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Abstract

In conventional Compton camera systems, the image reconstruction is performed only in two-dimensional or three-dimensional spatial
coordinates for a specific gamma-ray energy. By doing so, a priori knowledge of the incident gamma-ray energy is required, and usually
an energy window is applied to select full energy deposition events. In some other applications, spectral-deconvolution algorithms were
developed to estimate the incident gamma-ray spectrum by deconvolving the observed energy-loss spectrum. However, usually the
spectral system response function of a non-spherical detector depends on the incident gamma-ray’s direction, which cannot be modeled
by those spectral-deconvolution algorithms. In this paper, we propose a new energy-imaging integrated spectral-deconvolution method,
which utilizes both the Compton imaging and the spectral-deconvolution techniques. In the new method, the deconvolution takes place
in a integrated spatial and energy space. This technique eliminates the requirement of knowing the gamma-ray energy in the imaging
part, and removes the directional dependence in the spectral-deconvolution part. The deconvolved result provides the image at any
specific energy, as well as the spectrum at any specific direction. The deconvolution method is based on the maximum likelihood
expectation maximization (MLEM) algorithm, which is popular in reconstructing photon-emission images. Since the ML solution
estimates the true incident gamma-ray intensity, the deconvolved energy spectrum at the source location is free of Compton continuum.
To truthfully reconstruct the source distribution from the observation data, the accuracy of the system response function f;, i.e. the
probability for a photon from source pixel j to be observed as event i, is the most crucial information. Because of the large number of
pixels in the energy-imaging integrated space, and the very large number of possible measurement events, it is impossible to pre-calculate
the system response function #; by simulations. In this paper, an analytical approach is introduced so that the system response function
can be calculated during the reconstruction process. In order to perform Compton imaging, gamma-ray detectors are required to have
position-sensing capability. The energy-imaging integrated deconvolution algorithm is applied to a three-dimensional position-sensitive
CdZnTe gamma-ray imaging spectrometer, which can provide not only the energy-deposition information, but also the position
information of individual gamma-ray interactions. The results demonstrate that the technique is capable of deconvolving the energy
spectrum and of reconstructing the image simultaneously.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction angle 0 can be obtained from the deposited energies by the
Compton scattering formula of
A gamma-ray Compton camera captures two or more
interactions of an incident photon and records the position cosf = 1 —
and energy information of each interaction. The scattering Ey(Ey — E)

Mo E,

(1)

where m.c? is the rest mass energy of an electron, Ej is the
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determined by the first and the second interaction
positions, as shown in Fig. 1. Since the back-projection
cone of each event passes the true source location, the
source image can be reconstructed when many cones
overlap with each other.

In conventional Compton imaging systems, it is some-
times assumed that the incident gamma-ray energy is
known a priori. To reduce the Compton background, an
image is typically reconstructed only from those events
within a narrow energy window. However, in many
applications, the energy of the incident gamma-ray is
unknown, or the energy spectrum is continuous, and it is
unlikely to set an energy window to select the full energy
events. Therefore, the reconstructed image is degraded by
the Compton background, in which only a fraction of the
incident photon’s energy is deposited within the detector.
Even if the incident gamma-ray energy is known, in the
case of multiple sources, the low-energy photopeak is
contaminated by the Compton background from the high-
energy sources, and the reconstructed image of the low-
energy gamma-rays is affected by the distribution of the
high-energy gamma-rays. Furthermore, although the back-
projection rings of the Compton background do not pass
the true source direction, those background events still
contain information about the source distribution. There-
fore, there will be a waste in efficiency if only full energy
events are reconstructed.

In order to obtain the true incident gamma-ray spectra
given the measured energy loss spectra and the detector
system response function, spectral deconvolution methods
were developed for gamma-ray spectroscopy [1,2]. Those
deconvolution methods are performed only on energy
spectra. Since the responses of most actual gamma-ray
detectors depend on the incident direction of gamma-rays,
those methods are fundamentally vulnerable to spatially
distributed sources.

As the advances in modern gamma-ray detector devel-
opments, more and more detector systems begin to have
position-sensing capabilities. The interaction of position
information can provide extra information about the
direction of the incident gamma-rays by means of
Compton imaging. Therefore, the detector system response
function can be modeled as a function of the incident

Fig. 1. If a gamma-ray interacts at least twice in the detector, the direction
of the incident gamma-ray can be constrained on the surface of a cone.
The half angle is determined by the energy losses, the cone vertex is placed
at the first interaction position, and the cone axis is defined by the first and
the second interaction positions.

gamma-ray’s direction for those measured events with
multiple interactions. In this paper, we describe a new
energy-imaging integrated deconvolution algorithm in
which the techniques of Compton imaging and spectral
deconvolution are integrated together. The deconvolution
space is defined as a combined space of both energy and
spatial dimensions. By this means, this method can
simultaneously provide the source image at any gamma-
ray energy, as well as the gamma-ray energy spectrum at
any incident direction. By applying the new deconvolution
algorithm, the Compton continuum in the spectrum will
contribute to the full energy peak, and a priori knowledge
of the incident gamma-ray’s energy is no longer required.
Since the directional dependence can be modeled by the
system response function, the new algorithm can be applied
to spatially distributed sources.

