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Abstract 

Three-dimensional-position-sensitive semiconductors record both the locations 

and energies of gamma-ray interactions with high resolution, enabling spectroscopy and 

imaging of gamma-ray-emitting materials.  Imaging enables the detection of point 

sources of gamma rays in an otherwise extended-source background, even when the 

background spectrum is unknown and may share the point source‟s spectrum.  The 

generalized likelihood ratio test (GLRT) and source-intensity test (SIT) are applied to this 

situation to detect one-or-more unshielded point sources from a library of isotopes in a 

spectrally unknown or known background when the background intensity varies spatially 

by a factor of two or less.  In addition to estimating the number of sources present, their 

activities, isotopes, and directions from the detector are estimated.  Experimental and 

some simulated results are presented for a single detector and an 18-detector array of 

2 cm × 2 cm × 1.5 cm CdZnTe crystals and compared with the performance of spectral-

only detection when the background and source are assumed to be spectrally different.  

Furthermore, the expected detection performance of the 18-detector array system is 

investigated statistically using experimental data in the case where the background is 

distinct spectrally from the point source and the possible source location and isotopic 

identity are known.  Including imaging gave at least 7% higher SNR compared to 

ignoring the image dimension.   

Also, imaging methods based on the maximum-likelihood expectation-

maximization method are introduced to determine the spatial distribution of isotopes and 

to find the activity distributions within targets moving with known motion through a 

radioactive background.  Software has also been developed to support the analysis of the 

data from 3D-position-sensitive spectroscopic systems, for a range of detector designs 

and applications.  The software design and unique features that allow fast 

multidimensional data analysis are presented, along with parallel computing 

performance.   
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Chapter 1  

Introduction 

Police Officer (approaching a man slowly walking around 

the base of a streetlight looking down): Are you looking for 

something?  

Man: I lost my keys somewhere on this street. 

Police Officer: Then why are you only looking under this 

streetlight? 

Man:  The light is better. 

 

Gamma rays cannot be felt or seen, so we must trust detectors – the syncopated 

ticking of a Geiger counter or the flashing lights of a roadside portal monitor.  The 

menagerie of gamma-ray detectors includes detectors that can survive in rugged terrain 

with little power, quietly taking measurements, and others that need constant care, yet 

provide beautifully detailed data.  The workhorses of this group, toiling with health 

physicists around reactors and engineers in industrial processes, all harvest either total 

count rates or, the best of them, muddy gamma-ray energy distributions.  In the medical 

field, doctors have long ago learned how to put blinders on a flock of detectors 

simultaneously to learn the rays‟ spatial distribution within their patients.   

Within this zoo of gamma-ray detectors, only a select few have one striking 

feature:  three-dimensional position sensitivity combined with high energy resolution.  

Without having to move around, their unique senses map the gamma-ray energy 

distribution in all directions, and with a companion, they triangulate gamma-ray threats 

nearby.  The sharp senses of these detectors have grown in recent years due to many 

development efforts.  We harness the detectors as guides to the invisible world of gamma 

rays.  Eventually, they may cultivate a number of fields from fundamental physics to 

health care to nuclear nonproliferation.  The pages that follow describe several methods 

that, when grafted to these detectors, make full use of their capabilities and report their 

observations in meaningful ways.   
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Specifically, yoking detector output with data-analysis algorithms, the resulting 

pair more clearly images the gamma-ray field, more naturally understands moving 

sources, more completely makes use of the detector data, more accurately identifies 

gamma-ray sources, and more sensitively detects threats.  These improved capabilities 

are valuable in, for instance, security applications.  I will analyze the intrinsic capabilities 

of these detectors for detection of localized point sources and show the situations in 

which they have a distinct advantage over more standard workhorse systems.  Such 

analysis informs users about which systems are best for specific circumstances. 

