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Abstract

This paper presents experimental results on the timing resolution achieved with a 5mm thick HgI2 detector. The

timing information was derived based on the cathode pre-amplifier pulse waveform, measured using a digital

oscilloscope. The times of interaction were estimated by fitting the measured pulse waveforms to pre-defined waveform

models. With this approach, problems related to the conventional leading edge or constant fraction triggering, such as

slow charge carrier mobility, pulse shape variation and depth-dependent detector response can be greatly reduced. As a

result, we showed a 13 ns timing resolution measured using the 5mm thick HgI2 detector and a BaF2 coincidence

detector with 511 keV full energy events. In this paper, we discuss several waveform models and the results achieved

using these models.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Mercury iodide is a semiconductor material that
possesses several attractive properties for detecting
hard X-rays, gamma rays and other particles. It
has a wide band-gap (2.13 eV) allowing room
temperature operation. It also has a high density
(6.4 g/ml) and a high effective atomic number,
which result in a high stopping power and a high
e front matter r 2005 Elsevier B.V. All rights reserve
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photo-fraction. However, there are some intrinsic
difficulties for using HgI2 as the detector material.
These include low charge carrier mobility, sig-
nificant charge trapping, polarization, material
non-uniformity and surface degradation. Exten-
sive efforts have been made to adapt HgI2 for X-
ray and gamma-ray detection applications [1,2].
Baciak and He reported the results of using large-
volume HgI2 detectors for gamma-ray spectro-
scopy. Good energy resolution (o2%) was
achieved using a 1� 1� 1 cm3 HgI2 detector after
correction for the charge trapping effect [3,4]. In
d.
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principle, one can apply the 3-D position sensitive
readout scheme, formerly developed for CZT
sensors, to the large volume HgI2 detectors. This
would lead to a detector with a high sensitivity,
high energy resolution and high spatial resolution.

The focus of this work is to explore the timing
resolution achievable on thick HgI2 detectors. In
order to overcome the difficulties in conventional
analog triggering methods, we used an alternative
approach that extracts interaction times from
measured cathode pulse waveforms. Some theore-
tical considerations and experimental results are
presented.
2. Materials and methods

2.1. Waveform analysis for extracting timing

information

Interaction timing information is crucial for
many imaging applications, including Compton
camera and Positron Emission Tomography
(PET). One of the most common ways to obtain
timing information is to trigger on amplified
signals. This scheme is, however, less feasible for
large volume HgI2 detectors. The low mobility of
charge carriers limits the achievable signal-to-noise
ratio (SNR) on the shaping amplifier output. It is
difficult to achieve a good timing resolution by
triggering on such signals. Furthermore, interac-
tions that occur at different depths, between the
anode and the cathode, would induce pulses with
different peaking times. For HgI2 detectors of 1 cm
thickness, this effect causes significant time walk,
which is difficult to compensate.

To overcome these difficulties, we explored an
alternative approach that utilizes the cathode pulse
waveform to estimate the interaction time directly.
The idea is to fit the measured pulse waveform to
pre-defined waveform models, which is character-
ized by several parameters including interaction
timing. We tested this approach with a 10� 10�
5mm3 HgI2 detector. Detailed operating charac-
teristics of this detector can be found in [3]. It has
four anode pixels of 1� 1mm2; surrounded by a
large non-collecting anode. In this detector, the
depth of interaction can be estimated using the
ratio of cathode to anode signal amplitudes, which
we refer to as CAR in the following text. The
induced charge on these anode pixels and the
planar cathode are read out individually using
discrete pre-amplifiers (Amptek A250 [5]). An HP
digital oscilloscope is used to digitize the pre-
amplifier output. It is capable of sampling at
4GHz with 8 bit precision. An example of the
measured pulse waveforms is shown in Fig. 1.
Note that the relatively small pixel size results in
the so-called small pixel effect [6]. When the
drifting electron cloud is relatively far from the
pixel surface, it induces only a very small signal on
the anode readout circuitry. As the carriers
approach the vicinity of the anode pixel, the
induced charge rises rapidly to its maximum. This
sharp rising edge will be used to indicate a full
collection of the free electrons. Some common
characteristics of the cathode waveforms are given
in Table 1. The ratio between the slope of the
cathode falling edge and the cathode readout noise
level sets an intrinsic limit on the achievable timing
resolution using this approach.
2.2. Pulse waveform models and timing estimation