Among various spectral-deconvolution algorithms, the
maximum likelihood expectation maximization (MLEM)
algorithm was proven to be superior [2]. In the proposed
energy-imaging integrated deconvolution algorithm, a pixel
j is defined in a combined space of both spatial and energy
dimension, and a measurement i is defined by two sets of
position and energy information. Suppose the position is
defined on an 11 x 11 x 10 grid, and the energy is divided
into 1000 channels, as a result, there will be more than 10°
bins in each set of position and energy information. A
Compton scattered event requires at least two sets of
position and energy information. As a result, 10'? bins are
required to store the measurement output, which is beyond
the limit of any memory system currently available. To
overcome the difficulty, list-mode MLEM is implemented
instead of general MLEM algorithm. The list-mode MLEM
algorithm is performed using the iterative equation of [3-5]:
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in which /11’7 is the estimated value of pixel j at nth iteration,
the sensitivity image s; is the probability of a gamma-ray
emission from pixel j to be detected, N is the total number
of measured events, and the system response function #; is
the probability of a gamma-ray emission from pixel j to be
observed as measurement i.

Because of the huge number of possible measurement
events, it is impossible to pre-calculate the system res-
ponse function #; by simulations. In this paper, Section 2
describes an analytical model to calculate the system
response function for each measured event during the
reconstruction process. This analytical approach considers
the binning process and the uncertainties in an actual
detector system. Since the imaging space includes the
energy dimension, there are two possibilities for a photon
from an imaging pixel to create a measured event with two
interactions. The first possibility is that the photon deposits
all its energy in the detector by a Compton scattering
followed by a photoelectric absorption. The other possibi-
lity is that the photon deposits part of its energy by two
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Compton scatterings and the scattered photon escapes. The
system response function model should account for both
possibilities. This way, the measured Compton background
will contribute to the photopeak. With an accurate system
response function, the deconvolved energy spectrum will be
the estimation of the true intensity of the incident gamma-
rays, thus free of Compton scattering continuum.

The sensitivity image s; can be obtained by summing the
rows of the system response function t;, i.e.

Sj = Z tij' (3)

However, because of the huge number of possible
measurement outputs, the direct approach of Eq. (3) is
not practical. In this work, the sensitivity image s; is
obtained by simulations.

Three-dimensional position-sensitive CdZnTe detector is
a novel room-temperature semiconductor gamma-ray
spectrometer. It was initially developed to achieve good
energy resolution even if the detector material is not
uniform and has charge trapping problems. This is because
the true energy deposition can be obtained by correcting
the measured pulse amplitude as a function of the three-
dimensional position of interactions [6,7]. However, the
capability of position sensing, as well as the excellent
energy resolution, enables three-dimensional CdZnTe
detector systems to perform Compton imaging [8,9]. The
size of the detector is 15 x 15 x 10mm?. The anode of the
CdZnTe detector is divided into an 11 x 11 pixel array
Fig. 2. The lateral coordinates are given by the location of
individual anode pixels collecting electrons, and the
interaction depth is measured by the drift time of electrons
from the interaction position to the collecting anode. The
depth resolution is about 0.5 mm, which makes the position
resolution of the CdZnTe detector about 1mm?’. If a
gamma-ray interacts multiple times in the detector, the
individual interactions will be registered by different pixels.
Therefore, each measured event may have different
numbers of pixels which have energy depositions. The
measured events are grouped into single-pixel events, two-
pixel events, three-pixel events, etc. With the capability of
registering multiple interactions, a single detector is
capable of performing Compton imaging. A 15 x 15 x
10mm? CdZnTe detector was applied to demonstrate that
the energy-imaging integrated algorithm is capable of
deconvolving the energy spectrum and of reconstructing
the image simultaneously. Since there is no mechanical
collimator required, the spatial imaging space is the 4=«
angular space around the detector.

2. Energy-imaging integrated system response function

The system response function ¢; is defined as the
probability of a photon emitted from pixel j to be observed
as a measured event i. Here, a pixel j is defined in the
combined spatial and energy space. The system response
function ¢; therefore can be described as the probability of
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Fig. 2. Three-dimensional position-sensitive CdZnTe detector. The size of
the detector is 15 x 15 x 10mm?.

a photon with a certain energy emitted from a certain
spatial direction to be observed as event i.

The measurement data are usually binned due to
pixellation or digitization. Therefore, the measurement
result is actually a small bin volume around point i in the
measurement space, which is defined by a set of position
and energy attributes given by the detector system. Before
this binning process, the imperfect detector system will
introduce uncertainties to the measurement quantities due
to noise or Doppler broadening. Therefore, the system
response function can be written as

lj = /A y di / S (lj) di (4)

in which, f(ilj) is the probability density function for a
photon from pixel j to create a ‘real’ event i, which consists
of the actual interaction positions and deposited energies,
and f (fﬁ) is the probability for the detector system to
generate a response of i due to uncertainties given the real
event i. AV; is the bin volume around measurement i.