Contributions of this Work 

This work contributes to three areas of analysis for 3D-position-sensitive gamma-

ray detectors, with the goal of better using detector output to obtain useful information 

about the radiation environment.  First, in imaging, two new applications of the MLEM 

equation are proposed to deconvolve the contribution from a number of moving targets as 

a function of energy and to deconvolve the contribution from different isotopes as a 

function of direction.  These methods are applicable to situations where one wishes to 

understand the spatial distribution of radiation emissions from moving sources or the 

isotopes that are responsible for the gamma-ray energy distribution from each direction.  

In addition, a large fraction of events in the detector are single-interaction events that are 

not imaged.  Initial studies have been completed to use these single-interaction events for 

imaging based on attenuation in the detector.   

Second, implementation of imaging, detection, and identification algorithms 

requires robust computer software that provides basic capabilities for dealing with 

detector output and algorithm results.  Therefore, software has been developed to 

implement these algorithms in a modular, flexible manner.  The software design aims to 

support all manner of data analysis for these detectors and to contribute to algorithm and 

hardware development.   

Finally, an important application is the detection of threat sources in the 

environment.  The prospects for automated detection of gamma-ray point sources in a 

background that is roughly spatially uniform are analyzed for a particular system.  

Statistical arguments show that when the expected point sources have emission lines 
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distinct from background, imaging contributes only a small improvement to detectability 

over just spectroscopy.  However, when the expected point sources may not have 

emission lines distinct from background, spectroscopy alone is inadequate.  The 

generalized likelihood ratio test (GLRT) and source-intensity test (SIT) are applied for 

automated detection in the latter case.  The GLRT and SIT performance are studied in a 

number of cases where the source location, source identity, and background spectrum 

may or may not be known.  Additionally, a modified GLRT is applied to estimate the 

number of point sources present.   

Overview 

In Chapter 2, I will introduce you, dear reader, to position-sensitive detectors and 

the specific species used in this study – pixelated CdZnTe.  Although pixelated CdZnTe 

offers numerous advantages, I will also point out some current imperfections that 

complicate translation from raw measured data to images and detections.  Chapter 3 

offers an integrated overview of the imaging and analysis possible with position-sensitive 

detectors.  In Chapter 4, one of these methods – maximum likelihood expectation 

maximization – is applied to a number of applications, some old and some novel.  The 

design and implementation of software to perform these calculations is discussed in 

Chapter 5, with a focus on its distinctive features.  This is followed by detailed analysis 

of the prospects for automated threat detection with the current array system.  Chapter 6 

argues statistically, and Chapter 7 applies two algorithms to detection of one or more 

point sources in an unknown or known background.  Finally, Chapter 8 envisions, insofar 

as this is possible, future progress that will open these detectors to better performance in 

imaging, detection, and other applications.    
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Chapter 2  

Detector Characteristics 

We are like dwarfs on the shoulders of giants, so that we 

can see more than they, and things at a greater distance, 

not by virtue of any sharpness of sight on our part, or any 

physical distinction, but because we are carried high and 

raised up by their giant size.  

– Bernard of Chartres (c. 1124), quoted by John of 

Salisbury (1159), made famous by Isaac Newton (1676), as 

found on Wikipedia (2011) 

 

Throughout this work, I will use 3D-position-sensitive semiconductor detectors to 

image and test algorithm performance.  It is thanks to many decades of development of 

these detectors that the information needed for imaging and detection is available.  

Without them, the rest of this dissertation probably would not exist.   

This chapter describes the basic operation of these detectors and then discusses 

several complicating factors that may affect imaging and detection performance.  The 

capabilities and limitations of these detectors inform algorithm development and analysis.  

For more details about these detectors and their operation, refer to other dissertations 

[1,2].   

CdZnTe Detectors 

CdZnTe (CZT) is a semiconductor with a bandgap of about 1.6 eV [3].  

Therefore, the energy required to excite electrons from the valance to conduction bands is 

small, yet the probability of thermal excitation into the conduction band is extremely 

small at room temperature.  Unlike HPGe detectors, which have a smaller bandgap and 

hence larger probability of thermal excitation to the conduction band at room 

temperature, the larger bandgap allows CZT systems to operate at room temperature.   
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Figure 2.1.  The 18-detector CZT system.   