As far as the cathode pulse waveform is
concerned, the HgI2 detector used can be approxi-
mated as having a planar geometry, in which the
lateral dimension (covered by readout electrode) is
much larger than its thickness. We can assume that
the internal electric field is uniform across the
volume of interest. The pulse waveform expected
from such a detector is given by the Hecht relation
[7]. If we include the charge trapping effect only
and ignore the possible de-trapping effect, the
induced charge on a planar electrode as a function
of time t for carriers of a single polarity is given by

QðtÞ ¼

eN0tf
Tc

ð1� e�t=tf Þ; toTC

eN0tf
Tc

ð1� e�TC=tf Þ; tXTC

8>><
>>: (1)

where TC is the time by which all free charge
carriers are collected. N0 is the number of charge
carriers initially generated and tf is the mean-free
time of the carriers.
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Table 1

Typical characteristics of the pulse waveform

Characteristics

Typical cathode pulse height �8mV per 511 keV

Electron drifting time 0–1:8ms
Cathode pre-amp output noise RMS 0:24mV

Anode pre-amp output noise RMS 0:36mV

Cathode falling-edge slope �4mV=ms

Fig. 1. Measured cathode and anode pre-amplifier output waveforms for a detected event with 511 keV energy deposition.
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Given that the measured waveforms can be
assumed to follow multivariate Gaussian distribu-
tions, a straightforward approach would be fitting
the measured pulse waveform to the Hecht
relation using the weighted least-squares (WLS)
method that estimates model parameters by
minimizing the following object function:

k2 ¼ ½Q� Q̄�TK�1
Q ½Q� Q̄� (2)

where Q is a vector containing the measured
waveform and Q̄ is the mean of the waveform. KQ
is the covariance of the measured waveform, which
quantifies not only the uncertainty of the pulse
amplitudes at given sampling times, but also the
correlation between samples acquired at different
times. We used a Matlab code that implements the
Levenberg–Marquardt method [9] for the fitting.
Suppose that the number of parameters is n and
the number of data points in each waveform is m;
one iteration of the least-square fitting process
requires �2nm floating point operations. If ten
iterations are used in the fitting, we need �2�
10nm floating point operations for each timing
estimation. For n ¼ 5 and m ¼ 500; one would
need �12:5ms for each event, using a processor
capable of 4G floating point operations.
In order to reduce the amount of computation

required, we also tested simpler models that
include fewer parameters. These models are out-
lined in Table 2. The Double Exponential model
consists of a linear section joining a waveform
section given by the Hecht relation. The Linear
mode simply assumes that the cathode waveform
has a linear rising/falling edge corresponding to
the initial electron drifting period.

2.3. Uncertainty of the measured waveforms

To use WLS estimation, we need to know the
uncertainty associated with the measured wave-
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Table 2

Waveform models used in timing estimation

Waveform models Definition No. of model parameters

Double exponential

QðtÞ ¼

l1 
 t þ l2; tot0

ðl1 
 t þ l2Þ þ l3 
 l4 
 1� exp �
t � t0

l4

	 
� �
tXt0

þl5 
 l6 
 1� exp �
t � t0

l6

	 
� �
;

8>>>>><
>>>>>:

7 (l1; l2; t0; l3; l4; l5 and l6)

Single exponential

QðtÞ ¼

l1 
 t þ l2; tot0

ðl1 
 t þ l2Þ þ l3 
 l4 
 1� exp �
t � t0

l4

	 
� �
; tXt0

8><
>:

5 (l1; l2; t0; l3 and l4)

Linear
QðtÞ ¼

l1 
 t þ l2; tot0

l3 
 t þ ½ðl1 � l3Þ 
 t0 þ l2�; tXt0

(
4 (l1; l2; t0 and l3)
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forms, e.g. the covariance of the data (matrix KQ
in (2)): This uncertainty consists of several
components, including factors such as readout
electronic noise, statistical fluctuation due to
charge generation and transportation. We as-
sumed that the readout electronics contributes a
Gaussian white noise with known root-mean-
squares (RMS). The following discussion will be
focused on evaluating the statistical contribution
from carrier generation and transportation inside
the detector. Measured pulse waveforms are the
results of many independent random drifting
processes by a large number of carriers, initially
generated by incident gamma rays. Given an
energy deposition, the number of electron–hole
pairs may be approximated by a Gaussian
distribution with its variance given as [7]

VarðN0Þ ¼
F

Eg=W
(3)

where F is the Fano factor for HgI2: Eg and W are
the energy deposition and the mean energy
required for generating an electron–hole pair.

