasing the width of

the rings. This added blur is analogous to adding a Gaussian distribution centered

on the recorded energy bin in the pulse height spectrum instead of simply adding a

count to the appropriate energy bin. In fact, the added blur actually degrades the

angular resolution which is already poor.

The reason extra blur is added to the cones in the SBP reconstruction is that it

allows the source direction to be more obvious with a limited number of counts. Fig-

ure 3.5 illustrates this effect. A similar effect may be accomplished by using a coarser

imaging mesh, which reduces precision of the source direction estimate. However,

adding blur to the cones does not affect the precision of the direction of the hotspot.

In short, by using a fine mesh and adding blur to the cones, the general direction of

the source becomes obvious after a just a few reconstructed cones. Then, after a long

measurement time, the direction of the source can be estimated with precision but at

the expense of a loss in resolution. Thus, if the best angular resolution is required and

there are many counts available, thin rings (not blurred by measurement uncertainty)

are desired, but for most other situations the standard blurry rings are used.

3.2.5.2 Interaction Separation Distance

Related to the ring width is the selection of a minimum interaction separation

distance. This decision comes down to a tradeoff between efficiency and resolution.

Since events for which the first two interactions have a small separation distance

produce Compton cones with large uncertainties, ignoring these events can drastically

improve imaging resolution. However, Figure 3.6 shows the distribution of separation

distances between the first two interactions of a 662 keV photon in the 18-detector

array described in Section 2.4. Most of the events have a separation of less than 2.5 cm

and the distribution peaks at very small separations of less than 0.5 cm. However,

there is a set of events where the average interaction separation is about 6 cm. These

31



Counts = 20.0
Iterations = 0
Mean = 18.829
Stdev = 54.8

045.0

90.0

135

180

225

270

315

360

Azimuthal angle

0

45.0

90.0

135

180

Po
la

r a
ng

le

844

633

422

211

0

Intensity

(a)

Counts = 20.0
Iterations = 0
Mean = 18.683
Stdev = 16.4

045.0

90.0

135

180

225

270

315

360

Azimuthal angle

0

45.0

90.0

135

180

Po
la

r a
ng

le

202

152

101

50.68

0.008

Intensity

(b)

Figure 3.5:
(a) Reconstructed SBP image using 20 thin cones. (b) Reconstructed
SBP image using the same 20 cones blurred according the measurement
uncertainty.
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Figure 3.6:
The distribution of separation distances between the first two interactions
from 662 keV photons in the 18-detector array.

events occur when the incident photon scatters in the front plane of detectors and

gets absorbed in the back plane, and we refer to them as “interplane” events. These

events are relatively rare happening only about 4% of the time for multiple-pixel

events recorded from 662 keV incident photons; however they produce images with

much better angular resolution from about 30◦ FWHM using all events to about 10◦

FHWM for events that scatter between planes. Since one of the drawbacks of the

current array system is the slow readout process, it is advantageous to trigger only

on interplane events in high count-rate environments. Using this triggering scheme,

the system could operate in very high count rate situations while only recording the

best possible events for imaging.

3.2.5.3 Cone Normalization

During the reconstruction process, each event is reconstructed in its own individual

image then added to the overall image. Thus, there is a chance to normalize the

ring before it is added to the image. To normalize the cone, each element of the
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individual cone image is divided by the spatial integral of that image. The advantage

of normalizing the cones before adding them to the overall image is that each event

contributes the same amount of total intensity to the image. It also means that

the events that have large separation distances will have a greater impact on the

image since they have more concentrated rings (thinner widths). This emphasis of

the large separation events helps to improve the resolution since they should have

lower uncertainty than the events with relatively close interactions.

There are, however, a few drawbacks to this normalization technique. For the

same reason that the large separation events have greater influence, so do events that

have scatter angles near 0◦ and 180◦ since they are also concentrated in a smaller

area. The difference is that the low and high scatter angle events do not necessarily

have smaller uncertainty.

However, if for some reason the reconstruction imaging domain did not encom-

pass the full 4π space around the detector, the cones must not be normalized. The

justification is that if only a small part of the ring lies in the imaging domain, that

small part of the ring would be normalized and cause the boundary of the imaging

space it intersects to be artificially inflated. As seen in Figure 3.7, the corners of the

imaging space are affected the most by ring normalization since that is where it is

most likely that a small fraction of a ring will intersect the space at a single point

and be hugely amplified by the normalization process. At the energies of interest for

this work, the difference in image quality is almost negligible between normalized and

the non-normalized cones when reconstructing on the full 4π imaging space. Thus,

although the standard setting is to normalize the rings, not normalizing them does

not cause a significant degradation in image quality.
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Figure 3.7:
(a) SBP reconstruction using normalized rings on an image space that
does not span all 4π. (b) SBP reconstruction using non-normalized rings
on an image space that does not span all 4π.
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3.2.6 Performance

3.2.6.1 Spatial Resolution

Since this work is focused on reconstructing spatial distributions of point sources

in the far field, we define the angular resolution to be the smallest angular distance

for which two point sources can be resolved in the image. For SBP, which is a

linear algorithm, the imaging resolution can be represented by the full-width at half

maximum (FWHM) of the reconstructed spatial distribution. Here, two hotspots

in the image that have an angular separation equal to or greater than the FWHM

are considered to be fully resolved. Since the imaging space is two dimensional, the

FWHM of the azimuthal and polar directions is normally reported.

Figure 3.8 shows the image quality for SBP with the standard settings and options

in the UMImaging software (the most important of which is including all interaction-

separation distances) for a 137Cs source in the far field in two different positions. These

two source positions represent the best and worst directions for imaging performance,

respectively, for this system. Notice that the image of the source in the cathode side

of the array has a more circular shape with a resolution of about 30◦ FWHM in the

polar and azimuthal directions, and the image of the source in the front side of the

array has a more elliptical shape with a resolution of about 30◦ in the polar direction

but almost 55◦ in the azimuthal direction. This poor resolution in the azimuthal

direction is a result of the large uncertainty in the depth of interaction information

for multiple-interaction events in the detectors. It is exaggerated for this source

position because of the distribution of interaction scatter angles and the influence

that the depth uncertainty has as a function of interaction-depth separation. The

interaction depth-uncertainty only affects the azimuthal angle of the cone axis as
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shown by Xu [5]:

σ2
θ =

[
(z2 − z1)2 · p2/6 + 2[(x2 − x1)2 + (y2 − y1)2](∆z)2

][
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2)

]2 (3.6)

where σ2
θ is the variance of the cone axis in the azimuthal direction, (x1, y1, z1) is the

position of the first interaction, (x2, y2, z2) is the position of the second interaction, p

is the pixel pitch, and ∆z is the interaction-depth uncertainty. Since at 662 keV the

probability of forward, side, and backscatter are relatively similar, when the source is

on the cathode side, most of the events have large depth separation because most of

the events will either backscatter or forward-scatter. Thus, for the average separation

distance, the cone-axis uncertainty is more dependent on the pixel pitch instead of

the depth uncertainty. However, when the source is on the side of the detector, most

of the events have small depth separations because of the large fraction of forward-

scatter and backscatter. In this case, now the majority of the cone-axis uncertainty is

due to the depth uncertainty. Thus, regardless of the source position, if events with

large interaction-depth separation are used for the reconstruction, better resolution

is achieved. This result follows naturally from Section 3.2.5.2.

Figure 3.9 shows the SBP reconstruction of the same data used to reconstruct the

image in Figure 3.8(a) except that only events that had interactions scatter between

planes were reconstructed. Because the cone axis direction has very low uncertainty,

the cone widths are small and the resolution of the hotspot is greatly improved from

about 30◦ FWHM to about 10◦ FWHM. This resolution is the experimental limit

to the SBP reconstruction for the current array system. However, if the interaction

position uncertainty is improved or specialized detector geometries are implemented,

major improvements are still possible.
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Figure 3.8:
(a) Reconstructed SBP image of a 137Cs source in the cathode direction
of the detector array. (b) Reconstructed SBP image of a 137Cs source in
the front direction of the detector array.
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Figure 3.9:
SBP reconstruction of a 137Cs source in cathode direction of the detector
array only using events that scattered between the two planes of the
detector array.

3.2.6.2 Location Certainty

Even though the SBP reconstruction does not have spectacular spatial resolution,

the centroid of the reconstructed hotspot is a very precise measure of the source di-

rection (when using an appropriately fine imaging mesh). After reconstructing about

twenty full-energy events, a rough idea of the source direction may be determined,

but how many events are needed to know the source direction within a few degrees?

To answer this question we look to sample mean and variance.

Consider how an energy spectrum of full-energy deposition events is generated.

When an event is recorded, a single count is added to a bin in the distribution.Due

to imperfect energy resolution, the location of this bin has some distribution around

the true photopeak position. For a sample of n counts, the sample mean is

Ē =
1

n

n∑
i=1

Ei. (3.7)
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The central limit theorem states that Ē converges to the true mean of the photopeak

distribution for large sample sets. The standard deviation of the sample mean is equal

to

σĒ =
σE√
n
, (3.8)

which implies that the more times you measure some quantity, the less uncertainty

you expect in the estimate of its true mean.

One may be tempted to simply apply the same analysis in the imaging domain.

However, when a single event is reconstructed using Compton imaging, some intensity

is added to many bins in the image space not just one as was the case for the energy

spectrum. Thus, the intensities added to the image have some correlation. This

correlation is a potential problem since the standard sample statistics assume that

the measurements are independent, but the idea that the uncertainty of the estimate

decreases with more samples is still valid.

Despite the fact that the assumptions for this analysis are not upheld for Compton

image distributions, it is still desirable to test how the source direction uncertainty

deviates from that predicted the simple sample statistics. By calculating 100 recon-

structions using n simulated 137Cs photopeak events for a variety of values of n, we

can directly estimate the value of σx̄ where x̄ is either the angular distance from the

centroid of the hotspot in the reconstructed image or the maximum point in the image

to the true source direction.

Figure 3.10 shows σx̄ as a function of the number of reconstructed events per trial

n for both measures of x̄. As expected, σx̄ drops as the number of reconstructed

evens increases. However, if instead we plot σx̄ ·
√
n as a function of n, we can get an

estimate of the true standard deviation of the angular distance between the centroid

point in the reconstructed image and the true source direction (not the standard
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deviation of the sample mean)

σx̄ ·
√
n =

(
σx√
n

)
·
√
n = σx. (3.9)

Figure 3.11 shows the same two distributions as Figure 3.10 but each point is

scaled by
√
n. This plot reveals how closely the standard deviation of x̄ follows the

predicted model since it should be a constant value, σx. The distributions for both

measures of x̄ are in fact flat with mean values of about 50◦ for the centroid calculation

and 20◦ for the maximum point calculation. The estimate of σx using the centroid

of the reconstructed hotspot is much higher than the estimate using the maximum

point in the image because the centroid is greatly affected by the variance in cone

axes and half angles which cause the distribution to be asymmetrical and bias the

centroid estimate. The centroid method is also influenced by rings with generated

with incorrect sequence reconstruction causing those rings to not pass the source

direction at all. Using the maximum point in the image reduces these biases because

the symmetry of the hotspot does not affect the location of the maximum point.

However, before the hotspot becomes stable at around 100 counts, the maximum

point in the image varies greatly and is not a good estimate of the source direction.

Compare either of these estimates of σx with the standard deviation of the hotspot

in the image (reconstructed with many events) of about 5.7◦ . This discrepancy

between the σx estimated with sampling statistics and the standard deviation of the

hotspot shape in the image (after many counts) is also a result of the extra variance

that the rings add to the reconstruction. However, the takeaway point from this

study is that we can estimate the uncertainty of the reconstructed source direction as

a function of n. The caveat is that one has to know σx beforehand, which is affected

by the presence of background, others sources present, and vary as a function of

direction. However, for a well characterized system, this estimate of the uncertainty
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Figure 3.10:
Standard deviation of the offset between the true source direction and
the centroid or maximum of the SBP image as a function of the number
of reconstructed events.

may be useful.

3.3 MLEM Reconstruction

The maximum likelihood expectation maximization (MLEM) algorithm is a widely

used and accepted algorithm in the field of gamma-ray imaging [32–34]. In contrast

to SBP, which is a linear superposition of the reconstructed cones, MLEM uses the

combined information of the entire group of reconstructed events to calculate the

most-likely source distribution given the data and a model of the detector system.

3.3.1 Method

In the big picture, there are two parts to the MLEM reconstruction: the likeli-

hood function and the algorithm that solves for the distribution that maximizes that

likelihood. The likelihood function contains all of the physics of the problem such as

the statistical and probability models. Expectation Maximization (EM) is an itera-

tive algorithm which is used to solve for the source distribution that will maximize
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Figure 3.11:
Standard deviation of the offset between the true source direction and
the centroid or maximum of the SBP image scaled by a factor of

√
n as

a function of the number of reconstructed events (n).

the likelihood function. This iterative algorithm is required to find the most-likely

distribution because there is no closed form expression that we can use to solve for it

directly as seen in Section 5.3.3.

3.3.1.1 Data Model

Before describing the reconstruction method, we make a brief comparison between

binned-mode and list-mode data. Binned-mode data is typical for recording energy

spectra or even for imaging techniques like CT or SPECT where the total possible

recorded events is a reasonable number with thousands or possibly millions of distinct

events that define the set of bins. In this case, it is expected that most bins, which

correspond to events with a specific attribute vector υm, will contain many counts.

So, for a binned mode reconstruction, it makes sense to store the complete list of

possible events and keep a tally of how many of each event type is recorded.

For 3-D position-sensitive CdZnTe detectors used for this work, the number of

possible event types is very large. For events that just interact once inside a singe

detector, assuming 121 anode pixels, 40 depth bins, and 3000 energy bins, there are

121× 40× 3000 = 1.452× 107 permutations of recorded events. For two interactions
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where the pixel numbers are mutually exclusive, the number of possible events is

(121×40×3000)× (120×40×3000) = 2.09×1014. One can see how it is impractical

to store a complete list of possible events, and even if it were possible almost all of

the bins would be empty. Instead, the data is stored as a list of events that were

actually detected, which is known as list-mode data.

3.3.1.2 System Model

MLEM is a model-based reconstruction, meaning that is uses the known physical

and statistical properties of the system to determine the most likely source distribu-

tion. Two key parts of that model are defined here. One component is the sensitivity

function

s(~r, E) = P(D | ~r, E) (3.10)

which describes the overall probability that a gamma-ray emission from spatial loca-

tion ~r and energy E is detected (D) by the system regardless of the specific realization

of the recorded event.

Another component is the system response function

fm(~r, E) = p(υm | ~r, E,D)s(~r, E) (3.11)

which describes the probability of recording υm for emissions of energy E originating

from spatial position ~r for a specific event m given that it is detected. A more detailed

description of the first term in (3.11) is described in Section 3.3.2.

3.3.1.3 List-Mode Log Likelihood

Remember that the goal of this method is to reconstruct the gamma-ray source

distribution given the set of list-mode data υ that was recorded by the detector

system. In a general and somewhat abstract form, the likelihood, L(λ), that the
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detector system recorded those data during a fixed scan time τ is described by

L(λ) = p(υ1, . . . ,υn | D1, . . . , Dn,M = n;λ)P(D1, . . . , Dn,M = n;λ) (3.12)

where λ is the source intensity distribution in space and energy, Dm denotes that

the mth event was detected, M is the random variable associated with the number

of recorded counts, and n is the total number of recorded events. Here p is used to

describe a probability of a continuous random variable and P is used to describe prob-

abilities of discrete random variables. The first term in (3.12) is the joint probability

that each event in υ was recorded given that they were all detected and that there

were exactly n of them for the true source distribution λ. The second term is then

the probability that exactly n events were detected given the true source distribution

λ. In short, by finding the λ that maximizes L, one maximizes the likelihood of

recording this specific set of recorded events υ.

Barret and Parra [35] derived a simplified expression for this likelihood function.

However, it turns out that it is more convenient to work with the natural logarithm

of L(λ) for several reasons, which will become more apparent in Chapter V. The

simplified list-mode log-likelihood function is

L(λ) ≡ log[L(λ)] =
n∑

m=1

log

(∫∫
Ω

fm(~r, E)λ(~r, E) d~r dE

)
− M̄λ (3.13)

where the expected number of recorded counts is

M̄λ = τ

∫∫
Ω

s(~r, E)λ(~r, E) d~r dE. (3.14)
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3.3.1.4 MLEM Algorithm

The ML solution is defined by a distribution λ̂ that maximizes (3.13)

λ̂(~r, E) = arg max
λ

L(λ). (3.15)

The initial approach to this problem is to simply take the derivative of the log like-

lihood and set it equal to zero. To simplify the problem, we first parameterize the

source distribution λ(~r, E)

λ(~r, E) =
N∑
j=1

λjbj(~r, E) (3.16)

where bj is the basis function (a spatio-energy voxel covering a small 2-D region of the

imaging space over an energy interval), λj is the intensity coefficient corresponding to

the jth basis function, and N is the total number of voxels. In this parameterization,

the basis function is unitless and the coefficients have units of “emissions per unit

solid angle per unit energy per unit time.”