Our model is based on the following procedure to
calculate the system response function. First, we derive the
probability density function f(i|j) for a photon emitted
from pixel j to create a real event i. Then we calculate the
probability density function f (ilf) for the detector system to
output this real event i as a measured event i in the
measurement space due to uncertainties, assuming all the
uncertainties are Gaussian. Finally, to obtain ¢;, the
probability density function is integrated over the bin
volume AV; around i.

In this work, only two-interaction events are modeled.
The system response function modeling for three or more
interaction events can follow the same procedures but
usually is much more complicated. The spatial domain in
the imaging space is the 4n angular space around the
detector, thus a source pixel in the energy-imaging
integrated space is defined by (Eg,€). The deconvolved
image gives the incident gamma-ray intensity from a



D. Xu, Z. He | Nuclear Instruments and Methods in Physics Research A 574 (2007) 98-109 101

certain direction, which is irrelevant to the distance
between the source and the detector. Therefore, it is
reasonable to assume that the source is distributed on the
surface of a sphere with radius R which is much greater
than the dimension of the detector. As a result, a source
pixel can also be described by (Ey,rp), in which ry = R€Q,.
The measurement event i and i can be represented
by (E\, 1, E»,¥,) and (El,fl,Ez,fz), respectively. Fig. 3
illustrates a two-interaction event. d; is the distance that
the incident photon travels before reaching the first
interaction position, d is the distance between the two-
interaction positions, and d, is the distance that the
escaping photon travels before leaving the detector.

2.1. Probability density function of f(ilj)

In a measured event, if two interactions are observed by
the detector system, the first interaction is assumed to be a
Compton scattering. For the second interaction, there are
two possibilities, which are another Compton scattering or
a photoelectric absorption. The general case is discussed
below.

The directions of the incident and scattered photons are
defined by Q) = (¥ —ro)/[f; —rol, and Q, = (F, — 1)/
|F, — ¥1|. We have the following conditional probability:

o(0: — 0.)

O, |Ey, E1, Q) =
S(2|Eo, Ey,€21) 275 b,

(%)
in which 6. is the scattering angle determined by energies
Ey and E; (Eq. (1)), 0; is the angle between Q, and ©,, and
0(0; — 6;) is the Dirac delta function. Eq. (5) means that
given the direction and the initial energy of the incident
photon, and the energy deposited in the first scattering, the
second interaction must occur on the surface of a cone with
half angle determined by Compton scattering kinematics
(here, coherent scattering, Doppler broadening and polar-
ization are neglected).

We introduce ¢ as the distance that the scattered photon
travels before the second interaction. If ¢ is known, the

Imaging sphere

Detector

Fig. 3. A photon from pixel j creates a two-interaction event i, which
consists of energy depositions of E; and E, at positions r; and r,,
respectively.

second scattering must occur on a ring which is on the cone
defined by Eq. (5). Since Q; and Q, are defined by ¥y, F;
and 1, from Eq. (5) we have

3(0; — 00)3(d — 1)

(¥ Ea 9Ea~9l = .
JS(E2|Eo,x0, E1,Fy, 1) 3 sin 0.

(6)

The probability density function for a photon with energy
E, from r( to interact at position ¥, is

- 1 _
S(F1|Eg,xo) = yoys) IE,e g1 @)
in which 1/4nR? is the solid angle and g is the linear
attenuation coefficient for gamma-rays at energy E.

The probability density function for a photon from
(Eo, 1o) to deposit £, in a Compton scattering given the
condition that the photon interacts at position ¥; is

1 doc(Eo)
a(Eo) dQ

i do(Ep)
pg, dQ

dQ
dQ
naE;

f(E1|Eo,xo, 1) =

Ey

®)

E

in which, o((E) is the total cross-section at energy E, N is
the number of nuclei per unit volume, and da.(Ey)/dQ is
the differential scattering cross-section defined by the
Klein—Nishina formula.

The probability density function for the scattered photon
to travel a distance of ¢ before the second interaction is

f(t|Eo,xo, Ey, 1) = Lig,_E, € Moal, )
From Egs. (7), (8), and (9), we can obtain

f(E\,T1,1|Eo,1o)
= f(t|Eo,xo, E1, ¥1)f (E1|Eo, xo, F1)f (F1] Eo, ¥o)
Iy d0eBo)| dQ

= — R P o 10
4R’ e AR

E

which is the probability density function that a photon with
energy Ey, and from ry, creates the first scattering
interaction of (£,,¥) and the scattered photon travels a
distance of ¢ before the second interaction.

From Compton scattering kinematics, we have

27mec?
(Eo — E1)’
From Eqgs. (6), (10), and (11), we obtain
F(E1,Fy, 1,F2| Eo, 1)
= f(®2|Eo, xo, E1,¥1, 0f (E\, F1, 1| Eo, ¥o)

dQ = 2rsin0do = dE;. (11)

_ 1 - NdUc(Eo) 27rmef2
4nR? dQ |z (Ey — E)?
(0, — 0.)0(t — d)

(12)

X Up _f e He-Ei L. -
0= 27t? sin 0,
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Therefore, given the initial photon has an energy of E( and
is from ry, the probability that the first interaction deposits
E, at T} and the second interaction happens at ¥, is

f(E1,¥1,12|Eo,10)

o0
= / S(E1 T, 1, F2|Eo, 1) dt
0

1 - ledaC(Eo) 2nmec?
R © dQ |z (Eo— E1)°
g (0, — 0,)
« e Hp-pd | T T Ve) 13
HE-Ey 2’ sin 0, (13

We will discuss two cases here depending on the type of the
second interaction.