We assumed that all carriers generated at a
depth z inside the detector are traveling at a
constant velocity unless trapped in the material.
We further assumed that the trapping centers are
very sparsely distributed in the bulk. For each
trapping center, it has a very small probability of
being occupied. Therefore, the number of free
carriers as a function of t follows an exponential
law. At a given time toTC (assuming the
interaction occurred at t ¼ 0), the instantaneous
spatial locations of those carriers are distributed
randomly with a density function given as the
following:

pðz; tjz0; t0Þ

¼ dðx � x0Þdðy � y0Þ

�

expð�t=tf Þ 
 d½z � ðz0 þ vtÞ�

þð1=vtf Þ 
 exp½�ðz � z0Þ=vtf �

�rect½ðz � ðz0 �
1
2
vtÞÞ=vt�

8>><
>>:

9>>=
>>; ð4Þ

where rect½u� ¼ 1; if jujp1=2 and 0 otherwise. This
particular form is due to Barrett [6].
For the following derivation, we ignored the

effect of carrier diffusion and assumed no spread-
ing in lateral dimensions. All charge carriers are
distributed on a straight line along the z direction
(perpendicular to both anode and cathode planes).
The mean of the instantaneous induced signal on
the cathode as a result of the movement of
electrons is

QeðtÞ ¼ �eN0 


Z 1

�1

½fðzÞ � fðz0Þ� 
 peðz; tjz0; t0Þdz

(5)

with fðzÞ the weighting potential function in 1-D
[8]. The random distribution of the charge carriers
results in an uncertainty on the instantaneous
induced charge. At a given time t; the variance of
the induced charge on the cathode by moving
charge carriers, including both electron and holes,
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is given as [6]

VarðQðtÞjz0; t0Þ

¼

Z
N0

Z
QðtÞ

½QðtÞ � Q̄ðtÞ� 
 pðQðtÞ;N0ÞdQðtÞdN0

¼ e2N̄0

Z
z

½peðz; tjz0; t0Þ þ phðz; tjz0; t0Þ�

� ½FðzÞ � Fðz0Þ�2 dz þ e2ðF � 1ÞN̄0

�

Z
z

peðz; tjz0; t0Þ 
 ½FðzÞ � Fðz0Þ�dz

� �2

þ e2ðF � 1ÞN̄0

�

Z
z

phðz; tjz0; t0Þ 
 ½FðzÞ � Fðz0Þ�dz

� �2

. ð6Þ

The covariance of the waveform can be similarly
derived as

Cov½QðtÞ;Qðt þ uÞ�

¼

Z
N0

Z
NðtÞ

Cov½QðtÞ;Qðt þ uÞjNðtÞ;N0�

� pðNðtÞ;N0ÞdNðtÞdN0

¼ Var½QðtÞjz0; t0�

þ ½F 
 ð1� et=te Þ � 1� 
 et=te 
 N̄0 
 AeðuÞ 
 AeðtÞ

þ ½F 
 ð1� et=thÞ � 1� 
 et=th 
 N̄0 
 AhðuÞ 
 AhðtÞ

ð7Þ

where te and th are the mean free times of
electrons and holes in HgI2: AeðuÞ and AhðuÞ are
the mean weighting potential changes induced by
movements of a single charge carrier within a
period u;