Substitute (3.16) into (3.13) and rearrange terms

L(λ) =
n∑

m=1

log

( N∑
j=1

λj

∫∫
Ω

fm(~r, E)bj(~r, E) d~r dE

)

− τ
N∑
j=1

λj

∫∫
Ω

s(~r, E)b(~r, E) d~r dE. (3.17)

Now set the derivative of L(λ) to zero

∂L(λ)

∂λj
= 0 =

n∑
m=1

∫∫
Ω

fm(~r, E)bj(~r, E) d~r dE∑N
j=1 λj

∫∫
Ω

fm(~r, E)bj(~r, E) d~r dE

− τ
∫∫
Ω

s(~r, E)bj(~r, E) d~r dE. (3.18)
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Unfortunately, this is a non-linear equation and is difficult to solve directly. Parra

et al. [36] derived the EM algorithm for this problem which allows one to iteratively

solve for the distribution λ̂ that maximizes the likelihood function

λi+1
j =

λij
sj

n∑
m=1

fjm∑N
j′=1 λ

i
j′fj′m

(3.19)

where

fjm =

∫∫
Ω

fm(~r, E)bj(~r, E) d~r dE (3.20)

sj = τ

∫∫
Ω

s(~r, E)bj(~r, E) d~r dE. (3.21)

Xu [5] showed that this algorithm has several favorable properties. First, it is a

conservative method which means that, independent of the initial estimate of λ, the

total number of counts estimated to be detected is equal to the number of measured

photons. Also, the algorithm preserves the positivity of the solution. As long as the

initial estimate of λ is positive, all subsequent estimates will be positive unless fm

is zero. Finally, the solution is gauranteed to converge to a global maximum, but

the converged solution is not unique unless there are more non-redundant measured

events than there are parameters in the estimated source distribution.

3.3.2 System Model

The choice of system model determines the physics that are included in the system

response function fm(~r, E). An ideal model would account for all of the physical

effects that govern not only the gamma-ray interactions but also the generation and

transport of electric carriers in the detector material and even the response of the

read-out electronics. Ideally, the data input into the MLEM reconstruction would

47



be the raw signal amplitudes measured by the detector system. However, this model

would be incredibly complex and difficult to implement. Instead, a separate algorithm

[37,38] (independent of this work) is used to reconstruct the raw output signals into

the gamma-ray interaction data in υ, which is assumed to be the recorded data here.

Even when only considering the physics of the gamma-ray transport in the system

model, there is still a range of complexity that can be chosen from to meet the needs of

a specific application (or computational power available). Xu [39] originally derived

the system response function for the pixelated 3-D CdZeTe detectors used in this

work for two-interaction events only. Later, Wang et al. [40] derived the system

response function for events consisting of any number of interactions. For simplicity,

two-interaction events are used as examples of the following forms of the system

response.

This response can be computationally expensive (as seen below) and is required for

each iteration of the algorithm. For binned-mode reconstructions, the entire system

matrix could be pre-calculated and stored to drastically improve the reconstruction

time. However, that is not possible for many Compton imaging systems, and instead

of pre-calculating the system response for all types of events, we are required to

calculate it for the initial iteration and then store it in memory for quick access for

later iterations if possible. The collection of all of these individual responses is known

as the “system matrix,” where the responses of each event make up the rows of the

matrix. This term is used to describe the collection of system response functions even

when it is not physically stored.

3.3.2.1 Calculation Overview

Before introducing the specific implementations of the different forms of the sys-

tem response function, we describe the form of (3.11). Although at first glance it

appears that we calculate the system response by finding the conditional probability
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of recording an event multiplied by the sensitivity, in reality we calculate the joint

probability that the photon is detected and that it originated from a specific energy

and direction. By Bayes’ rule

p(υ, D | ~r, E) = p(υ | ~r, E,D)P(D | ~r, E) (3.22)

p(υ | ~r, E,D) =
p(υ, D | ~r, E)

P(D | ~r, E)
=

p(υ, D | ~r, E)

s(~r, E)
. (3.23)

Therefore,

fm(~r, E) =
p(υ, D | ~r, E)

s(~r, E)
s(~r, E), (3.24)

and the system response can be calculated without knowing the sensitivity function.

This result is important for two reasons. First, at this point the sensitivity is

unknown, and the following expressions for fm(~r, E) do not explicitly include the

sensitivity. Instead they yield the probability of recording and detecting a given

event assuming that it came from a given direction and energy, p(υ, D | ~r, E). Also,

later we use fm(~r, E) to estimate s(~r, E), and it is important to understand how

they are related. For more information, Lingenfelter describes in detail the system

response and complications brought about by the conditioning on D [41].

3.3.2.2 Simple

The most basic system response calculation that is required for Compton imaging

is the reconstruction of the Compton cones. Typically, the simple response also

includes the measurement uncertainty, but it is possible to exclude that effect as well

and simply reconstruct cones with a preset cone width. As with SBP, we assume the

total energy deposited is the full energy of the incident photon.
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This response is described by

[
fm(~r, E)

]
simple

=
1

σθ
exp

[
− (θr − θe)2

2σ2
θ

]
, (3.25)

where σθ is the uncertainty in the back-projected cone angle described by Xu et al [5]

and the other terms are located in Table 3.1. As noted by Wang et al. [40], constant

terms have been left out of (3.25)-(3.27) since they would be canceled out in the EM

update equation.

The simple response expression describes the agreement between the Compton

scatter angle calculated using energies and geometry blurred by a Gaussian distribu-

tion with a standard deviation of σθ. Thus, it has the same form as the simple-back

projection reconstruction. However, a key difference between them is that for the

MLEM reconstruction all energetically possible sequences are used in the reconstruc-

tion. This strategy is important since it allows the algorithm to (indirectly) determine

which is the most-likely sequence in the presence of the other recorded events. Thus,

the simple system response is really the sum of (3.25) for both sequences if they are

energetically possible.

Figure 3.12 shows the response function for a single two-interaction event using

the simple system model. Because both sequences were possible for this event, two

rings are present.

3.3.2.3 Attenuation and Scatter Probabilities

The standard model of the system response includes the attenuation and scatter

probabilities for each interaction in addition to the probabilities used in the simple

model. However, this model still assumes the initial photon deposited its full energy

in the detector since the final interaction is modeled exclusively as a photoelectric
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Figure 3.12: Simple system response for a single two-interaction event.

Table 3.1: Symbols used in the system response formulas.
Symbol Definition
E Current assumed energy of the incident photon
E1 Energy deposited in the first interaction
E2 Energy deposited in the second interaction
~r Current assumed initial position (direction) of the incident photon
~r1 Position of the first interaction
~r2 Position of the second interaction
θe Initial Compton scatter angle calculated using E and E1

θr Initial Compton scatter angle calculated using ~r, ~r1, and ~r2

σθ Uncertainty in the initial Compton scatter angle
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absorption. This standard system response takes the following form

[
fm(~r, E)

]
standard

= exp

[
−

~r1∫
~r

µE(~r ′) d~r ′
]

dσc(E,E1, ~r1)

dE ′

· 1

σθ sin(θe)
exp

[
− (θr − θe)2

2σ2
θ

]
exp

[
−

~r2∫
~r1

µE−E1(~r
′) d~r ′

]

· µp(E − E1, ~r2)√
2π(σ2

E1
+ σ2

E2
)

exp

[
− (E − E1 − E2)2

2(σ2
E1

+ σ2
E2

)

]
(3.26)

where the second term in the first line is the Compton attenuation coefficient [42]

and the other variables are again defined in Table 3.1. In physical terms, the first line

of (3.26) represents the probability that the incident photon will make it to the first

scattering position and undergo a Compton scatter. The second line describes the

probability that the scattered photon goes toward the second interaction and travels

to the second interaction location. Finally, the last term describes the probability

that the scattered photon is absorbed at the assumed energy E within some Gaussian

uncertainty.

Figure 3.13 shows the system response of the same event used to demonstrate the

simple response shown in Figure 3.12. The addition of the attenuation probabilities

is immediately apparent as sections of the reconstructed rings have dramatically less

intensity because the incident photon would have had to travel through much more

of the detector volume to reach the initial interaction point.

3.3.2.4 Escape Probability

The most complete form of the system model adds the possibility of the photon

to scatter and escape the detector without depositing its full energy. This technique
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Figure 3.13: Standard system response for a single two-interaction event.

was pioneered by Xu et al. [5], and the response function takes the following form:

[
fm(~r, E)

]
complete

= exp

[
−

~r1∫
~r

µE(~r ′) d~r ′
]

dσc(E,E1, ~r1)

dE ′

· 1

σθ sin(θe)
exp

[
− (θr − θe)2

2σ2
θ

]
exp

[
−

~r2∫
~r1

µE−E1(~r
′) d~r ′

]

·

{
µp(E − E1, ~r2)√

2π(σ2
E1

+ σ2
E2

)
exp

[
− (E − E1 − E2)2

2(σ2
E1

+ σ2
E2

)

]

+
dσc(E − E1, E2, ~r2)

dE ′
exp

[
−
∞∫
~r2

µE−E1−E2(~r
′) d~r ′

]}
. (3.27)

The only difference between (3.26) and (3.27) is the addition of the probability that

the photon Compton scatters and is able to escape the detector volume. This small

change makes a big difference in the reconstruction. In the previous two system re-
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sponse models, the energy that a photon deposited in the system was the energy at

which the photon was be reconstructed. Now that the model includes the probabil-

ity of partial energy deposition, a photon that escapes the system can be correctly

reconstructed at its true incident energy.

This method has two major implications. One is that more counts can be used for

the reconstruction because of the inclusion of partial energy deposition events. The

other is that the reconstruction will now estimate the most-likely energy distribution

(energy spectrum) for each direction as well as the most-likely spatial distribution for

each energy.

Figure 3.14(a) shows the system response in the energy domain of the same event

used in the previous two sections for the complete model. Notice that a peak is

present at the energy corresponding to the energy that the photon deposited. Above

the peak, there is a span of energies from which it is impossible for the photon to

have originated because of the scattering kinetics. However, it is possible that the

incident photon initially had an energy above that range and scattered out of the

system before depositing all of its energy. Figure 3.14(b) shows the spatial response

function for the entire energy domain. One can see the two rings from the standard

model combined with what is a continuum of rings with smaller scatter angle enclosed

in each of the full energy rings. This distribution is expected since the cone axes do

not change (these are only dependent on the interaction locations), but the scatter

angle gets smaller as the initial energy increases.

3.3.2.5 Sensitivity

The sensitivity of the system needs to be pre-calculated for use in the EM update

equation (3.19). In theory, we can calculate the sensitivity function by summing the
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Figure 3.14:
System response for a single two-interaction event using the complete
system model in the energy domain (a) and the spatial domain (b).
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system response function of every possible recorded event in the system, N ,

sj =
N∑
m=1

fjm. (3.28)

However, there are two problems with this formula. First, we just mentioned in the

data model that it would be impossible to even store a list of N events let alone

calculate a system response for N events. Also, (3.28) assumes that the the system

response is exact, but from the previous section we know we have ignored constant

scaling factors and thus (3.28) is not an accurate estimate of the sensitivity.

Xu [5] describes a new way to estimate the sensitivity. In his method the data

recorded from a Geant4 simulation of a uniform source in both the spatial and energy

domains is reconstructed using the MLEM algorithm with a uniform initial image λ0.

If we perform one iteration of the MLEM algorithm and assume that λ1 would be

identical to λ0 if the correct sensitivity was used, we can estimate the sensitivity as

λ1
j =

λ0
j

sj

Nm∑
m=1

fjm∑N
j′=1 λ

0
j′fj′m

(3.29)

sj =
Nm∑
m=1

fjm∑N
j′=1 fj′m

(3.30)

To simplify the description, Figure 3.15 shows the overall sensitivity of a single

detector in the spatial and energy domains (since the sensitivity is more complicated

for the 18-detector array). The sensitivity in the energy domain starts out low because

of the low probability of Compton scatter in CdZnTe at energies below about 300 keV.

The sensitivity then peaks at about 400 keV and drops as the incident photon energy

increases. In the imaging domain, the sensitivity is mostly uniform since a single

detector is roughly the shape of a cube. However, the largest fluctuations in the

distribution are seen at low energies where the surface area dominates the probability

of detection. At energies as low as 200 keV, the system is very sensitive to gamma
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rays incident on the corners of the detector where the most surface area is visible.

For moderate energies in the range of 300-1500 keV, surface area and thickness are

both important factors and the cathode and anode sides (the poles in Figure 3.15(a))

have the highest sensitivity. At very high energies, the detector sensitivity is very

uniform because at high energies surface area and penetration depth become less

important and the mass dominates the sensitivity. Thus, for most of the energies of

interest, the cathode and anode directions are most sensitive, and that is reflected in

Figure 3.15(a).

3.3.3 Performance

3.3.3.1 Resolution

For SBP, the FWHM of the reconstructed spatial distribution of a point source was

used to determine how well the algorithm could resolve two point sources. However,

since the MLEM reconstruction is not a simple linear operation, the FWHM of a

reconstructed point source does not necessarily represent how well the algorithm can

separate two nearby point sources. To test this we must actually take a measurement

of two point sources separated by a small angle and find the separation at which the

sources can no longer be distinguished in the reconstructed image.

For this spatial resolution problem, we use the standard system response model

(which assumes full energy deposition) for two reasons. First, if the sources emitted

photons with different initial energies, then one would simply have to focus on the

individual energy windows that correspond to the energies emitted by each source

to separate them in the image domain. Second, the addition of the energy domain

in the complete system model adds many more parameters that the reconstruction

must estimate. Because we normally have limited data the problem becomes more ill-

posed and takes more computing power to solve. This combination of circumstances

usually requires us to use a relatively coarse mesh in both the energy and imaging
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Figure 3.15: Overall (a) spatial and (b) energy sensitivity of a single detector.
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space. Thus, the spatial resolution of the images resulting from the use of the complete

system model is typically poor.

To demonstrate the improvement in the spatial resolution between the SBP and

MLEM algorithms, we perform an experiment using two 137Cs point sources each

with an activity of approximately 30 µCi placed 10◦ apart in the cathode direction.

Figure 3.16 shows the reconstructed image of 10,000 events using SBP and MLEM for

a 180× 360 imaging mesh. The MLEM solution easily separates the two sources, but

the SBP solution does not fully resolve the two sources. This result is expected since

we showed earlier that the FWHM of the SBP reconstruction is 30◦ and the sources

are closer than that in this experiment. This 10◦ angular distance is about the limit

of the resolution for the MLEM reconstruction using the 18-detector array without

requiring long separation distances between interactions (like interpalne events).

For comparison, Figure 3.16(c) shows the reconstructed image using MLEM only

using events that have a separation distance of greater than 4 cm. Here the sources

are more easily resolved as expected, and when using these select events (which is

recorded about once in every 30 137Cs imageable photopeak events) the best resolution

achieved with this system is about 5◦ .

3.3.3.2 Location Uncertainty

A study similar to that in Section 3.2.6.2 is performed for the MLEM reconstruc-

tion. We use the same simulated 137Cs point source data and test procedure for this

study that we used test the SBP performance. One notable difference is that the

imaging mesh (1◦ pixel pitch) is more coarse than that used for the SBP reconstruc-

tion (0.5◦ pixel pitch). The purpose of reducing the pixels is to reduce the amount

of statistical noise present in the ML solutions. However, Figure 3.18 shows that

the estimate σx using the centroid of the MLEM image is not constant. Although
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Figure 3.16:
Comparison between the SBP image (a), MLEM image (b), and MLEM
interplane image (c) of two 137Cs point sources placed 10◦ apart in the
cathode direction.
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Figure 3.17:
Standard deviation of the offset between the true source direction and the
centroid or maximum of the MLEM image as a function of the number
of reconstructed events, n.

Figure 3.17 shows that σx̄ decreases steadily, it does not follow the 1/n rate predicted

by (3.8). This discrepancy can be attributed to the noise artifacts that are present in

the ML solution which causes the centroid to have a larger variance than expected.

On the other hand, the estimate of σx using the maximum point in the recon-

structed image more closely matches the results using SBP. Figure 3.18 shows that

after about a sample size of about 100 counts, the maximum point in the image is

consistently in the direction of the source, and the results follow the model in (3.8)

yielding an estimate of about 25◦ for σx. Here the statistical noise does not effect

the maximum point in the image similar to how the asymmetry of the rings does not

affect the SBP results that use the maximum point.

These results indicate that although the MLEM reconstruction yields much better

angular resolution than SBP, it requires about 1.5 times as many counts to achieve

the same uncertainty of SBP when estimating the source direction. This result should

be expected because of the tendency the MLEM algorithm has to amplify statisti-

cal noise when there are many parameters to estimate (fine imaging mesh) and few

reconstructed events.
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Figure 3.18:
Standard deviation of the offset between the true source direction and
the centroid or maximum of the MLEM image scaled by a factor of

√
n

as a function of the number of reconstructed events, n.

3.3.3.3 Combined Spectral and Spatial Deconvolution

As mentioned earlier, when using the complete system model, typically the goal

is to estimate the incident spectrum from each direction. Even though it is possible

to use this full system response to perform high-resolution imaging, computational

limitations usually restrict the operator to using a relatively coarse imaging mesh

(typically 5◦ - 10◦ wide pixels) and energy binning (typically about 4 keV wide bins).

When estimating so many parameters, many reconstructed events are required to

reduce the statistical fluctuation in the solution. However, with the large number of

voxels in the reconstruction space, the system matrix will be slow to compute and

become very large which will quickly fill the computer memory (RAM). These effects

tend to compound on each other. As the reconstruction mesh gets finer, more counts

are required to reduce statistical fluctuations, and each of those events takes longer

to calculate and requires more memory to store. Therefore, the complete model is

mostly used to estimate the true incident spectrum deconvolved from the system

response and other source directions.
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To demonstrate the capability of the MLEM algorithm using the complete system

response function, we reconstruct 20,000 events from a measurement of three point

sources, 137Cs , 22Na , and 60Co placed in different directions around the array using a

reconstruction mesh of 18×36 imaging pixels and 275 energy bins over a range of 300-

1400 keV. Figure 3.19 shows the raw mulitple-interaction recorded spectrum and the

reconstructed directional spectra. Other than some statistical noise, the directional

spectra are reconstructed as the true source emission spectra. Notice that there is no

cross contamination in the spectra between from the difference sources (e.g., there is

no 511 keV peak in the 137Cs directional spectrum). Also, the ratios of the peaks for

the 60Co and the 22Na sources match the true ratios. The 60Co peaks are the same

height, and the 511 keV peak in the 22Na spectrum is twice that of the 1274 keV peak.