(A) Photopeak events: The second interaction is a photo
absorption, thus the full energy of the incident gamma-ray
is deposited in the detector (Ey =~ E| + E>)). f(ilj) becomes

FGli) = f(E1,F1, Ea, B2 Eg, o)
= f(E1,}1. B2 Eo, 10)f (Es|Eo, vo, E 1, F1, )
op(E2)3(Ey — Ey — )
O't(EZ)
Noy(E)d(Ey — Ey — )

Kg,—E,

= f(E1,¥1,F2|Eo, 1)

= f(E\1,}1,52| Eo, 1) (14)
in which ap(E») is the photoelectric cross-section at energy
E.

(B) Compton continuum: The second interaction is a
Compton scattering and the scattered photon escapes the
detector, thus only partial energy of the incident gamma-
ray is deposited in the detector ((Eo>E; + E3)). f(ilj)
becomes

F@lj) = f(E\, 71, B2, T2| Eo, o)
= f(E\,}1, 2| Eo, 10)f (E2| Eo, xo, E, T1,T2)

N do.(E - E))

= f(E\,T1,B2|E
S(E, ¥, 1] Eg, 1g) 40 N

Ey—E,
2mmec?
X )
(Eo — E1 — Ey)

e HEy-t-E, 2

(15)

2.2. Uncertainties

Due to detector uncertainties, the observed event is
different from the actual event. The probability for a

photon emitted from pixel j to create an observed event 7

can be obtained by the integral of

£ = [ s d (16)
Specifically, Eq. (16) can be written as

S by, B, by Eo,xo)
= /.f(El,flaEZ,f2|E1;fIaE2,f2)f(ElaflsE2af2|E0:r0)dV

(17)

in which, dV is the integral volume in the measurement
space defined by E, i, E, and is.

Suppose the measurements of the energy E and the
position (x,y,z) all follow Gaussian distribution with
uncertainties of ¢,, oy, ¢,, and o, respegtively. The
probability density function of observing E given the
actual energy deposition of E is

fE(EIE) = —m—se (E-07/2D), (18)

oy

Similarly, we have

. AL~ _ ;C_)~C2 0_2
fx(x|x) — = e~ ((F=%)"/207) (19)
1,019) = e U-7'/2) (20)
no2
I
f;(2|5) — — e (E=27/203) (21)

z

As a result, f(i[i) = f(E1,F, Eo, B2|E1L F1, Eo, B2) is a joint
Gaussian distribution.

If the uncertainties in energy and position are small
enough so that f(El,rl,Ez,r2|E0,r0) varies slowly around
(El,rl,Ez,rz) f(El,rl,Ez,r2|E0,r0) can be regarded as a
constant and taken out of the integral in Eq. (17). Since
ff(El,rl,Ez,r2|E1,r1,E2,r2)dV =1, we can appr0x1mate
f(E],r],Ez,r2|Eo,r0) by repldcmg (E, i1, Ey,Ty)  with
(E],T],Ez,l‘z) m EqS (14) and (15)

The above approximation is usually valid when
E, + E;<E,, which means the second interaction is a
Compton scattering. However, if E| + E, = E;, which
means the second interaction is a photoelectric absorption,
f(E\,¥1, E»,T|Eo, 1) has a term of a delta function and
cannot be regarded as a constant. In this case, the delta
function should be integrated over £, and E».

(A) Photopeak events: f(ilj) is obtained by

f(Ey, 1, E, 12| Eo,¥0)
A . Noo(E
=f(E1,l‘1,r2|E0,l‘o)M
Eo—E,
/ /dE1 dE,0(Ey — E\ — E»)
X

2n0E,OF,

wo (E1=E 20, )=(Er=E2)? 2%

A No E)
=f(E1,l‘1,r2|Eo,l‘o)ﬁ

/ dE,
X | ——e
2n0E, OF,

_J(Er, F1, 52| Eo, r0)Nap(Er) o—(E—E1=E2 /203, +33,)

Hg,_ i o /271?(6%[ + 0%2)

Eo—E,
~(E=E1) /20, )=(Eo—E2=E1)* 207

(22)
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(B) Compton continuum: From Eq. (15), f(ilj) is obtained
by
f(Er, 11, Er 2l Eo,xo)

N doc(Ey — El)
HE,—E, de

= f(E1, 11,12 Ep,19)
E,
27Mec?

X% dz.
(Eo — Ey — E»)?

e ME-E -

(23)

In Egs. (22) and (23), f(El,rl,r2|E0,r0) is the same as
Eq. (13), except E,, i, and f, are replaced by El, r1, and 1.