AeðuÞ ¼

Z
1

peðz; t ¼ ujz0; t0 ¼ 0Þ 
 ½FðzÞ � Fðz0Þ�dz

(8)

and

AhðuÞ ¼

Z
1

phðz; t ¼ ujz0; t0 ¼ 0Þ 
 ½FðzÞ � Fðz0Þ�dz

(9)

with pðz; tjt0; z0Þ the pdf for the 1-D distribution of
the charge carrier at time t; defined in (4). Because
of the uniform internal field, AðuÞ is a function of
drifting time u only. Detailed derivation of the
covariance of the waveform is given in Appendix I.
Fig. 2 shows the calculated mean, standard
deviation of cathode pulse waveforms from a
0.5 cm thick HgI2 detector, as a result of the
511 keV energy deposited near the cathode. In this
case, we used a Fano factor of 0.1 [9] for HgI2: The
estimated values of me and te were �60 cm2=Vs
and �100ms respectively, taken from our previous
measurements.
Note that according to this simple charge

transport model, the statistical fluctuation on the
waveform is very small. For a 511 keV energy
deposition in HgI2; after a 2 ms drifting time, the
statistical fluctuation on the instantaneous induced
charge would be �0:1%: It increases to �0:2%
after a 5mm drifting period. For the energy range
that we are interested in (4200 keV), the overall
fluctuation on measured pulse waveforms is
dominated by the Gaussian white noise introduced
by the readout electronics. The overall covariance
matrix can be approximated as a diagonal matrix

KQ 
 Diag½VarelecðQiÞ�. (10)
3. Results

3.1. Digital shaping and triggering approach

The first approach that we used for finding the
timing information is digital shaping and trigger-
ing. The sharp rise of the anode signal (as shown in
Fig. 1, lower panel) provides a time by which free
electrons are fully collected. If the electron drifting
time is fixed for all interactions occurring at the
same depth and its value is known, one may
estimate the interaction time by this triggering time
minus the mean electron drifting time. To test this
approach, we applied two digital shaping func-
tions to the anode pre-amplifier signal. The first
one was a digital CR–RCð6Þ shaper with a 125 ns
shaping time. The second digital shaper used a
sliding linear differential (SLD) shaper function.
An example of shaped signals using these shapers
and the responses of these shaper functions to a
d-impulse are shown in Figs. 3 and 4. After
shaping, we applied a digital constant fraction
(CF) triggering to the outputs of both shapers to
provide timing signals. The resulting timing
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Fig. 2. Calculated mean, standard deviation of a typical cathode pulse waveform.

Fig. 3. Pre-amplifier output pulse waveform and shaped pulse using the SLD shaping function. Top panel: measured pulse waveform;

middle panel: signal after shaping; bottom panel: the SLD shaper response function, which is the output of the digital shaper for a delta

input function in time domain.

L.J. Meng, Z. He / Nuclear Instruments and Methods in Physics Research A 545 (2005) 234–251 239
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Fig. 4. Pre-amplifier output pulse waveform and shaped pulse using the CR–RCð6Þ shaping function. Top: measured pulse waveform;

middle: signal after shaping; bottom: the CR–RCð6Þ shaper response function, which is the output of the digital shaper for a delta input

function in time domain.
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differences between the triggering times and the
actual interaction times given by the BaF2

coincidence detector are compared in a scatter
plot in Fig. 5. Both shaping methods gave very
consistent timing information with similar estima-
tion errors.

The depth dependence of electron drifting time
is shown in Fig. 6. To estimate the mean electron
drifting time as a function of interaction depth, we
divided all data points into 24 bins, each corre-
sponding to a small range of CAR (or depth). The
centroids of points in each bin were derived and
used as the mean drifting time for all events in this
group (also shown in Fig. 6). The interaction time
is then given by the time of triggering minus the
mean drifting time. This resulted in a timing
spectrum as shown in Fig. 7. The FWHM timing
resolution was a disappointing 73 ns, despite the
very fast rising edge of the anode signal.

A closer examination on this result revealed that
although the digital shaping and triggering based
on the sharp anode rising edge gives a prompt
signal when all electrons are collected, there is,
however, a significant fluctuation on the electron
drifting/collection time even for events occurring
at the same depth and with the same energy
deposition. This may be due to the distortion of
electric field near the readout anode. When an
electron cloud comes close to the anode, it may
take one of many possible routes towards the
anode and finally get collected. This effect
introduces an uncertainty in the final collection
time and ruins the overall accuracy for estimating
the interaction time. This effect is shown in Figs. 8
and 9, in which we superimposed 20 measured
cathode and anode waveforms and their averages.
All pulses are chosen to have almost identical
amplitudes and interaction depths. In these figures,
all waveforms are lined up for the same interaction
time based on the timing information from the
BaF2 detector. It is easily seen that within the final
electron collection period, there is a significant
non-uniformity in the anode pulse waveforms.
This effect limits the accuracy of this approach.
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Fig. 5. Comparing timing results using CR–RC and SLD shaping functions. The ‘‘Timing Difference’’ refers to the difference between

triggering times from shaping/CFD approach and the BaF2 coincidence detector.