Figure 3.19(b) shows the directional spectra as reconstructed by SBP for comparison.

Figure 3.20 shows the reconstructed spatial distributions for the energy slices

associated with the three sources. Some artifacts can be seen in the images which

are a result of statistical noise, but the source directions are accurately represented.

Because of the coarse mesh, one cannot precisely estimate the source direction, but

the reconstructed hotspots do correspond to the true source directions.
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Figure 3.19:
(a) Recorded multiple-interaction spectrum for the three-source mea-
surement and the reconstructed spectra as a function of direction for
SBP (b) and MLEM using the complete system response (c).
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Figure 3.20:
Reconstructed source distributions using the complete MLEM system
response for (a) 137Cs , (b) 22Na , and (c) 60Co energy slices.
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CHAPTER IV

3-D Image Reconstruction

The reconstruction methods described in the previous chapter focused on far-field

2-D image reconstruction. Although these methods are incredibly useful for finding

the direction of a source of gamma-rays, sometimes knowing the actual 3-D location

of the source is also important. Especially in complicated environments, the source

direction alone may not reveal the object containing the source in question.

There are several related techniques and detector configurations that allow the

3-D localization of sources. This chapter first describes the transition from the 2-D

imaging space to the 3-D imaging space. Then it introduces three different types of

3-D imaging which use a single stationary detector array, multiple stationary detector

arrays, and a single moving detector array.

For each of the methods introduced, we discuss the changes that must be made to

the MLEM system model. However, we use SBP to do much of the analysis because it

is convenient and more instructive for describing how the 3-D localization is achieved.

SBP is also more convenient to work with since MLEM becomes significantly slower

as the size of the mesh is increased for 3-D reconstruction.

Even though 3-D Compton image reconstruction in itself is not a new concept

[43, 44], this work will focus on the performance of the 18-detector array for the

3-D reconstructions. Also, the last reconstruction method introduces motion and
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time dependence when we demonstrate the ability to estimate the 3-D radiation

distribution of a room with a single moving detector array. Another key point is that

most of the previous work for 3-D imaging systems is based on traditional Compton

camera systems that require interactions to scatter between planes, but in this work

the 3-D position sensitivity of the detectors allows a more efficient use of the multiple-

interaction events which is especially useful for the moving detector case.

4.1 Comparison to 2D Reconstruction

Before discussing the different forms 3-D image reconstruction, this section high-

lights a few of the similarities and differences between the 2-D reconstruction and the

3-D reconstruction.

4.1.1 Imaging Domain

Of course, the key difference between 2-D and 3-D reconstructions is the imaging

space. For 2-D imaging, the imaging space consists of the far-field imaging sphere

represented by spherical coordinates at a large fixed radius. This space essentially

consists of a set of possible source directions, whereas the 3-D imaging domain is a

volume in the vicinity of the detector array as seen in Figure 4.1. For this work, a

standard 3-D Cartesian mesh is used to discretize the volume.

As a result of reconstructing events in a volume, a Compton cone is reconstructed

instead of a ring (the intersection of the cone with the 2-D imaging sphere). Figure 4.2

shows a single Compton cone reconstructed in 3D. The cone looks slightly distorted

because of the boundaries of the imaging space.

Another effect of the cones being reconstructed into a finite volume, is that nor-

malizing each cone can be problematic for SBP. Just as with a 2-D reconstruction that

does not use the entire 4π field of view, if a cone only passes through a small portion

of the imaging space, it will have a large relative weight in comparison to cones that
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Figure 4.1:
3-D imaging domain. The detector array is located in the center of the
image space.
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Figure 4.2:
A single Compton cone reconstructed in the 3-D imaging domain. Some
distortion of the cone can be seen because of the boundaries of the recon-
struction space.

pass through a larger fraction of the space. This effect is especially problematic for

3-D imaging because there is always a boundary, unlike 2-D imaging where the entire

4π directional space could be included in the reconstruction. This effect can be miti-

gated by simply not normalizing the Compton cones or by keeping the detector near

the center of the field of view. If the detector is in the center of the reconstruction

space, then no matter what direction a cone is reconstructed it will intersect roughly

the same number of spatial voxels, assuming the reconstruction space is nearly cu-

bic. However, keeping the detector in the center of the reconstruction space can be

wasteful if only a small portion of space on one side of the detector is of interest as a

large fraction of computation is used on portions of the space that are unimportant.
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4.1.2 Localization

In the 2-D reconstruction space, the direction of a source of incident photons is

determined by the intersection of the Compton rings on the imaging sphere. For the

3-D reconstructions discussed below, the ability to localize the position of the source

is determined by the amount of parallax present in the measurement.

Parallax is the perceived change in the position of an object due to a change in

the viewing position. For example, this effectis apparent when driving in a car. As

the car passes nearby trees, the direction of the trees changes dramatically from one

position of the car to the next; whereas the mountain in the distance or the sun

appear to be stationary no matter how far the car travels. In this case, the position

of a tree can be estimated if the position of the car and the relative direction of the

tree is known at two (or more) different times. However, since the change in relative

direction between the car and the sun is negligible, the 3-D position of the sun cannot

be estimated in this way.

Similarly if the vertices of the Compton cones have sufficient parallax in relation

to the source, we can estimate the 3-D position of radiation sources. The following

sections describe three different ways to achieve this parallax using: a single stationary

detector array, multiple stationary arrays, and a single moving detector array.

4.2 Single Array

When only using a single stationary-detector array, the parallax required to local-

ize a source in 3D is achieved by the separation distance of the individual Compton

cone vertices inside the array. Figure 4.3(b) demonstrates this concept by showing

three Compton cones reconstructed from the 18-detector array. Normally, for what

we consider far-field imaging, the actual vertex of the Compton cone is not used in the

Compton cone reconstruction. For the 2-D methods described previously, the verte-
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ces all of the cones were effectively placed at the origin of the imaging sphere. This

simplification made sense for the 2-D case where the imaging sphere has an infinite

radius (far field), and the small changes in the vertices of the cones were negligible.

Now that the imaging space of interest is much closer to the detector (near field), the

differences in the positions of the cone vertices are exactly what allow sources to be

located in 3D.

Sullivan et al. [45] described a different way to estimate the source-to-detector

distance of point sources using a standard far-field 2-D reconstruction. The idea

is that since the source is relatively close to the detector, a blur is created in the

reconstructed hotspot because the cones are not projected onto the correct focal

plane (similarly to how an optical camera would be out of focus with the wrong focal

length). However, this type of analysis only works for single point sources, and the

field of view for that system is limited since it uses a traditional Compton camera

which requires photons to scatter between two 2-D-position-sensitive detector planes.

The same type of algorithm could be implemented for the detectors used in this

work, but the 3-D mesh approach allows for the reconstruction of more diverse source

distributions (at the expense of more computation).

4.2.1 MLEM Model Changes

Fortunately, the system model was developed in a general way; so we only need

to make a couple changes to the 2-D reconstruction to perform the 3-D reconstruc-

tion. One new term that needs to be added to the system response functions is the

geometrical attenuation from the point of emission to the first interaction location

inside the detector volume
(
4π‖~r1 − ~r ‖2

)−1
. The modified simple system response is

[
fm(~r, E)

]
simple

=
1

σθ‖~r1 − ~r ‖2
exp

[
− (θr − θe)2

2σ2
θ

]
. (4.1)
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(a)

(b)

Figure 4.3:
(a) Compton cones reconstructed using the far-field assumption where the
vertices are all placed at the origin of the detector array. (b) Compton
cones reconstructed using the near-field assumption where the vertices
are all placed at the location of the first interaction.
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The 1/4π term is excluded because, as a constant, it will cancel out in the EM

update equation. The geometrical attenuation was previously ignored because, for

the far-field assumption, the distance is constant as well.

Another term that must be altered to correctly model the 3-D case is the sensitivity

of the system. Calculating the true sensitivity is still impractical since the number

of possible interactions has not been reduced. For the 2-D case, the sensitivity was

estimated by performing the first iteration of MLEM (starting with a uniform image)

for a large number of emitted photons uniformly distributed in incident direction

and energy. A similar process must be followed for the new 3-D space surrounding

the detector array. However, now the source in the simulation must be uniformly

distributed in the space around the detector with isotropic emissions. Depending on

the size of the space and resolution desired, this simulation could take much longer

to converge in the spatial domain even though there are still spatial symmetries that

can be used to reduce the calculation time up to a factor of eight for a cubic imaging

space centered on the detector.

In practice, however, these modifications are not included in the model. For the

standard system model (which assumes full energy deposition), the sensitivity is not

used for the same reason it is not used in the 2-D case. First, a full energy sensitivity

would have to be created for every energy of interest, and second the results without

the sensitivity still perform well. Also, the spatial sensitivity does not change rapidly

enough to cause problems reconstructing individual point sources, but when using

the complete system model including the energy domain, the reconstructed energy

spectrum would suffer due to the varying efficiency as a function of energy. To account

for the energy dependence, we could use a sensitivity factor that is uniform in space

but that has the correct energy dependence. If more complicated source geometries

are expected, a more accurate sensitivity estimate may become more important.
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4.2.2 Available FOV

The field of view (FOV) of a single array for near-field 3-D image reconstruction is

dominated by two factors: the largest separation distance between cone vertices and

the measurement uncertainty of the Compton cones. The first factor is determined by

the physical extent of the detector perpendicular to the direction of the source, and

the second factor can be represented by the angular uncertainty of the array when

reconstructing images in 2-D. For this study we will focus on the space directly in

front of the cathode surface of a plane of the 18-detector array which has the best

angular resolution with the most parallax.

When the source is on the outer edge of the FOV, the most useful Compton cones

are those for which the first interaction occurs near the corners of the detector plane

because they have the most parallax. Therefore, if we consider the just the events

that have first interactions at corners of the plane, we can estimate the limit of the

ability to resolve sources as a function of the perpendicular distance to the detector

plane surface and the angular resolution of the detector array. This limiting distance

then defines an estimate of the region of space surrounding the detector that can be

resolved.

Figure 4.4 shows a diagram of what the simple back projection would look like

after many reconstructed counts if only events where the first interaction occurred

in a corner of the detector array are considered. Although it appears that the cones

depicted in the figure are Compton cones, they in fact represent the surfaces of solid

cones formed by the summation of many Compton cones emitted from the two corner

voxels. The intersection of one of these cones with the 2-D imaging sphere would be

analogous to the hotspot in the source direction of a 2-D reconstruction.

In the diagram, d is the distance from the surface of the detector array to the

source, a is the distance from the center of the array to the corner pixel of the array,

α is the angle between the detector surface and the source position measured at the
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corner pixels, and σα is the uncertainty in α. The uncertainty σα (twice the half-angle

of the cone) can be represented by the FWHM of the hotspot from 2-D reconstruction.

σd is then the FWHM of the estimated distance from the source to the surface of the

detector array which can be calculated using the following formula

σd =

(
d+

σd
2

)
−
(
d− σd

2

)
= a · tan

(
α +

σα
2

)
− a · tan

(
α− σα

2

)
σd
a

= tan

(
α +

σα
2

)
− tan

(
α− σα

2

)
(4.2)

where

α = tan−1

(
d

a

)
. (4.3)

Note that (4.2) is only valid when estimating the FWHM for large distances d. When

the source is very close to the detector (on the order of a detector-pixel pitch), the

edge pixels will play a less important role than the pixels near the center of the

detector.

Figure 4.5(a) shows the trends predicted by (4.2) and the measured trends from a

reconstruction using simulated data from the standard detector array and an angular

resolution of 5◦. Notice that the simulated results do not agree with the calculated

results, but they are scaled by a factor of two. We expect that the result should not

follow (4.2) exactly because only a fraction of the reconstructed cones have vertices

near the edges of the detector. Many of the cones are backprojected from the center

of the array which would substantially degrade the resolution.

Unfortunately, as the angular resolution of the detecor degrades, the FWHM of the

distance estimate deviates greatly from that predicted by (4.2). This result indicates

that for detectors with good angular resolution, the cones projected from the edges

of the array dominate the ability to resolve the source distance. As the resolution
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Figure 4.4:
Diagram of the extreme case where only events where the first interaction
occurred in the corner detector-pixels are used for near-field 3-D imaging.
The cones depicted here represent the surfaces of solid cones formed by
the summation of many Compton cones originating form the two corner
pixels.
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degrades, the cones projected from the center area of the array add an increasing

amount of uncertainty in the distance estimate. Thus, the exclusive use of cones

originating from the corner pixels becomes an increasingly poor assumption. Also,

as the detector size increases, the fraction of cones projected from the edge pixels

decreases, making (4.2) an even poorer estimation of the distance resolution.

Therefore, the angular resolution of the detector is the most important factor when

resolving the source distance. For detectors with excellent angular resolution, (4.2)

predicts a source-distance resolution that is proportional to the true resolution for a

given detector size. This constant of proportionallity can be easily estimated with a

single measurement or simulation. Alternatively, we could use (4.2) to estimate the

required detector size to achieve a given source-distance resolution.

4.2.3 Localization Uncertainty

Figure 4.6 shows the reconstructed image of a simulated 137Cs point source placed

directly above one plane of the standard detector array using the SBP algorithm

for events that scatter between planes. In this simple example, the point source is

reconstructed almost exactly at the true source position 10 cm from the cathode

surface.

These are atypical results for the 3-D SBP reconstruction. For data with more

uncertainty (e.g., measured data) the centroid of the reconstructed hotspot is biased

toward distances farther from the detector than the true source location. This bias can

be seen in Figure 4.4 as the diamond shape region where the two cones overlaps has

a bias away from the detector plane. When all imageable events from the simulation

used to generate the results seen in Figure 4.6 are reconstructed (not just interplane

events), the center of the hotspot is nearly 11 cm from the center of the array instead

of 10 cm where the source was in the simulation. Experimental data shows the same

behavior except further exaggerated by relatively poor angular resolution. Thus, the
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Figure 4.5:
The FWHM of the source to detector distance estimate as a function of
the true source to detector distance and the detector size for an angular
uncertainty of: (a) 5◦ , (b) 10◦ , and (c) 20◦ .
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(a)

(b)

Figure 4.6:
(a) 3-D rendering of the SBP image reconstruction of a 137Cs point source
placed 10 cm from the center of the detector array using only interplane
events. (b) X-Y slice of the reconstructed image shown in (a).
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angular resolution is of utmost importance for estimating the source position (which

is related to the ability to resolve sources at different distances).

If we account for the offset in the estimate of the centroid of the source position, we

can perform a similar analysis as in Section 3.2.6.2 to determine if the 3-D reconstruc-

tion follows a similar reduction in location uncertainty as a function of reconstructed

events. The simulated 137Cs photopeak data at a distance of 10 cm is used for this

study (without a requirement to scatter between planes). Figure 4.7(b) shows the

standard deviation of the offset between the true source position (shifted by the sys-

tematic offset) and the centroid or maximum of the hotspot in the image scaled by

√
n as a function of the number of reconstructed events (n). Again, the important

result is that σx is constant as a function of the number of samples, which means that

it follows our expectations and the uncertainty in the estimate of the source location

can be approximated by (3.8). Of course, for that formula to be useful, σx must be

known for the specific scenario, and for the 3-D case it is likely to be a strong function

of the source distance and the angular resolution of the detector. Also, notice that in

this case, there is little difference between the estimate of σx using the centroid of the

image and the maximum in the image. This is a result of the added dimension which

makes the maximum point vary more and the fact that the imaging space is centered

on the source location and does not extend far past the source location. Thus, the

centroid is affected less by the extra variance of the cones.

4.3 Multiple Arrays

Another form of 3-D imaging can be achieved by using multiple detector array

systems where the two arrays are strategically placed near the 3-D region of interest.

In this case, the parallax is attained by the offset in the position of the arrays, and

thus, the scale of the reconstruction space can potentially be much larger than the

dimensions of any individual array.
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Figure 4.7:
(a): Standard deviation of the offset between the true source direction
and the centroid or maximum of the 3-D SBP image as a function of the
number of reconstructed events, n. (b): (a) scaled by

√
n.
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Here we will focus on the scenario where the arrays are placed far enough away

from the source so that, for each individual array, the source is considered to be in

the far field. This simplifying assumption allow the cones to be projected from the

center of the detector array regardless of where the true initial interaction took place

and also simplifies the implementation of the sensitivity.

4.3.1 MLEM Model Changes

Similar changes are made to the system model for the multiple-array geometry as

were made for the single-array case, and (4.1) is still valid for multiple arrays.

The estimation of the sensitivity, however, is much simpler in this case than the

single-array case. The strict definition of the sensitivity would require us to calculate

the true system response in the 3-D space for all possible events in all of the arrays or

estimate it by using the method proposed by Xu [5] (as was the case for the single-

array case). However, since we are assuming that the source is in the far field for

any given array, we can use the standard 2-D sensitivity of each array to estimate

the sensitivity in the 3-D space. Being mindful of the spatial offset and orientation

of the arrays, the 2-D (directional) sensitivity is projected into the entire 3-D space

surrounding each array. To account for geometric attenuation, a 1/r2 scaling factor

is included when the sensitivity is projected into the space where r is the distance

between the origin of the array and the sample point in the image space. The projected

sensitivities for each array are added together to form the final estimate of the total

system sensitivity.