2.3. Binning

The binning process is to integrate the probability
density function over the bin volume, i.e.

ty = / £ di = / F(Er b1, Byl Eoyro) di (24)
AV; AV;

in which di = dE, di; dE, di,.

If the bin volume is small enough such that all terms
except the delta function in f(El,f'l,Ez,i'2|E0,ro) vary
slowly within the bin volume, the integral can be
approximated by moving those terms out of the integral.

(A) Photopeak events: The system response function is

tij:/ F(Ey, 11, Ea, 12| Eo, 1o) di
AV;

= —1 —tigydi doc(Eo) 27'51’!’1362
47'CR2 dQ £ (EO _ El)2
X e*ﬂfoffld 1 Nap(E2)

2 .
2nd” sin 0, /273(6%l _|_0_1252)

x e (Bo-BED 2 v [ s~ g)di. (25)
AVI'

(B) Compton continuum: The system response function is
Ly = / S(E\, T, Ey, 12| Eg, 1) di
AV,

1 ot NdaC(Eo)
47'£R2 dQ
a1
2nd? sin 0,
dac(EO - El)
N dQ

27Mec?

g (Eo — E))*

X e—,uEO—El
2mec?

£ (Eog — Ey — E»)’

x e Me-m-nd [ 50, — 0,)di. (26)

AV,
In both cases, there is an integral of | AV, 0(0; — 0.) di which
needs to be solved. Considering that this integral depends
on ry, r;, r;, £y and E;, and the integral volume is a
rectangular parallelepiped due to pixellation and digitiza-
tion, it is formidable to obtain an analytical solution for

this integral. Here, we make the following assumptions to
ease the calculation:

(1) rg is on the back-projection cone defined by ry, 1y, Ej
and E;. A Gaussian function with its standard
deviation equal to the angular uncertainty will be used
to approximate the system response for pixels not on
the back-projection cone.

(2) The integral volumes around r; and r, have the same
volume, and are approximated by two spheres with
equivalent radius of Ry as illustrated in Fig. 4.

(3) 0. is constant in the integral region around E.

Under the above assumptions, the integral of | AV, o(0; — 0.)
di can be calculated by

50, — 0,) di
AV;
— AE|AE, / a& [ diao(0, — 0.)
AV, AV,
Ry
— AE,AE, / dfy / dz / ds5(0, — 0,). @7)
AV, S

The integral region S consists of those points which satisfy
0; = 0.. Strictly speaking, S is not a plane. However, when
d> Ry, S can be approximated by a plane. Also, when d> Ry,
dz = d - do,. As a result, we obtain

5(0; — 00)di
AV;

= AE|AE»d Sdry
AV,

= AE\AEyd / (R sin 0)* (R sin 0)> Ry sin 6 d6
0

16

= E”ZRS dAE|AE;. (28)

2.4. Final result

For source pixel j of which the gamma-ray initial
position is on the back-projection cone defined by ry, rp,

Fig. 4. The bin volumes in the measurement space are approximated by
two spheres in calculating the system response function.
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Ey and E|, the system response function is
(A) Photopeak events:

_2RIAEIAEN? g dod(Ey)|  2mmec’
Y 15R%dsin 0, dQ |z (Ey— E)
e trnd ___OoED)  (B-E-EP)2e}, )

\/2n(o%, +0%,)

(29)
(B) Compton continuum:
_2RAE\AENT g doe(Eo)|  2mmec
Y 15R%dsin 0, dQ |z (Eo — E1)
% e—#E(rElddGC(EO — E]) anec2
dQ £, (Eo — Ei — Ea)?
x e k£ (30)

For other source pixels not on the back-projection cone,
their system responses are approximated by a Gaussian
function with its standard deviation equal to the angular
uncertainty determined by the detector’s geometry and
energy uncertainties.

In Egs. (29) and (30), e "5 is the probability for the
incident photon to reach the first interaction position,
daC(Eo)/dQ|E]2nmecz/(E0 — E)* represents the probabil-
ity for the incident photon to deposit E; in the scattering,
e 5119 is the probability for the scattered photon to reach
the second interaction position, o,(E2) represents the
probability for the scattered photon to be photoelectrically
absorbed, da.(Eg — E1)/dQ|g,2nmec?/(Eq — Ey — E»)* re-
presents the probability for the scattered photon to deposit
E, in the second scattering, and e Me-r-6:% s the
probability for the escaping photon to leave the detector.
The 1/sin 0, term represents the probability that r, is on
the direction of the scattered photon. In the Compton
continuum case, the lack of the energy Gaussian spread
shown in the photopeak case is due to the facts that the
system response function in the Compton continuum case
is a slow-changing continuous function of the incident
gamma-ray energy Ey, and a Gaussian spread with a small
uncertainty will not affect the system response function
very much. This is the direct result of the approximation
done in Eq. (23).

We notice that Ry, AE;, AE,, N and R are all constants for
a specific detector system, and d is a fixed value for a specific
event. From Eq. (2), the iteration is not sensitive to the scaling
factor in the system response function since ¢; appears in both
the numerator and the denominator. Therefore, we can
ignore those constants to simplify the system response
function for the two considered cases as follows:

(A) Photopeak events:

_ 1l wadoEo) 1

tj = —
7 sin0, dQ g (Eo — E)?