Fig. 6. Difference between triggering times from CR–RC/CFD and the BaF2 coincidence detector, as a function of CAR (or

interaction depth).

L.J. Meng, Z. He / Nuclear Instruments and Methods in Physics Research A 545 (2005) 234–251 241
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Fig. 7. Timing spectrum achieved with the CR–RC/CDF approach.

Fig. 8. Uniformity of cathode waveforms. The upper panel shows 20 waveforms, with almost identical amplitudes and CARs. These

waveforms are aligned to the same starting time based on the timing information from the BaF2 detector. The lower panel shows the

standard deviation of the amplitudes of all waveforms at given times.

L.J. Meng, Z. He / Nuclear Instruments and Methods in Physics Research A 545 (2005) 234–251242
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Fig. 9. Uniformity of anode waveforms. The upper and lower panel shows similar information as described in Fig. 7. Note that the

anode waveform varied significantly during the final electron collection period. This is evident in the lower panel that showed much

increased fluctuations amongst the 20 waveforms.

L.J. Meng, Z. He / Nuclear Instruments and Methods in Physics Research A 545 (2005) 234–251 243
Although this approach is not sufficiently
accurate, it provides some useful information for
further refining the timing estimation. Firstly, it
provides a relatively accurate timing (T c) by which
free electrons are fully collected. This information
is used later in timing estimations with the model
fitting approaches. Secondly, as this approach can
be implemented with simple hardwares, it provides
an easy way for a first-order selection of possible
coincidence events. More complicated and time
consuming estimation schemes can then be applied
only to those selected events and therefore the
overall amount of computations can be reduced.

3.2. Comparing linear and exponential waveform

models

A second approach that we tested is fitting the
cathode waveforms to models outlined in Table 2.
For this, 1million coincidence events were re-
corded. Each waveform consists of 2000 samples
with 5 ns intervals. We selected events having
511 keV full energy depositions and CARs falling
in the range of 0.4–0.5 and 0.8–0.9. These
correspond to full energy events that occur either
near the cathode or midway between the anode
and cathode. For the actual fitting, we did not use
the entire waveform. Instead, we used a section of
the waveform that contains a certain length on the
falling edge of the cathode waveform, ranging
from 300 to 1000 ns. This is based on the electron
collection time derived using the digital shaping
and triggering approach described in the last
section. An example of the fitting process is shown
in Fig. 10. The spreading of the estimated
interaction times using different models and
different lengths on the waveform falling edge
are shown in Figs. 11 and 12. These results
revealed that the use of the single or double
exponential model produced much better timing
accuracy. This is presumably because these more
complicated models better describe the waveforms
and allow more degrees of freedom in the fitting.
They can account for the curvatures in the
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Fig. 10. An example of the fitted double exponential curve (black) using the WLS method. The measured cathode waveform (blue) is

corresponding to a 511 keV energy deposition with a CAR 
 0:5:

Fig. 11. Timing spectra by fitting measured data to different waveform models. Only those events that occurred close to the cathode

were included. Both waveform models used and the lengths of electron drifting period included in data are shown in the figure.

L.J. Meng, Z. He / Nuclear Instruments and Methods in Physics Research A 545 (2005) 234–251244
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Fig. 12. Timing spectra by fitting measured data to different waveform models, using events that occurred in the middle (along the z

direction) of the detector.
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waveform better than the linear mode. In princi-
ple, including a longer electron drifting period in
the fitting process would improve the statistical
accuracy. However, when the model used does not
fully represent the actual waveform, including
more data points on the falling edge sometimes
introduces systematic error in the fitting and
degrades the estimation accuracy. For the datasets
that we used, the double exponential model with a
maximum of 600 ns drifting period produced the
best overall timing resolution.