4.3.2 Available FOV

We perform a similar analysis that we did for the single array system in Sec-

tion 4.2.2, but first we use a simple simulation to demonstrate the localization capa-

bility of the 3-D image reconstruction using two detector arrays. Figure 4.8 shows a
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d 

Figure 4.8: Diagram of the simulation of two detector arrays and a 137Cs source.

diagram of the simulation geometry, and Figure 4.9 shows the reconstructed image

using the standard MLEM algorithm for a distance d of 50 cm. The reconstruction

successfully locates the source in 3D within 2 cm of the true simulated source position.

When using multiple detectors separated by a relatively large distance, the as-

sumptions in Section 4.2.2 provide a more accurate model of the system than for a

single detector array. Figure 4.10 shows the comparison between the FWHM of the

source distance predicted by (4.2) and the measured FWHM from simulated data.

Since the source is now in the far-field for both detector arrays, the reconstructed

Compton cones from a given array all originate from essentially the same point, which

is the key assumption made by (4.2), and the simulated results more closely match

the predicted results. However, as the source gets closer to the detectors, near-field

effects can cause the simulated FWHM to deviate slightly from the expected results.

For a single detector array, the distance estimate is the most limiting factor in

localizing a point source, but other limitations arise for multiple-array geometries.

A key example is when a source is placed directly between two detector arrays that

are far apart. In this scenario, the reconstructed image would only reveal that the

source lies between the two arrays. There is no way to determine where the source

lies in between the two arrays without another measurement from a different angle.
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(a)

(b)

Figure 4.9:
(a) 3-D rendering of the MLEM image reconstruction of a 137Cs point
source placed 50 cm perpendicular from the midpoint of two detector
arrays. (b) X-Y slice (Z=0) of the reconstructed image shown in (a).
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Figure 4.10:
FWHM of the source distance estimate predicted by (4.2) and measured
from reconstruction of simulated data.

Situations like this could be avoided if an array is mobile, which would allow it to

get a better perspective and create more parallax. This type of reconstruction with

a moving detector array is discussed in the following section.

4.4 Single Moving Array

In this section, we use the motion of a single detector array to create the parallax

necessary to reconstruct sources in the 3-D space in the vicinity of the detector path.

This type of system would allow an operator to map the radiation field in a room while

he walks around without having to use crude 1/r2 techniques. Mihailescu et al. [46]

performed a similar type of experiment with stop motion. In that work, they used a

3-D LIDAR system to map the room before performing the image reconstruction so

that they could restrict the reconstruction space to solid objects present in the FOV.

Although the system had the advantage of only voxellating the space that was likely

to contain a source, it was complex and had to use first map the room with a LIDAR

and then take measurements with their gamma-ray imaging system.

In this work, we simplify the problem by using a standard 3-D mesh for the

reconstruction and projecting that mesh onto the standard 2-D mesh with an optical
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overlay. The optical image allows the user to more easily interpret the image and

quickly identify the source position in the room.

4.4.1 MLEM Model Changes

Several changes to the MLEM system model are necessary for this type of recon-

struction. Just as with the other 3-D reconstructions, the system response function

as well as the senstivity function need the addition of the 1/r2 term. However, since

the array is in motion, the model must account for the time dependence of the re-

construction. In the following chapter, we derive the time-dependent list-mode log

likelihood and a new MLEM algorithm for scenarios where the source is in motion.

The most important change to the model is the fact that the sensitivity function sj is

now integrated over time. Of course for a stationary detector, this would be trivial,

but since the array is moving for this work, the sensitivity needs to reflect the changes

in the position and orientation of the array over time.

The system response function also has to account for any uncertainty in the detec-

tor position and orientation now that the system is in motion. To account for these

uncertainties, we simply convolve the system response as caclulated in Section 3.3.2

with the uncertainty distribution in the spatial domain (e.g., a 3-D Gaussian distri-

bution). This simple post-process convolution is possible because, even though the

motion introduces uncertainty in the absolute photon-interaction locations, there is

is no added uncertainty in the relative positions of the gamma interactions. This

distinction is important because if the relative positions added uncertainty, then we

would have to account for it in the uncertainty of the cone axis. However, since the

entire array moves as a single unit, the uncertainty caused by its motion manifests

itself as a blur in the original stationary system response.

Any specific implementation would depend on the model of the uncertainty of the

position and orientation. As seen in the next section, the position and orientation
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estimation used for this work does not have a well-characterized uncertainty, but the

uncertainty is relatively small compared to the those already present in the system

model. Therefore, we assume this uncertainty is negligible and it is not included in

the model for this work.

4.4.2 Position Estimation

Since the detector array is now in motion, some way to estimate the position and

orientation of the array is necessary in order to correctly reconstruct the Compton

cones in the 3-D space. One may immediately think of GPS as an obvious choice to

estimate the position and orientation of the array. However, GPS is a poor choice

because it does not work indoors, and typical standalone GPS units only have a pre-

cision on the order of several meters [47]. These limitations make GPS unsuitable for

some of the applications of interest for our detector array (like mapping the radiation

field in a building).

Instead of using GPS for this proof-of-principle work, we used Robosense, a system

designed for mobile robotics in the late 1990’s, to estimate the position and orientation

of the detector array. The Robosense unit uses a laser range finder in combination

with a spinning mirror that measures the distance and relative angle of stationary

reflective targets (see Fig. 4.11) in the field-of-view. With this information, the unit

can map the room and estimate its own lateral position and heading. This information

is timestamped and recorded at a rate of roughly 10 Hz. For this work, the array

is sitting on a cart with wheels so the elevation of the detector is assumed to be

constant. Also, the only rotation considered is rotation about the vertical, z, axis

which corresponds to the direction that the Robosense unit records. Other rotations

about the x or y axes are ignored since it is laying flat on the surface of the cart.

If the detector was truly handheld, we would need to consider the other rotational

information.
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(a) (b)

Figure 4.11: (a) Robosense unit and (b) reflective target for the Robosense unit.

The Robosense unit was able to yield fairly accurate position and heading esti-

mates. some simple experiments were performed to test the accuracy of the position

estimation and found that the standard deviation of the position resolution was about

5 cm in both the x and y directions, and the standard deviation of the heading was

about 0.5◦. However, there was some offset present in both measurements. The

heading had a constant offset of about 5◦ that was easily corrected, but the position

estimate had an offset that was position dependent on the order of 5-15 cm in either

direction. Since the overall uncertainty in both position and heading is mostly negli-

gible in comparison to the angular uncertainty of the Compton cone reconstruction,

we simplified the problem and neglected them in the model.

4.4.3 2-D Projection

Reconstructing the 3-D Compton image in a standard rectangular mesh is simple

and convenient. However, it is does not give the operator a way to quickly correlate

the source position in the reconstructed image to an object in physical space. When

displaying 2-D Compton images, we can overlay the radiation image over a 4π optical

image as seen in Figure 4.12. This optical image allows the user to easily locate the
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(a)

(b)

Figure 4.12:
(a) 4π optical image of the space surrounding the detector array. (b)
Gamma-ray image overlaid on the on the optical image.

source direction in the real world.

Overlaying the radiation image on the 4π optical image is straight forward when

reconstructing on the standard 2-D directional mesh. To utilize the optical image for

3-D reconstructions, we must calculate the projection of the 3-D radiation image on

the 2D sphere as a function of position and orientation of the detector system which

is changing continuously.

The projection calculation is relatively simple. First, a simple coordinate trans-

form is performed to represent the position of each 3-D voxel of the reconstruction in

the reference frame of the detector array. Next, we calculate the polar and azimuthal

angles of the relative position of each 3-D voxel and add the intensity of that voxel to
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the nearest pixel on the 2-D imaging sphere surrounding the array. After the entire

3-D space has been added to the pixels in the 2-D imaging sphere, the intensity of

each pixel is normalized to the number of voxels that contributed to it. This nor-

malization ensures that the intensity of each pixel is not related to the distance to a

boundary in that direction, but it also tends to reduce the contrast of the hotspots

in the image.

Even though this view only allows the user to see the direction of the source as

in the standard 2D case, this method shows the image from many different angles as

the detector moves. This way the reconstruction can continuously integrate as the

detector is in motion, and the operator can observe how the hotspot tracks with the

objects in the room while in motion without having to take stop-motion measurements

with long dwell times.

4.4.4 Experiment

Figure 4.13 shows a simple schematic of the experiment we performed to test this

reconstruction. A 30 µCi 137Cs source and a 30 µCi 22Na source were placed on

opposite sides of the room at the same elevation as the detector array. The array

itself was positioned on top of a cart which was free to move and pivot in the room.

The motion experiment lasted approximately 4.5 minutes and about 4,000 imageable

photopeak counts were recorded.

The motion path taken by the detector system during the experiment is also shown

in Figure 4.13. An initial sweep of the room was taken, straight forward and back, in

order to get a good assessment of the overall radiation field. Once the initial sweep

was finished, paths closer to the two sources were then taken in order to get a better

estimate of the source location with more perspective. After the close up view of the

sources, a final sweep forward and back is taken and the measurement ended.

Figures 4.14 and 4.15 show the cumulative simple back projection results using
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Figure 4.13:
Simple schematic of the experiment and description of the detector mo-
tion. The motion started and stopped at the same point and moved
through the field following the numbered points.

photopeak counts (511 keV, 662 keV, and 1274 keV) as a function of time which

coincide with points 2, 4, and 6 and the start and end points shown in Figure 4.13. For

each time there are two images shown. First the 2D projection of the 3D mesh is shown

overlaid on the optical image, and second is the full 3D image shown with the current

position and orientation of the detector array. Figures 4.14(a) and 4.14(b) show the

initial position and optical image before the measurement began. Figure 4.14(a) also

shows the true location of the sources in the optical image.
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As time progresses, the location of the sources becomes immediately obvious.

Note that the reconstructed source positions track the true position of the sources as

seen in the optical image. Some offset is noticeable in some images, and two reasons

account for this inaccuracy. The refresh rate of the optical cameras is sometimes as

slow as several seconds. This would cause the optical image to not reflect the true

image for relatively large segments of time. Also, the optical cameras are not placed

exactly where the detectors are located. As such, there is a noticeable amount of

mismatch between the optical image and the reconstructed radiation image whenever

the objects in the optical image are within about a one meter radius of the detector.

Despite these subtle inaccuracies, the locations of the sources are readily identified in

the optical and 3D images. The 22Na source, which emits approximately three times

as many photons as the 137Cs source, appears more intense as expected.

For comparison, Figure 4.16 shows the results from the MLEM reconstruction

of the 137Cs photopeak events using the standard system model. As in the 2-D

reconstructions, the MLEM reconstruction improves the spatial resolution of the re-

constructed image, and the reconstructed hotspot in this case is accurate to within

10 cm. The MLEM reconstruction of the 22Na photopeak counts produced similar

results as seen in Figure 4.17.

4.5 Discussion

In this chapter, we have shown the capability to localize sources in 3-D for a

variety of detector configurations, and we were able to successfully demonstrate the

use of a detector in continuous motion to reconstruct the source distribution in 3-D

space.

These 3-D image reconstruction algorithms can be applied to a variety of prob-

lems. Near-field imaging with a single detector array has obvious applications in the

medical field [48]. Multiple stationary detector arrays could be useful for surveillance
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(a) (b)

(c) (d)

Figure 4.14:
Cumulative SBP image at different times. Images on the left are 2D
projections of the 3D imaging mesh overlaid on the optical image. Images
on the right show the 3D images as well as the location and orientation of
the detector array system. (a) Optical image before measurement (with
sources marked) and (b) the initial detector position. (c) The image and
(d) detector position after the initial forward and back motion (point 2
on Figure 4.13).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15:
Cumulative SBP image at several different times. Images on the left are
2D projections of the 3D imaging mesh overlaid on the optical image.
Images on the right show the 3D images as well as the location and
orientation of the detector array system. (a) The image and (b) detector
position after the close sweep of the 137Cs source (point 4 on Figure 4.13)
(c) The image and (d) detector position after the close sweep of the 22Na
source (point 6 on Figure 4.13). (e) The final image and (f) detector
position.
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(a) (b)

Figure 4.16:
Final MLEM reconstruction results using the standard system response
for the 137Cs photopeak events.

(a) (b)

Figure 4.17:
Final MLEM reconstruction results using the standard system response
for the 22Na photopeak events.

95



in nuclear non-proliferation or for secondary inspection in homeland security, and

moving detectors are well suited for search scenarios.

Of course, in the real world many times the deployment of radiation detectors

is more complicated. One can imagine a variety of detector types including coun-

ters, spectrometers, and imaging spectrometers all of which can be moving or sta-

tionary. This complicated scenario of many different detectors composes a “sensor

network” [49]. The work presented in this chapter lays the ground for the ability to

incorporate all of the information from this sensor network to reconstruct a single

source distribution in 3D.

However, these complicated and likely large 3-D imaging domains introduce com-

putational challenges, especially when the detector is allowed to move freely. As the

imaging space expands, simple imaging meshes become large (especially if fine spatial

resolution is required), and the addition of the energy and/or time domains would

exacerbate the problem. These challenges must to be addressed if the 3-D algorithms

need to be robust enough to handle arbitrarily large spaces.
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CHAPTER V

Image Reconstruction with Known Source Motion

The previous chapter culminated with an experiment using a moving detector

to reconstruct the 3-D locations of point sources. When the detector is in motion,

presumably it is aware of its own location, and that motion allows the 3-D source

position to be reconstructed. However, in some cases the sources are in motion instead

of the detector, and for these cases the detector system has no inherent knowledge

of the position of the source as a function of time. Thus, the reconstructed image

of the moving point source will result in a convolution of the source path and the

point spread function of the reconstruction method. However, if the profile of the

source motion is known, the reconstruction can use that information to compensate

the reconstructed image for that motion.

This chapter will briefly discuss some current methods of motion compensation

followed by two different ways to compensate images for known source motion. Finally

a new technique for motion compensation is introduced which allows for simultaneous

reconstruction of many objects with independent motion paths without blur and cross

contamination.
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5.1 Description of Previous Work

In the medical field there has been active research on source-motion compensation

for many years. One obvious way to account for motion is to explicitly include the

time domain in the reconstruction, e.g., 4-D PET [50]. Often this approach uses a

standard pixel mesh in the spatial domain and then uses B-splines to parameterize the

time domain [51]. The resulting reconstruction represents the time-dependent activity

distribution revealing physiological processes that would otherwise be unobservable

with a single 3-D image. Variants of this approach have been studied, including using

Fourier basis functions [52] and using list-mode data to improve temporal resolution

[53], as well as many others.

Other techniques simply attempt to remove blur from an image by using motion

compensation instead of reconstructing a full time-dependent image. Bloomfield et

al. tracked patient movement by an optical tracking system and corrected the lines

of response for this motion before image reconstruction [54]. Later Rahmim et al.

expanded on the work to include the motion compensation in the reconstruction

model itself [55], which among other things, accounted for the change in sensitivity

of the system as the patient moves. This improvement was an important step to

improve the accuracy of the system model.

In other applications, such as homeland security, imaging and/or detection of

gamma-ray sources contained in moving objects is desired. For example, one can

imagine placing detectors near border crossings or other choke points to detect illicit

nuclear material carried in vehicles or by pedestrians. In this case, motion compen-

sation would be required to faithfully reconstruct the intensity distributions around

these (moving) objects. In certain situations, there may also be stationary sources

of gamma rays residing in what we refer to as the backdrop that are also of interest

for imaging and detection. This approach requires that the motion of the object(s)

of interest are known through some other means of estimation such as video tracking
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systems [56–58].

5.2 Motion Compensation Techniques

There are different ways that one may choose to account for source motion. Of

course if that motion is small compared to the resolution of the imaging system,

attempting to compensate for that motion is most likely not a top priority. However,

when the motion is non-negligible, choosing to not compensate for the motion will

result in excess blur in the image. In an extreme case, as seen in Figure 5.1(a), where

a 137Cs point source traveled all the way around the detector array with constant

angular velocity, the reconstructed SBP image shows a smear through the equator

corresponding to the source motion. In this case, the motion was slow enough that

it is obvious in the reconstructed image, but if the source moved at a higher velocity

(or if the source was weaker), the source motion would be less obvious as seen in

Figure 5.1(b).

5.2.1 Simple Motion Compensation

One way to account for the source motion is to continuously rotate the reference

frame of the detector to keep the current source position in the center of the field of

view. Simply put, the algorithm translates the position of the reconstructed ring in

the imaging domain to account for the motion of the source as seen in Figure 5.2. This

type of compensation works well when there is a single source present. When multiple

sources are present, this simple algorithm has no way to keep all of the sources in focus

(unless they all have the same motion relative to the detector). Figure 5.3 shows the

reconstructed image of the same data used for the reconstructed image in Figure 5.1

except that there is a stationary 22Na source located above the equator. In this case a

choice must be made as to which source will be in focus. If no motion compensation is

performed (Figure 5.3(a)) the 22Na source is in focus. If the reconstruction accounts
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Figure 5.1:
(a) SBP image of a 137Cs point source that moved 360◦ around the de-
tector array at constant angular velocity. (b) SBP image of a 137Cs point
source that moved 360◦ around the detector array at constant angular
velocity 10 times faster than in (a).
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Figure 5.2:
Simple example of Compton rings translated to account for the source
motion.

for the 137Cs motion (Figure 5.3(b)) the 22Na source is smeared.

5.2.2 Target Spatial Binning

To avoid the necessity of choosing just one object to keep in focus, a new way of

binning the image must be created. The idea is to create a new target image domain

that will be a subset of the standard imaging domain. By creating this new domain,

the target space can be compensated for source motion while leaving the standard

imaging domain, or backdrop space, unaltered.

Figure 5.4 demonstrates how this compensation is performed. When a Compton

ring is reconstructed, it is added to the backdrop without any motion compensation

because it is possible that the photon came from a source in the stationary backdrop.