Up(E2)

\/ 271((72El + a%;z)

x e HEg-£ 4 ef((EniEleZ)z/z("zEl J”TZEz)).

(31
(B) Compton continuum:
_ b, adac(E) 1
V= Sne ¢ T da 2
Sin te E (EO _El)
X e_ﬂEo—ElddGC(EO - Ey) 27'“’”lecz
de 5, (Eg — Ey — E2)*
x e MEg-E B2 2 (32)

There are several details that need to be addressed:

(A) Total cross-section: The total cross-section may not
include the coherent scattering (Rayleigh scattering) cross-
section because the photon does not lose energy in coherent
scattering process. The coherent scattering is usually
unimportant in modeling gamma-ray transportations.
However, when the gamma ray energy is low (below a
few hundred keV), the cross-section and average deflection
angle of the coherent scattering become non-trivial, and the
coherent scattering should be taken into account in a
complete model.

(B) Sequence ambiguity: Because of the poor timing
resolution of the three-dimensional position-sensitive
CdZnTe detector, it is difficult to tell which interaction
occurs first. Various sequencing algorithms have been
developed to reconstruct the interaction sequences based
on the position and energy information of the interactions
[8,10,11]. However, those algorithms can only estimate
which sequence has the highest probability. They cannot
eliminate the sequence ambiguity. An accurate system
response model should consider all the possible sequences.
Particularly, for a two-interaction event, each interaction
can be the first interaction. Therefore, there are two back-
projection rings at each energy in our model of the system
response function.

(C) Conventional Compton cameras: For conventional
Compton cameras with known incident gamma ray energy
Ey and known interaction sequence, the system response
function can be greatly simplified due to the insensitivity of
the MLEM algorithm to the scaling factors in the system
response function. In this case, Egs. (31) and (32) can both
be reduced to e~?£041 which is the only term in the system
response function related to pixel j. If the size of the
detector system is small, this term can be further reduced.
Therefore, the system response function for conventional
Compton cameras is constant on the back-projection cone
with a spread defined by the angular uncertainties.

(D) Variation in the binning volume size: The anode
surface of the three-dimensional position-sensitive CdZnTe
detector is pixellized into an 11 x 11 array. The effective
volume of the peripheral pixels is slightly larger than that
of the center pixels. This variation in the binning volume
size will affect the integral of [, v, 5(0, — 0.)di in the
derivation of the system response function. However, this
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integral does not depend on the energy or direction of the
incident gamma-ray, thus is a constant to all pixels. Again,
due to the insensitivity of the MLEM algorithm to the
scaling factors in #;;, this integral can be ignored. Therefore,
the variation in the binning volume size will not affect the
deconvolution process.

3. Performance

The energy-imaging integrated deconvolution algorithm
was applied to both simulated and measured data. In the
system response function model of Eq. (31), the energy
resolution is modeled by

onerall(E) = \/Arzloise + 2352FEW (33)

in which Agyeran and Apeie are the full width at half
maximum (FWHM) of the overall and electronic noise, E
is the gamma-ray energy, the electronic noise Ajs is set at
5keV, the Fano factor F is assumed to be 1, and the
average ionization energy W is 5eV for CdZnTe. The
spatial imaging space of the 4n sphere was divided into
64 x 64 pixels, and the energy space was divided into 500
bins from 0 to 2MeV. The MLEM algorithm was stopped
at the 24th iteration for all calculations.

3.1. Simulation

Ideally, the energy-imaging integrated deconvolution
algorithm estimates the true incident gamma-ray intensity.
A Monte Carlo simulation using Geant4 [12] was
performed with a gamma-ray source uniformly distributed
from 300keV to 1MeV. The source is also uniformly
distributed on a circle around the detector, and the gamma-
ray energy is a linear function of the source direction, as
shown in Fig. 5. By deconvolving the simulation data, we
can examine both the energy and spatial uniformity of the
deconvolution method.

Fig. 6 shows the simulated two-pixel spectrum and the
deconvolved spectrum. About 226k two-pixel events were
used in the deconvolution. The simulated raw spectrum
does not imply that the source is uniform between 300 keV
and 1MeV. This is because the detection efficiencies at
different energies are different, and the low-energy part of
the spectrum is contaminated by the Compton background
from the high-energy gamma-rays. The simulated raw
spectrum also shows a Compton background below
300 keV although there is no incident gamma-ray with
energy below 300 keV. However, the deconvolved spectrum
represents the true energy distribution of the incident
gamma-rays, which is uniform from 300keV to 1 MeV.
Fig. 7 shows the deconvolved energy spectra at different
gamma-ray incident directions. The deconvolved spectrum
in Fig. 6 still shows some Compton background below
300keV. This background is caused by the low-detection
efficiency for gamma-rays with energy lower than 200 keV,
and the MLEM algorithm tends to amplify the statistical

475keV, 90°

300keV, 0°
1MeV, 360°

CdznTe

650keV, 180°
Detector

825keV, 270°

Fig. 5. Source distribution in the Geant4 simulation. The source is
uniformly distributed around the sides of the detector. The source energy
increases from 300keV to 1 MeV linearly as a function of the rotational
angle from 0° to 360°.
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Fig. 6. Simulated two-pixel spectrum and deconvolved spectrum.

noise if the detection efficiency is low. However, in Fig. 7
we can see that the Compton background around 200 keV
is distributed across all angles and can be ignored for each
direction. Although the detection sensitivity varies accord-
ing to the incident directions because of the asymmetry of
the geometry of the detector, the deconvolved spectra
correctly show that the source is spatially uniform.