3.3. Correction for depth dependence

In practice, the actual waveform may deviate
from the simple models that we applied. In this
case, the fitting process will generate systematic
error in the timing estimation. One example is
shown in Fig. 13. We applied the double expo-
nential model to all detected events inside the
detector active volume. The waveforms used were
truncated so that they contained a maximum of
600 ns on the falling edge. For those interactions
that occurred near the anode, the electrons will
drift for a period shorter than 600 ns. So the actual
section of the cathode waveform falling edge ends
at Tc-50 ns. From the distribution of estimated
interaction times, we see that the estimated
interaction times are systematically biased from
the true interaction times given by the BaF2

detector. The magnitude of this bias depends on
the depths of interaction.
One possible cause of this depth dependency is

the electric field non-uniformity within the active
volume. For this particular detector configuration,
we see experimentally that there exists a field
gradient in the detector active volume. The field
strength is stronger in volume closer to the readout
anode pixel and reduces gradually when moving
towards the cathode. This field configuration tends
to make the falling edge of the actual cathode
waveform bend downwards from that predicted by
Hecht’s relation. Since this effect is interaction-
depth dependent, the resulting systematic error in
timing estimations will also vary according to the
corresponding interaction depths. In addition, for
interactions that occur at different depths, we used
different numbers of data points on the fall edge in
the fitting. This may also introduce some systema-
tic error in timing estimation.
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Fig. 13. Distribution of estimated interaction time. The actual interaction time is normalized to zero based on the BaF2 timing signal.

Fig. 14. Distribution of estimated interaction time after correcting for depth dependence.

L.J. Meng, Z. He / Nuclear Instruments and Methods in Physics Research A 545 (2005) 234–251246
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We can correct for this effect using methods
very similar to that used in Section 3.1. We derived
the mean bias for events corresponding to a small
range of CAR and then subtracted this bias from
all corresponding data points. This gave an overall
time spread that depends much less on the depths
of interactions. The distribution of estimated
interaction times after this correction is shown in
Fig. 14. The effect of this correction on the final
timing spectra is shown in Figs. 15 and 16. The
FWHM timing resolution was improved from
39 ns to 28 ns.
3.4. Measured timing resolution with finer sampling

To further improve the timing estimation, we
acquired 1 million events using the digital oscillo-
scope with its maximum sampling rate. Each
recorded waveform has 8000 sample points at
1 ns sampling intervals. We first used all full energy
events and repeated the procedures in previous
sections to find out the optimum configuration for
timing estimation. In this comparison, the double
exponential model with 600 ns fall edge produced
Fig. 15. Timing spectrum measured with 600 ns falling edge, double ex

dependence was applied.
the best accuracy, as shown in Fig. 17. After depth
correction, we obtained a timing resolution of
13 ns FWHM (Fig. 18). Note that by increasing
the sampling rate from 200MHz to 1GHz, we see
an improvement in timing accuracy by a factor of
2. We expect that this accuracy can be further
improved if hardware with a higher sampling rate
is available, until a stage in which the benefit of a
higher sampling rate is offset by the non-linearity
of the sampling. Finally, we repeated these
procedures with all events that have energy
depositions greater than 250 keV in the detector.
This gave a measured timing resolution of 15 ns
FWHM. In Table 3, we summarized measured
timing resolutions with different experimental
configurations.
4. Conclusions and discussions

In this work, the possibility of using pulse
waveforms for interaction timing estimation was
explored. A statistical description of the pulse
waveform model is provided. We experimentally
ponential mode and full energy events. No correction for depth



ARTICLE IN PRESS

Fig. 17. Comparing waveform models and effective lengths fall edge for timing estimation.

Fig. 16. Timing spectrum measured with 600 ns falling edge, double exponential mode and full energy events and depth correction.

L.J. Meng, Z. He / Nuclear Instruments and Methods in Physics Research A 545 (2005) 234–251248
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Fig. 18. Measured timing spectrum using double exponential model, 600 ns falling edge, and depth correction. A 13 ns FWHM timing

resolution is achieved.