If part of the Compton ring happens to intersect a direction corresponding to the

target domain at the time that the interaction occurred, the fraction of the ring that

overlaps the target is added to the target space. In this way, if the target space

accurately tracks the source direction, the Compton rings resulting from full-energy
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Figure 5.3:
(a) Uncompensated SBP image of a 137Cs point source that moved 360◦

around the detector array at constant angular velocity at the equator and
a stationary 22Na point source. (b) SBP of the data used for the image in
(a) using simple motion compensation. Note that the 137Cs source now
appears to be stationary at the center of the image, but the 22Na source
is smeared in the azimuthal direction.
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Figure 5.4:
Simple example of how the proposed target spatial binning accounts for
source motion without affecting the distribution in the backdrop space.

deposition events from the moving source will be added together as if the source

were stationary without causing any stationary sources to be blurred in the backdrop

space.

5.3 Derivation

This algorithm can be implemented easily for the SBP reconstruction where the

rings are simply added together in the imaging space, and the imaging pixels are com-

pletely independent of each other. However, for the MLEM based reconstructions,

some care must be taken to ensure that the log-likelihood correctly accounts for the

time-dependency of the new imaging voxels in the target space since the standard

list-mode log-likelihood does not explicitly incorporate time-dependencies. Also, the

103



expectation maximization algorithm must be re-derived for the new likelihood ex-

pression.

5.3.1 Model

The terms used for this derivation include those found in Section 3.3 modified to

include time as well as other new terms.

5.3.1.1 Data Model

The attribute vector υ recorded by the detector system still represents the recorded

energies and 3-D positions of the photon interactions, but now time is recorded in

addition to the υ vector. Thus, the list-mode acquisition for a fixed scan duration τd

records M attributes υ1, . . . ,υM at corresponding times t1, . . . , tM .

5.3.1.2 System Model

The system sensitivity function is now also dependent on time since part of the

imaging mesh will change as a function of time

s(~r, E, t) = P[D | ~r, E, t]. (5.1)

Now this term is interpreted as the probability that a gamma-ray emission from

spatial position ~r at energy E and time t is detected (D) by the system.

Of course the other model component is the system response function,

fm(~r, E, tm) = p(υm | ~r, E, tm, Dm)s(~r, E, tm) (5.2)

which describes the probability of recording υm for emissions of energy E originating

from spatial position ~r for a specific event m. The specific expression of this term is

shown in (3.25)-(3.27). In this case, the time dependence is only used to correct the
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spatial position ~r for the target motion as described below.

5.3.1.3 Target Object Model

For a static (stationary) scene, the usual goal is to reconstruct the radioactive

source intensity distribution λ(~r, E) in some spatial-energy domain Ω from the mea-

sured list-mode data, and the existing list-mode approach [35, 36, 39] is appropriate.

The new method which we derive here extends this formulation to the case where

the scene consists of one or more target objects that are moving relative to a sta-

tionary backdrop, i.e., the overall source intensity distribution is a function of time:

λ(~r, E, t). We shall consider here the case of “known” motion, i.e., the motion is

estimated separately, for example by a video tracking system. Note that the time

dependence is only present in the motion of the target through space. The intensities

of the sources are assumed to be constant over the scan time in this work.

We model the intensity distribution as consisting of an unknown stationary back-

drop intensity distribution λ0(~r, E) and a set of K target objects that may be moving.

The unknown intensity distribution of the kth object at time t = 0 is denoted

λk(~r, E) ≡ λk(~r, E, 0) (5.3)

for k = 1 . . . K. For simplicity of presentation, we assume that the target-object

motion can be modeled adequately by a spatial translation. Other forms of motion,

such as rotation, could be accommodated as well. The spatial shift of the kth target

object at time t is denoted ~ck(t), where ~c ∈ R3 for a 3-D imaging problem or ~c ∈ R2

for the 2-D case. Under this assumption, the intensity distribution of the kth target

object at time t is modeled as

λk(~r, E, t) = λk(~r − ~ck(t), E). (5.4)
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Also for simplicity, this model ignores occlusions and the absorption of gamma pho-

tons by target objects that move in front of one another. Finally, the overall time-

varying intensity distribution of the scene is modeled as the superposition of the

stationary backdrop λ0(~r, E) and the moving target-object contributions:

λ(~r, E, t) = λ0(~r, E) +
K∑
k=1

λk(~r, E, t)

= λ0(~r, E) +
K∑
k=1

λk(~r − ~ck(t), E). (5.5)

The goal is to reconstruct the intensity distributions of the backdrop and the target

objects, i.e., {λ0(~r, E), λ1(~r, E), . . . , λK(~r, E)}, from the list-mode data, assuming

known motion ~ck(t) for k = 1, . . . , K.

To facilitate numerical implementation, the intensity distributions are parameter-

ized using a finite-series model [59]:

λ0(~r, E) =

N0∑
j=1

λ0jb0j(~r, E), (5.6)

where N0 is the total number of basis functions in the backdrop, λ0j denotes the un-

known intensity of the jth basis function and b0j denotes the basis function (typically

a 2-D region of space in the spherical coordinates or a voxel in the 3-D coordinates,

covering an energy interval). Similarly the moving target objects are parameterized

(at time t = 0) as:

λk(~r, E) =

Nk∑
j=1

λkjbkj(~r, E), (5.7)

where the number of basis functions Nk used to represent the kth target object may

differ between target objects of different sizes. If the kth moving target object is

treated as a point source, then Nk reduces to the number of energy bins. The overall
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Object Motion
Object

Figure 5.5:
Illustration of target object model with a pixellated stationary backdrop
and one pixellated target object that moves during the imaging process.

time-varying intensity distribution is thus parameterized as:

λ(~r, E, t) =
K∑
k=0

Nk∑
j=1

λkjbkj(~r − ~ck(t), E) (5.8)

where the backdrop mesh has been included over the target sum for concision and

~c0(t) ≡ 0. Typically, the basis functions are unitless and the coefficients λkj have

units of “emissions per unit time per unit solid angle (or volume) per unit energy.”

With this parameterization, the goal is to estimate the coefficients of the backdrop

{λ0j} and of the targets {λkj, k = 1, . . . , K} from the list-mode data.

Figure 5.5 illustrates the model. Note that if the kth target object does not move,

then this formulation could be over-parameterized because the intensity within the

support of that target object could be modeled both by the target object pixel λkj

and a corresponding backdrop pixel λ0j′ , in the case that bkj(~r) and b0j′ (~r) overlap.
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Therefore, one should include only moving target objects in this formulation otherwise

the solution will not be unique. (Stationary sources will be reconstructed as part of

the backdrop.)

5.3.2 Time-Dependent List-Mode Log Likelihood

With these tools, the general form of the list-mode log likelihood for time-varying

emission distribution λ(~r, E, t) is derived following the form of a similar derivation

found in [60]. Assume that the detection system is set to record photon interaction

events for a preset time. In this case, the number of counts the system records will

be a Poisson random variable. We also assume that the detector records the time

tm of the mth recorded event as well as a set of attributes υm describing the event

including the number of interactions as well as the locations and energies of each of

those interactions. The log likelihood associated with these observations is

L(λ) = log

(
p
(
(υ1, t1 | D1), (υ2, t2 | D2), . . .

. . . , (υn, tn | Dn) |M = n;λ
)

·P
[
M = n,D1, D2, . . . , Dn;λ

])
. (5.9)

where n is the total number of events recorded, Dm denotes that the mth event is

detected, and λ is the intensity distribution in space and energy from (5.8). This

expression describes the log of the joint probability of recording the given attributes,

given that they were detected and that exactly n events were detected, multiplied by

the probability that n events were detected. The following term, which describes the

expected count rate as a function of time, is defined to simplify future expressions

λs(t) =

∫∫
Ω

s(~r, E, t)λ(~r, E, t) d~r dE. (5.10)
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The last term in the log likelihood, which follows a Poisson distribution, describes

the probability of recording exactly M = n counts during the scan time. Thus,

P[M = n,D1, D2, . . . , Dn;λ] =
e−M̄λ

(
M̄λ

)n
n!

(5.11)

where M̄λ is the expected number of recorded counts for source disribution λ. Since

λs(t) is the instantaneous expected count rate, the expected total number of photons

recorded over the scan time τd is:

M̄λ =

τd∫
0

λs(t) dt. (5.12)

The first part of the list-mode log likelihood can be rewritten using the chain rule

as:

p
(
(υ1, t1 | D1), . . . , (υn, tn | Dn) |M = n;λ

)
=

p(υ1, . . . ,υn | t1, . . . , tn, D1, . . . , Dn,M = n;λ)

· p(t1, . . . , tn | D1, . . . , Dn,M = n;λ). (5.13)

Note that the recorded time tm of each event cannot be included in the attribute

vector υm because the times follow a specific order and thus cannot be considered

independent parameters. If we assume the attribute vectors are conditionally in-

dependent of each other given the event times (meaning we ignore dead time and

pile-up), the first term on the right hand side of (5.13) can be futher simplified to:

p(υ1, . . . ,υn | t1, . . . , tn, D1, . . . , Dn,M = n;λ) =

n∏
m=1

p(υm | tm, Dm;λ). (5.14)

The second term in (5.13) describes the conditional distribution of the ordered
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arrival times. For a Poisson random process Ross [61, pg. 37,53] shows that

p(t1, t2, . . . , tn, D1, D2, . . . , Dn |M = n;λ) =
n!
∏n

m=1 q(tm;λ) 0 < t1 < t2 < · · · < tn < τd

0 otherwise

(5.15)

where

q(tm;λ) =
λs(tm)

M̄λ
0 < t1 < t2 < · · · < tn < τd

0 otherwise.

(5.16)

Substituting (5.11)-(5.16) into (5.9) yields the following simplified expression for

the list-mode log-likelihood for time-varying sources:

L(λ) =
n∑

m=1

log

(
p(υm | tm, Dm;λ)λs(tm)

)
− M̄λ. (5.17)

Using the logarithm of the likelihood in (5.9) is a key factor in simplifying the likeli-

hood expression. It allows the product to be reduced to a sum (which will be impor-

tant for the EM derivation in the next section), and it allowed for easier simplification

of the Poisson distribution in (5.11).

To analyze p(υm | tm, Dm;λ), we use total probability:

p(υ | t,D;λ) =∫∫
Ω

p(υ | ~r, E, t,D;λ)p(~r, E | t,D;λ) d~r dE. (5.18)
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The first term in the integral is simply

p(υ | ~r, E, t,D;λ) = p(υ | ~r, E, t,D) (5.19)

which is the distribution of recorded attributes expected from a source at location ~r

and energy E recorded at time t. It is independent of the overall intensity distribution

and is a key term in the system model (see (5.2)).

The second term in the integral is the probability density function (pdf) for the

emission of a photon at position ~r and energy E. This term is related to λ but is

a bit more complicated as a result of the conditioning on D, because the photon is

only recorded if the photon is detected. Particularly, the conditional distribution of

the origin of the incident photons is:

p(~r, E | t,D;λ) =
P[D | ~r, E, t;λ]p(~r, E | t;λ)

P[D | t;λ]
. (5.20)

The first term in the numerator is simply the conditional sensitivity of the system at

time t which is independent of λ, and the second term in the numerator is the pdf

of the source intensity distribution pt(~r, E), and is directly proportional to λ(~r, E, t)

since the decay constant of the radioactive isotopes is assumed to be long compared to

the measurement time. Finally, the denominator is the total probability of detection

at time t which is calculated by integrating the sensitivity multiplied by pt(~r, E).

Thus, (5.20) reduces to:

p(~r, E | t,D;λ) =
s(~r, E, t)pt(~r, E)∫∫

Ω

s(~r ′, E ′)pt(~r ′, E ′) d~r ′ dE ′

=
s(~r, E, t)λ(~r, E, t)

λs(t)
. (5.21)
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Substituting(5.19) and (5.21) into (5.18) yields:

p(υ | t,D;λ) =

1

λs(t)

∫∫
Ω

p(υ | ~r, E, t,D)s(~r, E, t)λ(~r, E, t) d~r dE. (5.22)

After substituting (5.22) into (5.17), the time-dependent log-likelihood expression

is:

L(λ) =
n∑

m=1

log

(∫∫
Ω

p(υm | ~r, E, tm, Dm)s(~r, E, tm)

· λ(~r, E, tm) d~r dE

)
− M̄λ (5.23)

which using (5.2) simplifies to

L(λ) =
n∑

m=1

log

(∫∫
Ω

fm(~r, E, tm)λ(~r, E, tm) d~r dE

)
− M̄λ (5.24)

5.3.3 EM Algorithm

Starting with (5.24) and using optimization transfer techniques [7,60,62], we derive

the EM update equation. The goal is to be able to write the maximization in a simple

way separable in λkj. First, write the log likelihood in terms of the parameterized
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intensity distribution (5.8):

L(λ) =

n∑
m=1

log

(∫∫
Ω

p(υm | ~r, E, tm, Dm)s(~r, E, tm)

·
K∑
k=0

Nk∑
j=1

λkjbkj(~r − ~ck(tm), E) d~r dE

)

−
τ∫

0

∫∫
Ω

s(~r, E, t)
K∑
k=0

Nk∑
j=1

λkjbkj(~r − ~ck(t), E) d~r dE dt. (5.25)

Now, rearrange and make simplifying substitutions:

L(λ) =
n∑

m=1

log

[ K∑
k=0

Nk∑
j=1

λkjfkjm

]
−

K∑
k=0

Nk∑
j=1

λkjskj (5.26)

where,

fkjm =

∫∫
Ω

p(υm | ~r, E, tm, Dm)s(~r, E, tm)bkj(~r − ~ck(tm), E) d~r dE (5.27)

skj =

τ∫
0

∫∫
Ω

s(~r, E, t)bkj(~r − ~ck(t), E) d~r dE dt. (5.28)

Introduce a new scalar term, βkjm, and rewrite (5.26) :

L(λ) =

n∑
m=1

log

[ K∑
k=0

Nk∑
j=1

βkjmλkjfkjm
βkjm

]
−

K∑
k=0

Nk∑
j=1

λkjskj (5.29)

where

βkjm > 0 ∀ k, j,m and
K∑
k=0

Nk∑
j=1

βkjm = 1 ∀ m.
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Note that log(x) is a concave function, i.e. :

log

(∑
i

aixi

)
≥
∑
i

ailog(xi) (5.30)

under the following conditions:

∀xi, ai > 0,
∑
i

ai = 1 and
∑
i

aixi 6= 0. (5.31)

Taking advantage of this property, we can write a surrogate function that is both

separable in λkj and no greater than the original log likelihood:

L(λ) ≥ Φ(λ; βkjm) =
K∑
k=0

Nk∑
j=1

φkj(λkj; βkjm) (5.32)

where

φkj(λkj; βkjm) =
n∑

m=1

βkjmlog

[
λkjfkjm
βkjm

]
− λkjskj. (5.33)

The idea here is at iteration i to initially set βikjm such that Φ(λi; βikjm) = L(λi) and

maximize the surrogate function with respect to λ, which is easier than maximizing

the original likelihood function. Then calculate βi+1
kjm using λi+1. Repeat this process

until the maximum in the surrogate is equal to (or “near”) the maximum of the log-

likelihood. To implement this algorithm, one needs to know how to update βkjm and

maximize φkj(λkj; β
i
kjm) with respect to λkj.

First set Φ(λi; βkjm) = L(λi) and solve for βikjm:

βikjm =
λikjfkjm∑K

k′=0

∑Nk′
j′=1 λ

i
k′j′fk′j′m

. (5.34)
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Next, maximize φkj(λkj; β
i
kjm) to find λi+1

kj :

∂

∂λkj
φkj(λkj; β

i
kjm) = 0 =

n∑
m=1

βikjm
λkj
− skj

λi+1
kj =

1

skj

n∑
m=1

βikjm. (5.35)

Combine (5.34) and (5.35) to obtain the list-mode EM algorithm for moving sources:

λi+1
kj =

λikj
skj

n∑
m=1

fkjm∑K
k′=0

∑Nk′
j′=1 λ

i
k′j′fk′j′m

(5.36)

A key difference between this result and the update equations derived by Parra

and Barrett [36] is the time integral of the system sensitivity. Due to motion of

the object and/or the system itself, we compute (5.28) by Riemann sum over a list

of discretized target and detector positions and rotations. An example where this

distinction is important is when a target gets very close to the system during the

measurement time. If relatively few counts are recorded during that period, the

instantaneous sensitivity s(~r, E) would be large for only a small fraction of events,

but the overall sensitivity skj would be large and that high overall sensitivity would

suppress the reconstruction from estimating a source that passes that direction.

5.4 Performance

To test the performance of the newly proposed algorithm, we performed several

experiments using the standard 18-detector array described in Section 2.4. Here

we discuss two of those experiments. The first experiment demonstrates the ability

to compensate for source motion without disturbing the reconstruction of stationary

sources, and the second shows the capability of reconstructing multiple moving sources

without introducing cross contamination between them.
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SOURCE 

ACTUATOR 

DETECTOR 

Figure 5.6:
A computer controlled actuator arm which is mounted to a table is used
to control the position of the source in motion. The detector system is
depicted as two rectangles. The smaller rectangle contains the actual
CdZnTe crystals, and the larger body contains the supporting electronics
including high and low voltage power supplies and the data readout. The
array of detectors is positioned directly underneath the actuator pivot
point, and the source is placed at the bottom of the actuator arm, in-
plane with the detectors.