Radiation that deposits energy in the CZT crystal elevates a number of electrons 

proportional to the deposited energy into the conduction band.  By applying a strong 

electric field through the crystal, these electrons (and to some extent the positively 

charged holes) will drift, inducing a signal on the anode and cathode electrodes.  These 

signals indirectly indicate the interaction position and deposited energy. 

The crystals used in these studies are CZT cuboids of 20 mm  20 mm  15 mm.  

The largest side is covered with a planar cathode electrode, and an array of 11 × 11 anode 

electrodes („pixels‟) is attached to the opposite side, with a pixel pitch of 1.72 mm.  Many 

detectors also include a thin, negatively biased, grid electrode between the anode pixels 

to improve charge collection.  Each of the 123 electrodes is read out through a single 

application-specific integrated circuit (ASIC) developed by Gamma-Medica Ideas [4].   

Recently, systems containing 18 of these crystals were constructed, with two 

layers of 3 × 3 crystals, as shown in Figure 2.1.  The separation between neighboring 

crystals is nominally 2 mm, and the separation between the bottoms of the two planes is 

either 5.50 cm or 4.09 cm.  Zhang et al. describe a similar system with smaller crystals 

[5]. 
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Single-Carrier Charge Sensing 

Electron mobility and lifetime is significantly higher in CZT than that of the 

holes.  Therefore, for most purposes, the holes are assumed to be stationary and the entire 

signal is due to the electron movement.  As the electrons in the charge cloud produced by 

the radiation interaction drift towards the anode, they induce charge on all the conducting 

electrodes consistent with that expected from electromagnetic theory.  A simple method 

to calculate the magnitude of the induced charge is the Shockley-Ramo theorem, which 

describes the change in induced charge on an electrode due to charge motion by means of 

a „weighting potential‟ that is independent of applied potential or trapped charge [6].  The 

change in the induced charge     on an electrode i is 

        ,  (  )    (  )- (2.1), 

where q is the moving charge and ,  (  )    (  )- describes the difference in 

weighting potential for electrode i between the final and initial position of the charge.  

The weighting potential is calculated by imagining no space charge and a potential set to 

zero on all electrodes but the electrode of interest, which is set to unity.  The resulting 

potential field – defined by Laplace‟s equation – is the electrode‟s weighting potential.  

This potential field is distinct from the physical potential field that causes charge drift, so 

the actual electric field in the detector is needed to understand the charge‟s path.  Then 

the weighting potential along that path can be used to find the induced charge. 

For the system described here, the weighting potential for the planar cathode 

electrode is a linear ramp from the anode side (weighting potential of zero) to the cathode 

(weighting potential of one) [3], with a slight curvature near the edges of the crystal due 

to edge effects [2].  This is consistent with the potential field expected from a planar 

device.  Electron movement in the bulk then will induce a charge on the cathode 

proportional to both the charge and the distance traveled from the interaction position to 

the anode.   

The weighting potential for each anode electrode is near zero in most of the bulk, 

including most everywhere on the anode side, but quickly rises to one very near the 

anode electrode of interest [3].  Because of this small-pixel effect, the anode electrodes 

register a signal proportional to the charge, but not interaction position, at the moment the 
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charge reaches the electrode.  Reading out the collecting-anode signal tells the amount of 

charge and hence the deposited energy.  In addition, the anode possessing the positive 

signal tells the lateral position of the charge.   

The ratio of the cathode to the collecting-anode signal amplitudes gives the depth 

of interaction because the cathode signal is proportional to depth and charge and the 

anode signal is proportional to just charge.  The detector hence provides the three-

dimensional interaction position in the crystal, which is useful for imaging and for 

correcting the recorded energy for any charge trapping or non-uniformities in the crystal 

[7].  When multiple interactions occur in the crystal, the anode signals still record the 

charge in each pixel, but the cathode signal is the superposition of the signals from each 

interaction, so the cathode-to-anode ratios cannot uniquely determine the depths. 

Fortunately, the depth of interaction can also be determined by electron drift time.  