3.2. Experiment

A single three-dimensional CdZnTe detector was used in
the experiment. A 137Cs, a 22Na, and a '**Ba source were
placed at three different sides of the three-dimensional
CdZnTe detector as shown in Fig. 8. The measured raw
two-pixel spectrum is shown in the top figure in Fig. 10, in
which a Compton continuum is clearly present. About 41k
two-pixel events were measured. After the energy-imaging
integrated deconvolution, the three sources were well
resolved. Fig. 9 shows the images at the three characteristic
energies of the gamma-ray sources, which are 356, 511 and
662 keV. It clearly shows the locations of the three sources.
If we look at the directions of the three sources, as shown
in Fig. 10, the deconvolved spectra only show the true
incident gamma-ray spectra which are free of Compton
continuum.

Although the spectral-deconvolution method can re-
move the Compton continuum which is caused by the
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scatters within the detector, it is not able to remove the
background in which the scatters occur outside the
detector, since those scattered gamma-rays are ‘true”

40

35
i 30
|25
20

Intensity

.
M
)
(3]

8,

= 315
360
200 400 600 800 1000 1200 Jd
Energy (keV)

Fig. 7. Deconvolved spectra at different directions. The spectra show that
the source is not only uniformly distributed in energy from 300keV to
1 MeV, but it is also uniformly distributed across spatial directions.
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: 270°
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Fig. 8. Experiment setup. Three point sources (a '*’Cs, a **Na and a
133Ba) were placed at three different sides of the three-dimensional
CdZnTe detector.

energy=356keV

Intensity
Intensity

energy=511keV

incident gamma-rays and cannot be distinguished from the
unscattered photons. For those events, the gamma-ray
from the source is first scattered by the materials
surrounding the detector, then the scattered photon enters
the detector and is recorded. Since the deconvolved spectra
represent the intensity of the incident gamma-rays, which
include the scattered photons from the surrounding
materials, we expect to see a distribution of those scattered
photons, especially a backscatter peak. Fig. 10 also shows
the deconvolved spectrum from all directions, which still
presents a continuous background. However, because the
scattered photons are spatially distributed, their distribu-
tion is not prominent in the localized spectrum shown in
Fig. 10.

In order to verify that the deconvolved spectrum
represents the true intensity of the incident gamma-rays,
the relative strength of the four '**Ba gamma lines to the
356 keV line is listed in Table 1. The relative intensities are
calculated with background subtracted. As we can see, the
deconvolved spectrum represents the true relative inten-
sities much better than the measured raw spectrum.

3.3. Comparison with conventional Compton imaging and
spectral deconvolution

Conventional Compton imaging was performed by
setting an energy window around the full energy peak.
By doing so, the true full energy deposition events as well
as the Compton backgrounds from higher energy gamma-
rays are selected. The Compton backgrounds are usually
spatially distributed. As a result, the Compton back-
grounds have little effect on the angular resolution of the
reconstructed image of a point source. However, as shown
in Fig. 11(a), the Compton backgrounds do introduce
noises in the reconstructed image because they are from
random directions. Fig. 11(b) shows the energy-imaging
integrated deconvolved image summed in the same energy
window. The Compton backgrounds are correctly placed
in the energy bin of the original gamma-rays. As a result,
the Compton backgrounds introduce less noises comparing
with the conventional Compton imaging.

energy=662keV

Intensity

Fig. 9. The deconvolved images at the photopeak energies of the three sources. The 47 imaging space is projected onto a plane defined by the azimuthal

and the polar angles of the sphere.
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Fig. 10. The upper figure is the measured two-pixel spectrum. The middle
figure shows the deconvolved spectra at the three source directions. The
lower figure is the deconvolved spectrum from all directions.

Table 1
Relative intensities of the four '**Ba lines to the 356 keV line

276keV  302keV  356keV  384keV
Relative source intensity (%)  11.55 29.54 100 14.41
Measured spectrum (%) 8.87 26.70 100 11.39
Deconvolved spectrum (%) 12.30 29.65 100 14.27

The energy-imaging integrated algorithm uses all mea-
sured events and puts the Compton backgrounds into the
right energy bin. As a result, the image obtained at a full
energy peak is from both the true full energy deposition
events and the Compton backgrounds. The Compton
backgrounds usually have larger angular uncertainties than
the full energy events. Therefore, the imaging spatial
resolution of the new imaging-energy integrated deconvo-
lution algorithm is not superior compared to conventional
Compton imaging. Fig. 12 shows the images obtained by
the two methods for the 511keV gamma-rays from a **Na
source. It can be seen that the energy-imaging integrated
deconvolved image has a spatial resolution slightly worse
than the conventionally reconstructed image.