5.4.1 Target-Position Estimation

To demonstrate the presented algorithm, a method of recording source position

as a function of time was required. Thus, the apparatus shown in Figure 5.6 was

assembled to rotate a source around the 18-detector array. A computer controlled

actuator, attached to the top of a table, was set to rotate with a constant angular

velocity to known angular displacements. An ‘L’-shaped aluminum arm was attached

to this actuator so that the bottom-most tip of the arm was in the plane of the array

system positioned below the table. The center of the detector head was placed directly

below the actuator pivot point so that the resulting motion at the bottom-most tip

of the actuator arm would revolve completely around the center of the detector array.
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Figure 5.7:
Results for the standard MLEM spatial reconstruction for the 137Cs en-
ergy slice. The estimated intensity is smeared through the equator since
no motion compensation was applied and the source was in constant mo-
tion.

5.4.2 One Moving and One Stationary Source

In the first experiment, a 122-µCi 137Cs source was rotated 360◦ at a constant

velocity around the detector system at a radius of 1.2 m during the course of a 46-

minute measurement in the counterclockwise direction (when viewed from the top).

Also, a 22Na source was placed in a stationary position in the backdrop 1.0 m from the

center of the detector. Because of computational constraints, a smaller set of events

was used for the following reconstructions. To use data from the entire data-collection

time, the first event of every 50 events was used for each reconstruction of this data

set which resulted in about 4000 imageable counts in the energy range of 300 keV to

1300 keV.

An MLEM reconstruction using the standard system response (which reconstructs

only the spatial domain) is performed to compare with the new algorithm presented

in this work. No motion compensation is performed, and energy windows are used so

that only photopeak counts are reconstructed.

Figures 5.7 and 5.8 show the reconstructed images of the standard MLEM recon-
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Figure 5.8:
Results for the standard MLEM spatial reconstruction for the 22Na energy
slice. A single localized hotspot is visible corresponding to the location
of the stationary 22Na source.

struction after 20 EM iterations using a 36 × 72 pixel backdrop imaging mesh (over

4π). Figure 5.8 shows that the spatial distribution for the 22Na photopeak energy

range is deconvolved correctly as expected since the source was stationary. However,

the deconvolved spatial distribution for the 137Cs photopeak window, seen in Fig-

ure 5.7 does not show a clear hotspot since the source was in constant motion and

that motion was not included in the model.

The newly proposed method reconstructed the same data using a similar backdrop

mesh and a 9 × 9 pixel target-object mesh spanning 40◦ in the polar and azimuthal

directions. The energy domain consisted of 250 evenly spaced energy bins over a

range of 300 - 1300 keV. Few imagable events fall outside this energy range, so the

energy dimension could be limited to this set of energies.

Figures 5.9-5.11 show the reconstructed images after 20 EM iterations of the

proposed model-based algorithm. The desired results in this situation would estimate

a single hotspot in the stationary backdrop with an energy distribution corresponding

to a 22Na spectrum and a hotspot at 662 keV in the target object space, which tracked

the 137Cs source motion. The actual reconstruction for the backdrop space, seen in
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(c)

Figure 5.9:
Results for the backdrop space after 20 iterations of the proposed motion-
compensated EM algorithm for a moving 137Cs source and a stationary
22Na source: (a) reconstructed incident energy spectrum for the entire
backdrop space; (b) reconstructed spatial distribution for the 22Na energy
slice; (c) reconstructed spatial distribution for the 137Cs energy slice.
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Figure 5.10:
The reconstructed incident energy spectrum corresponding to just the
hotspot direction in Figure 5.9(b).

Figure 5.9, is similar to the desired result. Figure 5.9(b) shows the single hotspot at

the 22Na energies, and even though there is again some 137Cs contamination in the

backdrop seen in Figure 5.9(c), it does not form a single hotspot but is disbursed over

the entire 4π space. Figure 5.9(a) shows the reconstructed spectrum for the entire

backdrop space, but it has a significant amount of 137Cs contamination. Figure 5.10

shows the spectrum just in the direction of the stationary 22Na source, which is a well-

deconvolved 22Na spectrum as expected. Figure 5.11 shows the reconstruction results

for the target object space. The reconstructed spectrum shown in Figure 5.11(a) is

a well deconvolved 137Cs spectrum free of 22Na contamination. Figure 5.11(b) shows

the hotspot at the 137Cs energy, and Figure 5.11(c) shows that there is no cross talk

at the 22Na energies.

5.4.3 Two Sources Moving in Opposite Directions

In the second experiment, the same 137Cs source was rotated 360◦ around the de-

tector system similar to the first experiment, and then the previously stationary 22Na

source was rotated 360◦ around the detector in the opposite direction in a similar fash-

ion. The two datasets were then combined and reconstructed as if they occurred si-
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Figure 5.11:
Results for the target-object space after 20 iterations of the proposed
motion-compensated EM algorithm for a moving 137Cs source and a
stationary 22Na source: (a) reconstructed incident energy spectrum for
this target; (b) reconstructed spatial distribution for the 137Cs energy
slice; (c) reconstructed spatial distribution for the 22Na energy slice.
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multaneously with the sources crossing paths at 180◦ in the azimuthal direction. This

combined dataset, consisting of about 4500 imageable events in a similar energy range

(after downsampling), was reconstructed using similar imaging and energy meshes as

the previous experiment except that now there are two target-object meshes tracking

the two moving sources. The standard non-motion-compensated MLEM image for

this dataset looks very similar to that of the first reconstruction: a smear of intensity

through the equator, and without tracking information, the two sources would appear

to simply overlap.

The results for the proposed model-based algorithm after 20 EM iterations are

shown in Figures 5.12 and 5.13. The desired results for this reconstruction would

be zero (or some small amount of background) in the backdrop space, and a single

hotspot at the 137Cs energy in the first target object which tracked the 137Cs source,

and a single hotspot at the 22Na energies for the second target object which tracked

the 22Na source. The backdrop results seen in Figure 5.12 show roughly the desired

results. Some 137Cs and 22Na intensity is incorrectly estimated in the backdrop, but

this contamination is small and dispersed in all directions. Figure 5.13 shows the

results for the two target objects. Here it is obvious that the first target object has a

single hotspot at 662 keV and a zero distribution at the 22Na energy window. Also,

the second target object has a hotspot at the 22Na energies and a flat distribution at

the 137Cs energy as desired. Finally, the estimated incident spectra for the two target

objects show well deconvolved 137Cs and 22Na energy spectra.

5.5 Discussion

This chapter introduced a new imaging algorithm that can successfully reconstruct

motion compensated images for multiple sources with independent motion profiles

without cross contamination between the moving sources and any sources present in

the stationary backdrop image. The reconstruction works well for point sources when
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Figure 5.12:
Results for the backdrop space after 20 iterations of the proposed motion-
compensated EM algorithm for a 137Cs source moving counterclockwise
and a 22Na source moving clockwise: (a) reconstructed incident energy
spectrum for the entire backdrop space; (b) reconstructed spatial distri-
bution for the 137Cs energy slice; (c) reconstructed spatial distribution
for the 22Na energy slice.
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Figure 5.13:
Results for the two target-object spaces after 20 iterations of the pro-
posed motion-compensated EM algorithm for a 137Cs source moving
counterclockwise and a 22Na source moving clockwise: (a) reconstructed
incident energy spectrum for both targets; (b) reconstructed spatial dis-
tribution for the 137Cs energy slice in Target 1; (c) reconstructed spatial
distribution for the 22Na energy slice in Target 1; (d) reconstructed spa-
tial distribution for the 137Cs energy slice in Target 2; (e) reconstructed
spatial distribution for the 22Na energy slice in Target 2.
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the motion of the targets of interest are well-known. However, several improvements

are key to make the algorithm more suitable for use in real-world scenarios.

In this work, each target had the same extent and the source was located at the

center of the target. This assumption may not be realistic in a fielded device. For

example, if the reconstruction is used at a border crossing, cars in the far lane will

subtend a smaller solid angle than those in the near lane. Thus, the target domains

used for the cars in the near lane should have a greater extent. When a larger extent is

used for the target domain, the orientation of the objects in that domain also become

more important. If the source is located at the center of the target, the orientation

would not matter, but in most cases the source will not be in the center. Therefore,

more careful treatment of the orientation of the target space may be needed for some

applications.

Another assumption used in the current reconstruction model is that no occlusions

are present between targets and the detector. In the border crossing scenario just

described, this may be a terrible assumption if a loaded dump truck rolls in between

the detector and a target of interest. However, if optical video cameras are used

to track the targets, it may be relatively straightforward to use that information to

estimate the attenuation between the detector and any given target as a function

of time. This would complicate the model, but could drastically improve results in

certain cases.

One last key point to consider is that in many cases, including the border crossing

scenario, it is likely that more than one detector will be in use. This 2-D recon-

struction has no way to benefit from multiple detectors at different locations. For

that type of problem, this motion compensation algorithm should be applied to the

3-D domain. This adaptation of the reconstruction should be straightforward, but

it could emphasize the importance of handling the orientation and attenuation more

carefully.
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CHAPTER VI

Image Reconstruction with Unknown Source

Motion

Chapter V described a new algorithm that adds a set of spatial bins to the imaging

domain in order to track moving objects. This alternative form of spatial binning

allows one to simultaneously reconstruct a mixture of stationary and moving sources

without blurring and with minimal cross contamination between sources. Another

key aspect of the target spatial binning concept is that it essentially removes the

time-dependence from the final solution. Although the direction associated with the

target-image domain changes as a function of time to match the direction of the target,

the result is simply composed of a backdrop image and a target image. There is not

a set of target images as a function of time. This ability to reduce the dimensionality

of the problem is desirable because it does not distribute the already scarce number

of counts over many time bins.

However, sometimes the target spatial binning is impractical. In situations where

the number of possible targets is large, like a crowd in an airport, it may be impractical

to track all of them, especially if the targets are moving in and out of the optical field

of view or if they are crossing paths. Even if it were possible to track them all,

including them all in the image reconstruction may prove to be a challenge since

many targets could have very similar paths. For these cases where there are too
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many targets, the targets are difficult to track, or there are no known target paths,

we must take a different approach.

This chapter discusses the explicit addition of the time domain in the image re-

construction. That is to say, here the reconstruction algorithms will estimate the

radiation spatial distribution as a function of time and possibly energy. (Think ra-

diation movie.) Three different methods are discussed that have different ways to

handle the sparsity of the data and smoothing the image in the time domain.

6.1 Time-Dependent MLEM

The simplest and most straightforward way to include the time domain in the

image reconstruction is to bin the incoming events by acquisition time and treat each

time bin as a separate reconstruction. In this way, one gets a snapshot of the radiation

distribution for each time interval in the binning structure. This approach is the most

analogous to making a “radiation movie”.

The addition of the time domain may sound similar to the addition of the en-

ergy domain as discussed when the complete system model was introduced in Sec-

tion 3.3.2.4. However, there is a big difference between the time domain and the

energy domain. For the energy domain, even if the system has perfect energy resolu-

tion (i.e., the energy depositions are known exactly), it is still possible that the total

energy deposited in a given event may not be the true energy of the incident photon.

Thus, partial energy deposition is included in the system model which couples the

space and energy domains, and the MLEM reconstruction estimates the most likely

source distribution in space and energy.

However, assuming that all interactions resulting from a single incident photon

occur simultaneously and ignoring deadtime and pulse pile-up effects, it is not possible

for an energy deposition in the detector at time ti to be caused by a photon incident on

the system at some previous time ti−n or some future time ti+n. Therefore, the system
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response functions described in Section 3.3.2 are still valid for this time-dependent

reconstruction since we assume each time bin is completely independent of the others,

and we use the timestamp of each event only to determine the time bin to which it

belongs.

6.1.1 Implementation

In order to include the time domain in the MLEM reconstruction, we modify the

parameterization of the source distribution λ(~r, E, t) as follows:

λ(~r, E, t) =
L∑
l=1

N0∑
j=1

λljblj(~r, E, t) (6.1)

where λlj represents the unknown intensity corresponding to the basis function blj

which is now described by a simple rect function covering the jth spatial-energy bin

and the lth time bin. As before, N0 is the total number of spatial-energy bins for a

given time and L is the total number of time bins.

Since the time-dependent list-mode log likelihood previously derived in Section 5.3.2

is still valid, we can rewrite it using the new parameterization of λ(~r, E, t) by substi-

tuting (6.1) into (5.24):

L(λ) =

n∑
m=1

log

(∫∫
Ω

p(υm | ~r, E, tm, Dm)s(~r, E, tm)
L∑
l=1

N0∑
j=1

λljblj(~r, E, tm) d~r dE

)

−
τ∫

0

∫∫
Ω

s(~r, E, t)
L∑
l=1

N0∑
j=1

λljblj(~r, E, t) d~r dE dt. (6.2)

Now, rearrange and make simplifying substitutions

L(λ) =
n∑

m=1

log

[ L∑
l=1

N0∑
j=1

λljuljm

]
−

L∑
l=1

N0∑
j=1

λljvlj (6.3)
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where,

uljm =

∫∫
Ω

p(υm | ~r, E, tm, Dm)s(~r, E, tm)blj(~r, E, tm) d~r dE (6.4)

vlj =

τ∫
0

∫∫
Ω

s(~r, E, t)blj(~r, E, t) d~r dE dt. (6.5)

Following the same derivation found in Section 5.3.3, the EM algorithm update

equation for this simple time-binned EM reconstruction is

λi+1
lj =

λilj
vlj

n∑
m=1

uljm∑L
l′=1

∑N0

j′=1 λ
i
l′j′ul′j′m

. (6.6)

If the basis functions blj(~r, E, t) were something other than simple non-overlapping

rectangular bin functions, (6.6) is the final simplified update equation. However, since

we are using these simple rectangle basis functions, (6.6) can be simplified to:

λi+1
lj =

λilj
vlj

n∑
m=1

uljm∑N0

j′=1 λ
i
lj′ulj′m

(6.7)

since the system response ul′j′m in (6.6) will have zero value for any time bin other

than l.

The ability to simplify from (6.6) to (6.7) makes the computation faster and easier

to parallelize. The computation is faster because the outer loop over the time bins has

been removed from the denominator of the update equation. More importantly this

simplification allows one to calculate the solution for each time bin l independently

using different processing threads. It also saves memory (if the system matrix is

stored in memory) since each time bin can have its own system matrix which has a

dimension of nl rows by N0 columns. In contrast, one large system matrix would have

n rows by N0 · L columns, where nl is the number of recorded counts in time bin l.

However, memory would be less of an issue if sparse matrix storage is used.

129



6.1.2 Performance

We used a simple measurement of a 30 µCi 137Cs source moving around the detec-

tor array to demonstrate the capability of the time-dependent MLEM reconstruction.

During the experiment, the source moved at a relatively slow and constant speed,

and the distance from the detector was constant at about 1 m. We used 30 time bins

to evenly discretize the time domain for the six minute measurement. For simplicity,

we used the standard full-energy assumption MLEM model and only reconstructed

photopeak events.

The reconstructed time distribution as a function of direction is shown in Fig-

ure 6.1. The intensity peaks at the time that the source crosses the direction cor-

responding to each distribution. In this case, there are enough counts (about 5700)

and few enough time bins such that the distributions show little statistical noise from

the reconstruction. By comparison, a similar plot made with results from the SBP

reconstruction would show a broad peak with large tails because of the large point

spread function of the SBP reconstruction.

Figure 6.2 shows the reconstructed spatial distribution as a function of time. As

with the time domain, there is little statistical noise in the reconstructed images.

The source location is easily identifiable with minimal artifacts. These results are

expected since, for this simple time-binned reconstruction, each time bin is essentially

a standard MLEM reconstruction without time-dependence.

The previous results show that the simple addition of the time domain works

well when there are plenty of counts in each time bin to allow the reconstruction

to generate an accurate estimate of the source direction with little statistical noise.

However, in many cases the source strength may be weaker and/or the source may

be moving faster. In this case where only a handful of counts may be recorded in

a given time window, the standard MLEM reconstruction begins to reproduce noisy

images from which it is difficult to discern the source direction.
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(a)

(b)

(c)

Figure 6.1:
Unregularized MLEM solution after 25 EM iterations for the time do-
main in the direction of the hotspot shown in: (a) Figure 6.2(a), (b)
Figure 6.2(b), and (c) Figure 6.2(c).
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(a)

(b)

(c)

Figure 6.2:
Unregularized MLEM solution after 25 EM iterations in the spatial do-
main for the time corresponding the peak in: (a) Figure 6.1(a), (b) Fig-
ure 6.1(b), and (c) Figure 6.1(c).
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We performed another experiment using the same apparatus as the experiments

for the known motion case in Section 5.4. In this experiment a single 137Cs source

rotated around the detector array over the course of about 40 mins. We downsampled

the data so that there are about 3000 total imageable photopeak counts, and then

we used the downsampled dataset both to compare the time-dependent algorithms

presented here and for the optimization study at the end of the chapter.

To test the limits of the standard MLEM algorithm, we reconstruct this dataset

using 300 time bins. This binning results in approximately 10 counts per time window.

Figure 6.3 shows the reconstructed time distribution after 25 EM iterations as a

function of direction. With the increased number of time bins, the time at which

the source passed each direction is still discernible, but the statistical noise plays

a much more dominant role. The same is true for the spatial distribution seen in

Figure 6.4. Although it may be difficult to tell with just the few snapshots in time

displayed here, the overall path of the source can be determined by eye from the

reconstructed images with careful examination. However, many artifacts are now

present in the distributions making it difficult to know the true direction at any given

time, especially if one is just looking at individual snapshots like in Figure 6.4

To overcome the effects of low statistics for low activity or fast moving sources,

we have have developed new reconstruction methods.