Table 3

Measured timing resolutions using difference configurations

Configuration All events 511 keV events with no

correction

511keV events with

correction

4250kV events with

correction

Linear model, 500 ns fall edge 5 ns/sample 60 ns 54 ns 38 ns —

Double experimental/model, 600 ns fall

edge 5 ns/sample

— 39ns 28 ns —

Double experimental model, 600 ns fall

edge 1 ns/sample

— 21ns 13 ns 15 ns

Digital shaping & triggering 5 ns/sample — — 74ns —
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compared different configurations for extracting
timing information. Some results are summarized
as the following:
�
 The digital shaping and triggering scheme
did not provide sufficiently accurate interaction
timing information. This is due to (a) the
low charge carriers mobility in HgI2 and (b)
fluctuations on the charge drifting/collection
time.
�
 A double exponential model, based on Hecht’s
relation, provided the best timing accuracy.
�
 A 13ns FWHM timing resolution was achieved
with 511 keV gamma rays and 1GHz sampling
rate. Further improvement is expected with
improved sampling rate and precision.
�
 Mismatching between the simple models used
and the actual waveforms produced systematic
error in the timing estimation. This effect was
compensated to a certain extent as shown in our
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results. A better approach may be building those
factors, causing the mismatching, into waveform
models, so that their effects can be minimized.
This, however, requires not only a better under-
standing of the detector responses but also more
complicated waveform models. Further study
along this line may be required.
In our current approach, the timing information
was derived using iterative WLS fitting. This limits
the data rate that can be handled with current
computing hardware. The computation time can
be greatly reduced if one uses pre-defined models
that take into account the experimentally derived
waveform characteristics along with non-iterative
estimation methods. One can experimentally ob-
tain a ‘‘detector timing response function’’ that
contains the expected waveforms for every given
interaction depth and energy deposition. Once this
information is available, we can use a much
simpler and faster timing estimation scheme to
find the interaction time. Deriving such a response
function would require a thorough and time
consuming experimental mapping of the detector
response.
APPENDIX I. Covariance of cathode waveform

We start from considering only carriers of a
single polarity. Assuming the carriers were gener-
ated at time 0, the covariance between the induced
charge QðtÞ and Qðt þ uÞ at time t and t þ u; due to
charge carrier generation and drifting process, is
defined as

Cov ½QðtÞ;Qðt þ uÞ�

¼

Z
QðtÞ

Z
QðtþuÞ

Z
N0

Z
NðtÞ

½QðtÞ � Q̄ðtÞ�

�½Qðt þ uÞ � Q̄ðt þ uÞ�

�p½NðtÞ;N0;QðtÞ;Qðt þ uÞ�

�dNðtÞdN0 dQðtÞdQðt þ uÞ. ð1Þ

In order to evaluate the covariance, one may start
from the conditional covariance given N0 carriers
were initially generated and NðtÞ survived after a
drifting period of length t;

Cov½QðtÞ;Qðt þ uÞjNðtÞ;N0�

¼

Z
QeðtÞ

Z
QeðtþuÞ

½QðtÞ � Q̄ðtÞ�

�½Qðt þ uÞ � Q̄ðt þ uÞ�

�pðQðtÞ;Qðt þ uÞjNðtÞ;N0ÞdQðtÞdQðt þ uÞ

¼

Z
QeðtÞ

Z
QeðtþuÞ

(

�
½QðtÞ � Q̄ðtÞ þ ðNðtÞ � N̄ðtÞÞ 
 AðuÞ�


pðQðt þ uÞ jQðtÞ;NðtÞ;N0ÞdQðt þ uÞ

" #)

�½QðtÞ � Q̄ðtÞ� 
 pðQðtÞ jNðtÞ;N0ÞdQðtÞ ð2Þ

where AðuÞ is the mean weighting potential change
induced by a single charge carrier within a period
u,

AðuÞ ¼

Z
1

pðz; t ¼ u j t0 ¼ 0; z0Þ 
 ½FðzÞ � Fðz0Þ�dz.

(3)

After a few simple steps of derivation, we get

Cov½QðtÞ;Qðt þ uÞjNðtÞ;N0�

¼

Z
QðtÞ

½QðtÞ � Q̄ðtÞ�2 
 pðQðtÞjNðtÞ;N0ÞdQðtÞ

þ ½ðNðtÞ � N̄ðtÞÞ 
 AðuÞ� 
 ½Q̄ðtÞjNðtÞ;N0
� Q̄ðtÞ�

¼

Z
QðtÞ

½QðtÞ � Q̄ðtÞ�2 
 pðQðtÞjNðtÞ;N0ÞdQðtÞ

þ ½NðtÞ � N̄ðtÞ� 
 f½N0 � N̄0� � ½NðtÞ � N̄ðtÞ�g

�AðuÞ 
 AðtÞ. ð4Þ

Note that the integral in the last step is the
conditional variance of the induced charge at time
t: Substituting (1) into (3), and further averaging
over NðtÞ; we get