Energy spectral deconvolution was also applied to the
measurement. Because it does not require the directional
information of the incident gamma-rays, single-pixel events
can also be used in the deconvolution. The system response
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Fig. 11. Images of the 384keV line from the '**Ba source: (a)
Reconstructed image by setting an energy window from 370 to 390 keV.
(b) Energy-imaging integrated deconvolved image summed from 370 to
390keV.

function for the spectral-only deconvolution was obtained
by Geant4 simulations. Fig. 13 shows the measured raw
spectrum of all events and the deconvolved spectrum. In
the spectrum, it can be seen that the 80keV photopeak
from the '**Ba source is also present. In the current system,
the energy threshold for individual pixels is about 60 keV.
Therefore, for two-pixel events, the minimal detectable
energy is 120 keV, which is the reason why the 80keV peak
is absent in the spectra in Fig. 10. Comparing the energy-
imaging integrated deconvolved spectrum in Fig. 10 with
the spectral deconvolved spectrum in Fig. 13, we can see
both spectra show backgrounds due to photons that were
scattered outside the detector. Because both methods did
not model the surrounding materials, the scattering back-
ground cannot be removed by either method. By carefully
modeling the surrounding materials, the energy spectral
deconvolution method can provide a more detailed system
response function and can remove the scattering back-
ground. However, this practice is not possible for hand-
held detectors of which the operation environment changes
frequently. In the energy-imaging integrated deconvolved
spectrum, because the scattering background is spatially
distributed, the scattering background is not present in the
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Fig. 12. Images of the 511keV line from the **Na source: (a)
Reconstructed image by setting an energy window from 490 to 520 keV.
(b) Energy-imaging integrated deconvolved image summed from 490 to
520keV.
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Fig. 13. Energy spectral deconvolution on the measured spectrum. The
top figure shows the measured raw spectrum of all events. The bottom
figure shows the deconvolved spectrum.

localized spectra at the true source directions. As a result,
the signal-to-noise ratio can be improved at the true source
directions.

4. Conclusions

Traditional spectral-deconvolution methods are per-
formed only on energy spectra. Since the gamma-ray
response of any non-spherical detector depends on the
incident direction of the gamma-rays, those algorithms
cannot truthfully deconvolve the spectra of spatially
distributed sources. Even if the detector is spherical,
different surrounding materials will affect the back-
scattering and will result in different spectrum responses
to the same gamma-ray source. In this work, an imaging
procedure is introduced into the spectral-deconvolution
process by means of Compton imaging. Modern position-
sensitive gamma-ray detector systems can give position
information about the gamma-ray interactions in the
detector. If more than one interaction is observed in a
single event, extra information about the incident gamma-
ray’s direction can be derived. Therefore, the detector
response function can be established as a function of the
incident gamma-ray’s direction. The proposed energy-
imaging integrated deconvolution algorithm takes the
advantage of this directional dependence in the system
response function, and performs the deconvolution process
in a combined spatial and energy space, thus overcoming
the difficulties in traditional spectral-deconvolution meth-
ods. The deconvolved spectrum is a function of the incident
gamma-ray’s direction; therefore, it can provide the energy
spectrum at any specific direction, as well as the image at
any specific energy. This energy-imaging integrated decon-
volution algorithm does not need to know the energy of the
incident gamma-rays, which is required information in
most Compton camera systems.

The MLEM algorithm, which is popular in solving
photon-emission image reconstruction problems, is applied
in the deconvolution process. Due to the large number of bins
of the measurement output, the deconvolution is performed
in list-mode. The number of elements in the system response
function is so large that it is impossible to pre-calculate the
system response function by simulations. An analytical
approach is derived to allow the calculation of the system
response function during the reconstruction process.

The three-dimensional position-sensitive CdZnTe detector
is an instrument which can provide both the position and the
energy information of individual gamma-ray interactions.
Although the size of the detector is relatively small
(15 x 15 x 10mm?), the detection efficiency as a Compton
imager is much higher than a conventional two-detector
Compton imaging system because there is no separation
between the first and the second detector. The proposed
energy-imaging integrated deconvolution algorithm is applied
to the three-dimensional position-sensitive CdZnTe detector
with both simulated and measured data. The results show
that the new algorithm is capable of deconvolving the energy
spectrum and reconstructing the image simultaneously. The
deconvolved spectra, as expected, are free of Compton
continuum and are the estimations of the true intensities of
the incident gamma-rays.



D. Xu, Z. He | Nuclear Instruments and Methods in Physics Research A 574 (2007) 98-109 109

The energy-imaging integrated deconvolution algorithm
is not limited to three-dimensional position-sensitive
CdZnTe detectors. This algorithm can be applied to any
gamma-ray detector system with three-dimensional
position-sensitive capability, such as three-dimensional
position-sensing germanium, stacks of double-sided
silicon strip detectors, depth of interaction (DOI) scintilla-
tors, and gas or liquid Xenon time projection chambers
(TPC).
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