6.2 MLEM with Time Smoothing Regularizer

In a standard (unregularized) maximum-likelihood reconstruction, the goal is to

maximize the agreement between the estimated source distribution and the recorded

measurements. However, sometimes one may have previous knowledge about how

the distribution should behave. In this case, instead of just using the likelihood

function, we use an objective function, Ψ, of the following form to solve for the
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(a)

(b)

(c)

Figure 6.3:
Unregularized MLEM solution after 25 EM iterations. The plots show the
source intensity as a function of time along the equator at an azimuthal
angle of (a) 45◦, (b) 180◦, and (c) 315◦.
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(a)

(b)

(c)

Figure 6.4:
Unregularized MLEM solution after 25 EM iterations. The figures show
the spatial source distribution at (a) 230 s, (b) 1500 s, and (c) 2800 s.
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source distribution

λ̂ = arg max
λ

Ψ(λ) (6.8)

Ψ(λ) = L(λ)− δR(λ) (6.9)

where R(λ) is the penalty function that lowers the objective function if λ does not

have the expected form, and the regularization parameter δ is used to determine how

strongly to enforce the regularization. R(λ) may take many different forms depending

on the desired effect. For example, Lingenfelter [63] describes several different penalty

functions for encouraging spatial sparsity.

However, we want to encourage the solution to be smooth in the time domain

since we assume that the sources are moving relatively slowly compared to the size

of the time bins. For this case we use a simple roughness penalty function [64]

R(λ) =
1

2

L∑
l=1

N0∑
j=1

(λlj − λl−1 j)
2. (6.10)

This function will discourage the intensity of image pixel j from changing greatly

between time bins l and l−1. Note that the sum over l goes from 1 to L so that we can

combine terms later, and the boundary conditions are defined after the simplification

such that all of the subscripts are valid.
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6.2.1 Derivation

Using the parameterized time-dependent log likelihood (6.3) and the penalty func-

tion (6.10), the objective function is

Ψ(λ) =
n∑

m=1

log

[ L∑
l=1

N0∑
j=1

λljuljm

]
−

L∑
l=1

N0∑
j=1

λljvlj

−δ
2

L∑
l=1

N0∑
j=1

(λlj − λl−1 j)
2. (6.11)

Now we want to find the EM update equation to solve for the λ̂ that will maximize

this objective function. To do that we will follow the derivation found in Section 5.3.3.

First, expand the penalty term and combine like sums

Ψ(λ) =
n∑

m=1

log

[ L∑
l=1

N0∑
j=1

λljuljm

]

−
L∑
l=1

N0∑
j=1

[
λljvlj +

δ

2

(
λ2
lj + λ2

l−1 j − 2λljλl−1 j

)]
(6.12)

Next introduce βljm and rewrite (6.12)

Ψ(λ) =
n∑

m=1

log

[ L∑
l=1

N0∑
j=1

βljmλljuljm
βljm

]

−
L∑
l=1

N0∑
j=1

[
λljvlj +

δ

2

(
λ2
lj + λ2

l−1 j − 2λljλl−1 j

)]
(6.13)

where

βljm > 0 ∀ l, j,m and
L∑
l=1

N0∑
j=1

βljm = 1 ∀ m

Remember that log(x) is a concave function (5.30) under the conditions (5.31), and

therefore a new surrogate function can be written that is separable in λlj and is no
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greater than the original objective function

Ψ(λ) ≥ Φ(λ; βljm) =
L∑
l=1

N0∑
j=1

φlj(λlj; βljm) (6.14)

where

φlj(λlj; βljm) =
n∑

m=1

βljmlog

[
λljuljm
βljm

]
− λljvlj −

δ

2

(
λ2
lj + λ2

l−1 j − 2λljλl−1 j

)
. (6.15)

Updating the βljm term is performed exactly the same as it was before, namely

βiljm =
λiljuljm∑L

l′=1

∑N0

j′=1 λ
i
l′j′ul′j′m

=
λiljuljm∑N0

j′=1 λ
i
lj′ulj′m

. (6.16)

Plug the current βiljm term into (6.15) to set the current surrogate function. Then,

previously we maximized φlj(λlj; β
i
ljm) to find λi+1

lj ; however, now because the penalty

term is coupled across the time domain we must maximize Φ(λi; βljm) with respect

to λlj instead

∂

∂λlj
Φ(λ; βiljm) = 0 =

n∑
m=1

βiljm
λlj
− vlj − δ

(
2λlj − λl−1 j − λl+1 j

)
. (6.17)

Now multiply both sides by λlj

0 =
(
− 2δ

)
λ2
lj +

(
δλl−1 j + δλl+1 j − vlj

)
λlj +

n∑
m=1

βiljm (6.18)

and solve for the new estimate of λlj

λi+1
lj =

−b±
√
b2 − 4ac

2a
⇒ −b−

√
b2 − 4ac

2a
(6.19)
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where

a =


−2δ 1 < l < L

−δ otherwise

b =


δλi+1

l−1 j + δλi+1
l+1 j − vlj 1 < l < L

δλi+1
l+1 j − vlj l = 1

δλi+1
l−1 j − vlj l = L

c =
n∑

m=1

βiljm =
n∑

m=1

λiljuljm∑N0

j′=1 λ
i
lj′ulj′m

.

Notice that there will always be a positive and negative real root since δ and βljm are

greater than zero, but only the positive root is taken since λ can only take on positive

values. Also, at the boundaries, a one-sided difference is taken for the penalty term.

6.2.2 Implementation

The update equation derived in the previous section takes on a deceivingly simple

form. At first glance it appears that the update can be found by simply plugging

in the terms a, b, and c into (6.19). However, after closer inspection, the b term in

(6.19) depends on values of λ in the current iteration. This dependency complicates

the implementation slightly because the solution is coupled in the time domain and

each spatial-energy bin j must be solved simultaneously over all the time bins.

Green [65] suggests using the “one-step-late” algorithm to avoid this implemen-

tation problem. This algorithm uses the solution of the previous iteration, λilj, for

the penalty term in the objective function. Note that this is a somewhat heuristic

approach and does not exactly compute the true penalized-likelihood solution, but it

simplifies the implementation. Start by setting the derivative of the objective function
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to zero (6.17)

0 =
n∑

m=1

βiljm
λlj
− vlj − δ

(
2λilj − λil−1 j − λil+1 j

)
. (6.20)

Now rearrange terms and substitute βiljm using (6.16)

vlj + δ
(
2λilj − λil−1 j − λil+1 j

)
=
λilj
λlj

n∑
m=1

uljm∑N0

j′=1 λ
i
lj′ulj′m

(6.21)

and solve for the new estimate of λlj

λi+1
lj =

λilj

vlj + δ
(
2λilj − λil−1 j − λil+1 j

) n∑
m=1

uljm∑N0

j′=1 λ
i
lj′ulj′m

. (6.22)

Green proved that this algorithm does converge and that it will converge relatively

quickly if the smoothing parameter δ is small. However, in our case sometimes the

smoothing required will be large. Also, with this implementation there is a chance

that the penalty term will cause the solution to be undefined or negative. Thus, there

is a limited range of δ values that can be chosen, and one would have to be mindful

of that range when using the algorithm.

Because of these shortcomings, we propose a different implementation. Notice that

the βiljm values are independent of each other in the time domain. Thus, we solve

(6.19) iteratively (always using the most current estimate of λlj) without having to

recalculate βiljm after each (sub-)iteration

λ
i+s/S
lj =

−b−
√
b2 − 4ac

2a
(6.23)
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Algorithm VI.1 Pesudocode for penalized-likelihood EM update.

for i = 1→ numIterations do
Set current surrogate function

for all l do
for all j do

Calc βiljm (6.16)
end for

end for
Iteratively solve for new estimate of source distribution

for s = 1→ numSubiterations do
for all j do

for all l do
Calc λ

i+s/numSubIterations
lj (6.19)

end for
end for

end for
end for

where s is the current sub-iteration, S is the total number of sub-iterations and

a =


−2δ 1 < l < L

−δ otherwise

b =


δλ

i+s/S
l−1 j + δλ

i+(s−1)/S
l+1 j − vlj 1 < l < L

δλ
i+(s−1)/S
l+1 j − vlj l = 1

δλ
i+s/S
l−1 j − vlj l = L

c =
n∑

m=1

βiljm =
n∑

m=1

λiljuljm∑N0

j′=1 λ
i
lj′ulj′m

In essence, after each main iteration where the surrogate function is updated, the

penalty term is used to smooth out the time domain iteratively. Algorithm VI.1

shows some pseudocode that describes the algorithm. The key here is that the sub-

iterations do not significantly slow down the computation time because it is a simple

root calculation without the large sums found in the main iterations.

Another way to speed up the algorithm would be to calculate the sub-iterations

141



in parallel. Some care has to be taken to ensure that adjacent time bins are not being

updated at the same time, since the solution at each time depends on the value of

the adjacent time bins. A simple implementation is to update the odd time bins in

parallel first then update the even time bins in parallel and repeat. This algorithm is

similar to other block or grouped updates previously developed [66,67], and because

each step in the algorithm increases the penalized likelihood by design, one can show

that the algorithm will converge [68].

6.2.3 Performance

We use the same low-count-rate dataset used to test the performance of the stan-

dard time-dependent MLEM reconstruction in Section 6.1.2 to demonstrate the ca-

pability of this penalized reconstruction. Figure 6.5 shows the reconstructed time

distribution of the source intensity as a function of direction after 25 iterations. For

comparison we use the same binning structure for this reconstruction, and it is im-

mediately obvious that the regularization term has successfully smoothed the dis-

tribution. Some noise is still present, but the high-intensity noise spikes have been

eliminated.

Figure 6.6 shows the reconstructed spatial distribution as a function of time. As

with the time distribution, artifacts from noise are still present in the images, but the

distributions are smoother, and as a result the hotspot tracks the source direction

more consistently and is more easily identified by the eye.

The penalization factor, δ, greatly affects the resulting image quality and must

be chosen by the user before the reconstruction can be performed. The results in the

previous section were generated using a penalization factor of 0.1 which we selected

after trying several other values. Figure 6.7 shows the reconstructed spatial distri-

bution for a variety of penalization factors. If the penalty factor is too low like in

Figure 6.7(a), the reconstructed distribution begins to resemble the standard time-
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(a)

(b)

(c)

Figure 6.5:
Regularized MLEM solution after 25 EM iterations using a penalization
parameter of 0.1. The plots show the source intensity as a function of
time along the equator at an azimuthal angle of (a) 45◦, (b) 180◦, and (c)
315◦.
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(a)

(b)

(c)

Figure 6.6:
Regularized MLEM solution after 25 EM iterations using a penalization
factor of 0.1. The figures show the spatial source distribution at (a) 230
s, (b) 1500 s, and (c) 2800 s.
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dependent MLEM solution where noise artifacts dominate the solution. However, if

the penalty factor is too large like in Figures 6.7(b) and 6.7(c), the reconstructed dis-

tribution becomes blurry. Thus, this parameter must be selected with care to ensure

the best possible reconstruction.

6.3 Filtered Time-Dependent MLEM

This section describes an alternative way to address the poor results attained

using the standard time-dependent MLEM algorithm described in Section 6.1. In the

previous section, we added a penalty term to the objective function to smooth out

the solution in the time domain. Here we use the solution from the standard time-

dependent MLEM algorithm with standard 1-D digital filtering in the time domain

to attempt to smooth or remove the statistical noise.

6.3.1 Average Filter

The first filter we consider is a simple linear filter that essentially calculates the

moving average of the input signal. The discrete form of this filter is

λlj =



X∑
w=−X

hλl−w j l −X > 0 & l +X ≤ L

X∑
w=0

hλl−w j l −X ≤ 0

0∑
w=−X

hλl−w j l +X > L

h =



1
W

l −X > 0 & l +X ≤ L

1
l+X

l −X ≤ 0

1
(L−l)+X l +X > L

(6.24)
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(a)

(b)

(c)

Figure 6.7:
Source distribution at t=1500s for penalization factors of (a) δ=0.001, (b)
δ=1.0, and (c) δ=100.0
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where

X =
W − 1

2
. (6.25)

W is the width of the filter and is a parameter that must be preselected similar to

the δ parameter in the penalized likelihood method. W is usually chosen to be an

odd value so that the smoothing is symmetric about each time bin, but an even W

can be accommodated by rounding up both limits of the sum in (6.24). Notice that

at the boundaries the averaging window shrinks to only include values that are part

of the distribution. No zero padding or other artificial data is added to the ends of

the distribution when averaging.

Figure 6.8 shows an example of what the filter does for an impulse input with

different values of W . For impulse noise, the filter flattens and stretches the signal in

time, and for a square signal, it flattens and stretches the signal and blurs the edges.

The reduction in the amplitude of the noise is desirable, but the filter does not entirely

remove the noise, and it distorts the edges of the signal which could potentially cause

temporal blurring in the reconstructed image.

Figures 6.9 and 6.10 show the same unregularized results from Figures 6.3 and

6.4 after they are passed through the average filter with a window 21 bins wide. The

filtered time domain results show a reduction of the high frequency noise seen in

the unfiltered results. However, artifacts are still present which makes it difficult to

discern the time at which the source passed a given direction. The spatial distribution

results show similar traits. The overall source direction is easier to determine by eye,

but even more artifacts are present in these distributions compared to the originals

because the average filter has smoothed the high frequency noise through time. So

even though the filter has reduced the intensity of the artifacts, it causes the influence

of any given single spike of noise to be spread out over many time bins.
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Figure 6.8:
Example output from the average filter using the input signal shown in
(a) using a window 3 bins wide (b) and 15 bins wide (c).

148



0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

Time (s)

In
te

n
s
it
y

(a)

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

Time (s)

In
te

n
s
it
y

(b)

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

Time (s)

In
te

n
s
it
y

(c)

Figure 6.9:
Unregularized MLEM solution after 25 EM iterations post-processed us-
ing the average filter with a window of 21 bins. The plots show the source
intensity as a function of time along the equator at an azimuthal angle of
(a) 45◦, (b) 180◦, and (c) 315◦.
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Figure 6.10:
Unregularized MLEM solution after 25 EM iterations post-processed
using the average filter with a window of 21 bins. The figures show the
spatial source distribution at (a) 230 s, (b) 1500 s, and (c) 2800 s.
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6.3.2 Median Filter

The average filter discussed in the previous section is a simple linear filter that

performs a “smoothing” somewhat similar to the effect of the penalty term in the

penalized-likelihood reconstruction. Since most of the artifacts seen in the standard

time-dependent MLEM are sharp impulses uncorrelated in space or time, a simple

average helps to lower the intensity of the artifacts, but it does not effectively remove

them. A median filter is more appropriate for this “salt and pepper” type of noise.

The median filter is non-linear, but it is still simple to implement and takes the

following form

λlj = median[λl−W j . . . λlj . . . λl+W j] (6.26)

where the filter window W can be odd or even. The filter is implemented by sorting

all of the values in the filter window and then uses the value at the center of the sorted

list as the filtered result. If W is even, the median value is calculated by taking the

average of the two values splitting the median. Again, the filter does not use zero

padding at the boundaries to fill the filter window. Figure 6.11 shows the result of

using the median filter on the same distribution used to demonstrate the average

filter. For this simple case, the impulse noise is completely removed for all choices

of W , and the square signal is left unaltered except when the window becomes very

large at W = 15. These traits are desirable, especially the complete removal of the

impulse noise, since most of the time artifacts produced by low counting statistics are

manifested as isolated peaks in the time domain.

Figures 6.12 and 6.13 show the same unregularized results from Figures 6.3 and

6.4 after they are passed through the median filter with a window 21 bins wide. It is

obvious from Figure 6.12 that the median filter is a better fit for this type of noisy

data. The filter has eliminated the artifacts far from the time at which the source

passed each direction, and it did not drastically smooth the peaks. The filter has also
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Figure 6.11:
Example output from the median filter using the input signal shown in
(a) using a window 3 bins wide (b) and 15 bins wide (c).
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removed all of the artifacts far from the source direction in the spatial distributions

seen in Figure 6.13 while preserving the sharpness in the image.

6.4 Performance Comparison

The last few sections described three different ways to improve the noisy source

distributions reconstructed by the standard time-dependent MLEM algorithm. All of

the methods showed significant improvement over the standard MLEM reconstruc-

tion, but which one is best? This question is difficult to answer in general; however,

the 137Cs data from the known-motion measurement used in Section 5.4 is a sim-

ple and fairly representative example of a situation where these algorithms may be

used. Thus, in this section we find the optimal reconstruction parameters (time bin

width, penalization factor, filter window) for each reconstruction for this particular

measurement. Then the algorithms are directly compared using a simple test metric

to determine which one performs the best.

6.4.1 Test Metric

To compare the different algorithms we must create a test metric, or figure of

merit (FOM), that will quantify their performance. As discussed earlier, there are

many different metrics that one might choose from to quantify performance like ac-

curacy, resolution (FWHM), signal-to-noise ratio (SNR), and others. The resolution

is difficult to calculate since these methods are based on MLEM reconstructions. The

SNR is important, but for point sources perhaps it is more important that the source

direction is accurate. Thus, the test metric we chose for these comparisons is the

average angular distance from the true source direction to the direction of the hottest
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Figure 6.12:
Unregularized MLEM solution after 25 EM iterations post-processed
using the median filter with a window of 21 bins. The plots show the
source intensity as a function of time along the equator at an azimuthal
angle of (a) 45◦, (b) 180◦, and (c) 315◦.
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Figure 6.13:
Unregularized MLEM solution after 25 EM iterations post-processed
using the median filter with a window of 21 bins. The figures show the
spatial source distribution at (a) 230 s, (b) 1500 s, and (c) 2800 s.
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pixel in the image:

FOM =
1

L

L∑
l=1

√
(θtruel − θmaxl )2 + (φtruel − φmaxl )2 (6.27)

where θtruel is the true polar angle of the source at the center of time bin l and θmaxl is

the polar angle corresponding to the hottest spot in the reconstructed image at time

bin l. The same is true for the azimuthal directions φtruel and φmaxl . Remember that

the true source position is known for this dataset because the source was attached to

a computer-controlled actuator arm.