Cov½QðtÞ;Qðt þ uÞjN0�

¼

Z
NðtÞ

Cov½QðtÞ;Qðt þ uÞjNðtÞ;N0�

�pðNðtÞjN0ÞdNðtÞ

¼

Z
NðtÞ

Z
QðtÞ

½QðtÞ � Q̄ðtÞ�2
�

�pðQðtÞjNðtÞ;N0ÞdQðtÞ

�

 pðNðtÞjN0ÞdNðtÞ
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þ

Z
NðtÞ

½ðNðtÞ � N̄ðtÞÞ 
 AðuÞ� 
 ½Q̄ðtÞjNðtÞ;N0
� Q̄ðtÞ�

�pðNðtÞjN0ÞdNðtÞ

¼

Z
NðtÞ

Z
QðtÞ

½QðtÞ � Q̄ðtÞ�2
�

�pðQðtÞjNðtÞ;N0ÞdQðtÞ

�

 pðNðtÞjN0ÞdNðtÞ

þ AðuÞ 
 AðtÞ 
 e�t=t 
 ð1� e�t=tÞ 
 ½N0 � N̄0�
2

� AðuÞ 
 AðtÞ 
 e�t=t 
 N0. ð5Þ

At this point, we take into account both electron
and hole contributions. Given N0; the drifting of
electrons and holes are completely independent.
Therefore, the overall contribution of electrons
and holes to the covariance of the waveform,
conditional on N0; is

Cov½QðtÞ;Qðt þ uÞjN0�

¼ Cov½QeðtÞ;Qeðt þ uÞjN0�

þ Cov½QhðtÞ;Qhðt þ uÞjN0�

þ

Z
NeðtÞ

Z
QeðtÞ

½QeðtÞ � Q̄eðtÞ�
2

(

�pðQeðtÞjNeðtÞ;N0Þ 
 dQeðtÞ

)

�pðNeðtÞjN0ÞdNeðtÞ

þ

Z
NhðtÞ

Z
QhðtÞ

½QhðtÞ � Q̄hðtÞ�
2

(

�pðQhðtÞjNhðtÞ;N0ÞdQhðtÞ

)

�pðNhðtÞjN0ÞdNhðtÞ

þ AeðuÞ 
 AeðtÞ 
 e
�t=te 
 ð1� e�t=te Þ 
 ½N0 � N̄0�

2

� AeðuÞ 
 AeðtÞ 
 e
�t=te 
 N0

þ AhðuÞ 
 AhðtÞ 
 e
�t=th 
 ð1� et=th Þ 
 ½N0 � N̄0�

2

� AhðuÞ 
 AhðtÞ 
 e
t=th 
 N0. ð6Þ

From this, one can get the covariance of the
waveform by integrating over N0;

CovQðtÞ;Qðt þ uÞ�

¼

Z
N0

Cov½QðtÞ;Qðt þ uÞjN0� 
 pðN0ÞdN0
¼

Z
N0

Z
NeðtÞ

Z
QeðtÞ

½QeðtÞ � Q̄eðtÞ�
2

(

�pðQeðtÞjNeðtÞ;N0ÞdQeðtÞ

)

�pðNeðtÞjN0ÞdNeðtÞ 
 pðN0ÞdN0

þ

Z
N0

Z
NhðtÞ

Z
QhðtÞ

½QhðtÞ � Q̄hðtÞ�
2�

(

�pðQhðtÞjNhðtÞ;N0ÞdQhðtÞ

)

�pðNhðtÞjN0ÞdNhðtÞ 
 pðN0ÞdN0

¼ Var½QðtÞ� þ AeðuÞ 
 AeðtÞ 
 N̄0

� F 
 ð1� e�t=teÞ � 1
h i


 e�t=te þ AhðuÞ 
 AhðtÞN̄0

� F 
 ð1� e�t=th Þ � 1
h i


 e�t=th ð7Þ

where F is the Fano factor and t is the mean free
time for the charge carriers. AeðuÞ and AhðuÞ are
the mean weighting potential changes by a single
moving electron or hole within a given drifting
time u; as defined in (3).
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