We must take some care to ensure that the azimuthal angle is handled correctly

near the prime meridian (φ = 0). Specifically, if the true source direction is at an

azimuthal angle of 5◦ and the reconstructed max azimuthal angle is 355◦, the above

formula would result in a very large FOM with an azimuthal angle offset of 350◦.

However, the true offset is only 10◦. Thus, the azimuthal difference term in (6.27) is

interpreted as

(φtruel − φmaxl )2 =

min

[
(φtruel − φmaxl )2, (φtruel − φmaxl − 360◦)2, (φtruel − φmaxl + 360◦)2

]
. (6.28)

6.4.2 Parameter Selection

The free parameters in this study are the number of evenly spaced time bins L, the

penalty factor δ, and the filter window sizes Wavg and Wmed for the average filter and

median filter, respectively. Each reconstruction method used in this comparison has

two free parameters, except for the standard time-dependent MLEM reconstruction

which only has the number of time bins. In addition to the number of time bins, the

penalized-likelihood also has the penalty factor, and the filter reconstructions have

their respective filter windows. For simplicity, we fixed the number of iterations at
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25 for both the standard time-dependent MLEM reconstruction and the penalized-

likelihood reconstruction.

The first step of the optimization is to select the set of L values to use for the re-

constructions. Since the measurement used for this comparison lasted approximately

3000 s,we used a time range of 0 s -3000 s, and since the UMImaging software requires

bins widths to be integers, we used all of the factors of 3000 between 10 and 750 (i.e.,

10, 12, 15, 20, ... 500, 600, 750) for the number of time bins for each reconstruction.

The penalty factors used for the regularized MLEM reconstruction were

δ = {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0}

which through experience was found to be a reasonable range of values. Finally, we in-

creased the size of the windows used for filtering the standard MLEM reconstructions

until the FOM reached a minimum for each number of time bins.

We performed each reconstruction for all combinations of parameters to find the

best FOM for each reconstruction type.

6.4.3 Results

For each proposed reconstruction type, we analyze the FOM as a function of

number of time bins and penalization factor (or filter window width).

6.4.3.1 Regularized Time-Dependent MLEM

Figure 6.14 shows the calculated FOM for the regularized time-dependent MLEM

algorithm over the proposed parameter space. As the penalization factor δ approaches

zero, the regularized solution approaches the unregularized solution. Therefore, the

expected FOM for the unregularized case can be approximated by the case where

δ = 0.001. When using that small amount of regularization, the best FOM values are
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found where there are relatively few time bins (about 30). For this scenario, there are

enough counts in each time bin (about 80) to reconstruct an accurate estimate of the

source direction without having too much blurring due to the wide time bins. As the

number of time bins increases, the poor counting statistics cause the source direction

estimate to be increasingly inaccurate. This effect would be exaggerated with even

lower values of δ.

As the penalization parameter increases, the optimal number of time bins increases

as well. This result should be expected since a major assumption we made was that

the source motion is smooth in time. Therefore, it is desirable to increase the number

of time bins which reduces the amount of fluctuation between successive bins, but

more regularization (higher values of δ) is then required to reduce the influence of

statistical fluctuations. There reaches a practical limit however, where the marginal

gains are too small to offset the extra computation required for the increasing number

of time bins. This point may be above 200 or 300 time bins in this example since the

FOM essentially flattens out for reasonable penalization factors above that.

Another point to consider is that there are other factors not encapsulated by the

simple test metric we are using to calculate this FOM. Although the estimate of the

source position is improving with more time bins, the resolution in space and time

may be fluctuating and the signal-to-noise ratio may also be changing. However, for

this simple test metric the best results were obtained for 750 time bins and δ = 0.1,

but the bottom of the curves are quite flat; so there is a range of reasonable parameter

choices.

6.4.3.2 Average Filtered Time-Dependent MLEM

Figure 6.15 shows the distribution of FOM values for the solutions calculated

by applying the average filter to the time-dependent MLEM results. The biggest

difference between these results and the regularized MLEM results is the FOM as

158



0 200 400 600 800
0

20

40

60

80

100

Time Bins

F
O

M
 (

D
e

g
re

e
s
)

 

 

δ = 0.001

δ = 0.01

δ = 0.1

δ = 1

Figure 6.14: FOM results for the regularized time-dependent MLEM algorithm.

the number of time bins increases beyond 200. The average filter does not effectively

remove the statistical noise from the standard MLEM reconstruction when the counts

are spread over so many time bins. This observation agrees with the imaging results

where the average filter struggled to reconstruct a readily identifiable hotspot for a

reconstruction using 300 time bins.

Another interesting trend is that as the size of the filter window increases, the

FOM for the lower numbers of time bins gets worse. This effect is a result of the

filter averaging over a large absolute time which smears the reconstructed source

distribution through space.

Because the filter does not effectively reduce the noise in the reconstruction, the

best option is to have 100 time bins and a filter window of 7 bins. However, this is

not much different than just the standard unfiltered MLEM reconstruction, and any

benefits of using this filter may not be worth the extra implementation or computation

time.
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Figure 6.15:
FOM results for the time-dependent MLEM solution after applying the
average filter.

6.4.3.3 Median Filtered Time-Dependent MLEM

Figure 6.16 shows the FOM for the results obtained using the unregularized

MLEM solution and applying the median filter. These results are a definite im-

provement over the results obtained from the average filter. Notice that the overall

FOM values are lower and more comparable to the regularized MLEM results. Also,

even though the FOM does increase with the number of time bins, it does not increase

as rapidly as the average-filtered results. In fact, for larger filter widths, the minimum

point on the FOM curve is actually extended out to larger numbers of time bins.

This improved performance for large numbers of time bins occurs for two reasons.

First, the statistical noise is easily filtered out with the median filter, especially when

many time bins are used and the artifacts becomes more randomly distributed in

space and time. At the same time, if the filter window is wide enough, it can still

capture the true source position if at least half of the time bins in the window have

a hotspot in the source direction. However, inevitably the number of counts in each

time bin will be low enough that the reconstruction cannot estimate the correct source
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Figure 6.16:
FOM results for the time-dependent MLEM solution after applying the
median filter.

position. For this reconstruction the best results are obtained when 500 time bins are

used with a filter window 28 bins wide.

6.5 Discussion

The work in this chapter has described several different approaches to handling

time-dependent image reconstruction with a limited count rate. For the simple ex-

periment on which we focused, the regularized time-dependent MLEM algorithm and

the median-filtered time-dependent MLEM seemed to produce the best results. The

parameter optimization performed in the previous section gives us some important

insight into the behavior of these algorithms. Table 6.1 summarizes the best results

for each reconstruction. However, as seen by the small differences between the opti-

mal FOV values, not only does the FOM need to include other metrics than just the

source position (e.g., resolution or SNR), but it is also an impractical procedure to

follow each time the reconstruction is performed. Further study is required to fully

flesh out the selection process for the number of time bins to use as well as the penalty

161



Table 6.1: Optimal parameters and FOMs for time-dependent algorithms.
Reconstruction Method Time Bins δ / Filter Width FOM (◦)
Standard Time-Dependent MLEM 30 N/A 7.0
Regularized MLEM 750 0.1 6.9
Average-Filtered MLEM 100 7 9.5
Median-Filtered MLEM 500 28 6.8

factor or the filter window widths.

Despite the simplicity of the analysis, some guidelines for selecting the reconstruc-

tion parameters may be gleaned from the results in the previous section. First, there

must be enough time bins to reduce the amount of source motion in any given time

interval. For example, in the experiment used for this chapter, the source moved 360◦

in approximately 3000 s (0.12 degrees/s). For the regularized MLEM algorithm, the

optimal number of time bins was about 750. This binning results in approximately

0.5◦ of source motion in a given time bin. The imaging mesh used was 90×180 bins in

the polar and azimuthal directions respectively. Thus, the source direction essentially

appears stationary over any 4 time bins. A good rule of thumb might be to have at

least enough time bins such that for the fastest projected source speed it takes at

least 2 time bins to move through a spatial bin. This way the smooth assumption in

the algorithm is upheld. Similar types of arguments could be made for the other two

reconstruction methods.

Selecting a penalization factor or filter windows is also a challenge and is an

ongoing topic of research for many types of problems and regularization schemes

[69–71]. For our case, one way to roughly estimate the necessary penalization factor

may be to use the count rate. If there are many counts in each time bin, then

the regularization will be less necessary and δ can be a low value. The inverse is also

true; if there are few counts in each bin, more regularization is necessary and δ should

be relatively high. Of course these are heuristic guidelines, but after some study a

reasonable range could be determined for a typical scenario.
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CHAPTER VII

Summary and Future Work

7.1 Summary and Conclusions

Compton imaging using 3-D-position-sensitive CdZnTe detectors is a powerful

tool for imaging and localizing gamma-ray sources of energies above 300 keV. This

imaging capability combined with excellent energy resolution make these detectors

ideal for many applications in the fields of nuclear industry, medical imaging, and

defense and homeland security. This work has reviewed algorithms for 2-D and 3-D

image reconstruction, demonstrated the ability to locate multiple point sources in

3-D using a moving detector, and introduced two new image-reconstruction methods

for use with moving sources.

The review of current 2-D imaging methods focused on practical issues and im-

portant options as well as their performance. These issues include the need for

interaction-sequence reconstruction and the full-energy-deposition assumption. Ring

normalization and acceptable interaction-separation distances were key reconstruction

options that have the potential to drastically affect the quality of the reconstructed

image. The MLEM review included several different system-model options includ-

ing simple, standard, and complete. The simple model is the most computationally

efficient, but for complicated geometries or source distributions, the standard sys-

tem model can provide the best spatial resolution. The complete model is the most
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computationally expensive, but it can provide the user with an estimate of the true

incident energy spectrum as a function of direction. Although the angular resolu-

tion of SBP (30◦) is poor compared to the MLEM reconstruction using the standard

system model (10◦), SBP takes fewer counts to achieve the same source-direction

uncertainty.

Chapter IV discussed several different methods for 3-D Compton imaging. Near-

field 3-D imaging is possible even with a single detector. When multiple detectors are

available, the reconstruction algorithms can take advantage of the added parallax to

expand the filed of view to greater distances. A simple geometrical analysis provided

the user with a rough idea of the expected FOV given basic knowledge about the

angular resolution and dimensions of the detector geometry. A detector in motion

is a powerful tool for search scenarios since it allows the user to make the most

efficient use of parallax. Experimental results using a moving detector demonstrated

the feasibility of using a single imaging detector to make a 3-D radiation map of a

room while providing an intuitive way to view the results by projecting them onto an

optical image. However, this type of reconstruction requires that the position of the

detector is known as a function of time, and as the reconstruction space increases,

the memory and computational cost of reconstructing on a 3-D mesh is restrictive.

Thus, more work is required to make this reconstruction practical, e.g., multi-scale

meshes or special caching techniques, especially if higher resolution is desired.

Moving sources introduce a new challenge, but Chapter V introduced a new re-

construction method that simplifies the problem when the source motion is known.

Initially, one may perform simple motion compensation to keep the source in focus.

However, standard motion compensation only allows the reconstruction to focus on a

single target. To overcome this limitation, the new method adds new time-dependent

spatial bins. The time-dependence of these bins compensates for the motion of any

number of targets in the FOV. By including this new binning structure, the recon-
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struction can estimate the source distribution for the stationary backdrop space as

well as any moving targets without introducing interference between them. Exper-

imental results show that this new reconstruction can successfully deconvolve the

moving-source and stationary-source distributions. However, as with the complete

model MLEM reconstruction in the static case, this reconstruction typically provides

poor angular resolution and is computationally expensive. With limited statistics or

computational power, or when the reconstruction of the incident spectrum has limited

value, one could collapse the energy domain and only reconstruct photopeak events,

i.e., use the standard system model with added spatial basis functions instead of the

complete system model. This form would be more efficient and potentially provide

better angular resolution.

However, when there is no way to estimate the motion of potential source targets,

the reconstruction must explicitly include the time dimension. This added dimension

makes an already ill-posed problem worse. To reduce the effects of poor statistics, we

add a regularization term to the MLEM reconstruction. This new term encourages the

solution to be smooth in time and reduces the artifacts found in the unregularized

solution caused by poor statistics. We also use rolling average and median filters

to smooth out the time domain when applied to the unregularized-MLEM solution.

The rolling average filter does not perform well, but the median filter is well suited

to remove the “salt and pepper” type of noise present in the time domain, and it

produces similar results to that of the regularized MLEM reconstruction. Further

analysis including new test statistics, e.g., SNR or angular resolution, is required to

give a more complete comparison between these methods. However, it is obvious

that these reconstruction techniques can provide much improved images of moving

sources especially for count-limited measurements. Also, a simple or automated way

to choose parameters like the penalization factor δ and the filter window sizes must

be implemented to make the reconstructions practical for end users.
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7.2 Future Work

The discussion sections of the last few chapters included some ideas for improve-

ment or new applications for the reconstruction methods presented in this work. This

final section will describe other important improvements that are necessary to take

these reconstructions to the next level and become more practical for use in the field.

7.2.1 Compton Cone Reconstruction

In the current implementation, the angle between the axis of the Compton cone

and the center of each imaging pixel determines if that pixel falls within the uncer-

tainty of the Compton cone projection. This method is straightforward to implement,

but makes the reconstruction time linearly dependent on the number of imaging pix-

els, which directly conflicts with the desire to increase the number of pixels to improve

spatial resolution. Thus, we need a new way to reconstruct the Compton cones that

minimizes the number of required calculations or find a way to speed up those calcu-

lations.

One way to reduce the number of calculations is to use a marching algorithm like

the one described by Wilderman et al. [72]. Instead of blindly testing every pixel in the

image to determine if it lies on the Compton cone, one can imagine initially searching

for a point on the ring, then using the geometry of the intersection of a cone with the

surface to only perform calculations where the ring intersects the pixels. Although

this was originally implemented for 3-D, it could be adapted to the 2-D case as well.

Another way to speed up the calculation time is to avoid using a mesh for the image

reconstruction [73,74]. In this origin ensembles method, instead of reconstructing the

entire Compton cone on a 3-D mesh, a single point (or origin) is randomly placed

at a position that lies on the Compton cone. After this procedure is repeated for all

events, the reconstructed points are moved stochastically on their conical surfaces, and

the acceptance of the new positions is based on a predefined acceptance probability
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defined by the new point density of the region. After many repetitions of this process,

the solution converges to the source distribution estimate.

A similar type of reconstruction was recently presented by Haefner et al. [75]. In

this variant, three events are chosen at random, and the position that is closest to the

intersection of these cones is set as a reconstructed point in the image. This process

is repeated many times to form a point cloud image. The events used for a given

repetition are not removed indefinitely but are placed back into the pool of events.

This method and the origin ensembles method would need extra care to ensure that

partial energy deposition events are handled properly.

Finally, instead of completely altering the reconstruction method, one could more

efficiently use the power of modern computers. Advances in graphical processing

units (GPUs) have made it possible to perform massively parallel calculations much

faster than on standard CPUs. Since the system response calculations are readily

parallelized, this kind of implementation has the potential to reduce the calculation

time by an order of magnitude or more [44].

7.2.2 Position and Orientation Estimation

The development of a truly handheld 3-D radiation imaging device would require

a robust system to determine its position and orientation. This problem is a current

research topic with a lot of attention in the autonomous-robotics field [76–79]. These

techniques usually employ accelerometer based technology, standard optical cameras,

or depth-sensing optical cameras. Accelerometers are inertial devices that estimate

position and orientation based on the integration of the recorded acceleration data.

Alternatively, the camera solutions use reference points in the optical image to es-

timate the orientation and position of the system. A bonus of the camera systems

is that they can employ simultaneous localization and mapping (SLAM) algorithms

that allow the device to know where it is and make a map of the space it has tra-
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versed. The camera systems are also attractive because cameras are already a part

of the current detector system.

7.2.3 Beyond Imaging

This work has focused on Compton imaging. However, even though the source-

distribution estimate is useful for many scenarios, sometimes other information is

more important.

7.2.3.1 Source Characterization

Once a source has been found, the user may want to know more about it than just

its position and the energy of its emissions. This interesting analysis will generally

happen relatively close to the source, and most sources have some extent when viewed

in the near field. Not only can the shape of the source object be determined, but

also a well-calibrated detector can begin to characterize the source in terms of its

mass and isotopic composition. This type of analysis goes beyond the simple image

reconstruction and requires new algorithms to estimate these parameters. However,

even though the desired information is not the source distribution, the new algorithms

may take advantage of the imaging capability. For example, the accuracy of estimate

of the mass may be improved if the reconstructed image could determine the shape

and volume of the source.

7.2.3.2 Detection

Source detection and identification is another important application. Determining

if a source is present in a given measurement is more difficult than it may initially

seem. Statistical uncertainty and fluctuations in background intensities make the task

more challenging. Previous work by Wahl [80] showed excellent detection performance

in an unknown background environment by taking advantage of the spectroscopic
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and imaging capabilities of pixelated CdZnTe. Many of the reconstruction methods

described in this dissertation could be easily adapted to work with the detection

methods presented by Wahl. Specifically, the method that takes advantage of known

source motion would integrate almost seamlessly, which would allow the detection

algorithm to work with moving sources.

However, the detection algorithms are slow and only work for energies above

300 keV where Compton imaging is possible. These traits are undesirable because

detection is usually time sensitive and many sources of interest emit gamma rays

with energies below 300 keV most of the time. Thus, improvements must be made

that allow for quicker detection times and the ability to detect and identify sources

emitting low-energy gamma rays.
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