As soon as the electron cloud begins to move, it begins to induce charge on the cathode 

electrode, establishing a start signal.  The stop signal is from the quickly rising anode 

signal.  Single-interaction events give the correlation between drift time and the cathode-

to-anode ratio.  Unlike the cathode-to-anode ratio, drift time can give the depth of 

multiple-pixel events because the start time on the cathode is the same for each 

interaction.  The depth resolution depends on the amount of charge deposited, but usually 

is better than 1 mm.   

Energy resolution of single-pixel events below 0.5% full width at half maximum 

(FWHM) at 662 keV is achievable in the most uniform detectors after applying depth and 

pixel corrections [8], although more common detectors attain about 1% FWHM.  Due to 

complicating effects, the resolution of multiple-pixel events degrades slightly faster than 

that expected just due to the addition of noise, resulting in a few-percent FWHM at 

662 keV [2].   

Currently, signal amplitude and timing are read using analog shaping and peak 

hold circuitry in the ASIC.  Work is in progress to use digital pulse shapes to learn more 

about the interactions.  For instance, the small transient signals on neighboring pixels can 

help tell the sub-pixel position of the interaction [9], the shape of the anode signal can tell 

if there are multiple interactions within that pixel [10], and the shape of the cathode 
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signal can tell the drift times and therefore the depths of each interaction independently 

from anode timing [11].   

Non-Ideal Characteristics 

For best performance in imaging and detection, a detector should report the exact 

interaction positions and the energies deposited at each.  Barring this, it should at least 

report these quantities with well-quantified uncertainty.  The following section briefly 

lists a number of effects that confuse the system response beyond the idealized operation 

described above, sometimes leading to estimates of the interaction positions and energies 

that fall outside of what is expected from basic models.  While these factors could be 

included in the models of the detector, some effects are hard to model in a 

computationally efficient way and others are understood only roughly.   

Multiple Interactions in a Single Pixel 

We generally assume that the charge collected at each anode pixel is due to a 

single interaction at one depth below that pixel.  However, it is possible for multiple 

interactions to occur under one pixel.  Depending on the depth difference between the 

interactions, the total recorded energy may be incorrect and the depth for at least one 

interaction will be wrong.  Processing the digital waveform can overcome this problem, 

as long as the interactions occur at different depths, by observing the quick charge 

induction that occurs when each charge cloud reaches the anode [10].   

Charge Sharing and Weighting-Potential Crosstalk 

Conversely, our model assumes that when charge is recorded on multiple 

neighboring pixels there must have been an interaction in each of the pixels.  However, 

there are two mechanisms that can cause a single radiation interaction to appear in 

multiple pixels: charge sharing and weighting-potential crosstalk.   

Electrons traveling towards one anode electrode induce transitory charge on 

neighboring electrodes as they momentarily travel through a higher neighboring-pixel 

weighting potential before being collected by the collecting pixel.  Shaped, this transitory 

neighbor pulse may appear like a positive induced charge, especially if the inducing 
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charge is large.  Therefore, the signals appear to come from an event with one large 

interaction energy and one small interaction energy (the induced signal).  This confusion 

is one aspect of weighting-potential cross talk [2].  This problem can also be overcome by 

processing the digital waveform [11].   

In addition, because the radiation interaction creates not a point of charge but a 

cloud with extent roughly proportional to the energy deposition [1], there is some chance 

that the cloud could be collected by two – or even three – neighboring pixels.  The 

signature of these charge-sharing events is that the true depth in each pixel is the same.  

Some work has been done to recognize these events and combine the two-pixel event into 

the true single-interaction event [12].  Throughout this work, I will use the phrase „two-

pixel event‟ when I am referring to the signals read from the detector and „two-interaction 

event‟ when I am referring to those that have had charge-sharing events combined in this 

way.  It should be clear from context when I instead am referring to the true interactions 

in the detector. 

Dead Layers 

There are some regions in the detector crystal where a radiation interaction will 

create such a small signal that it is undetectable.  The first is in the small region next to 

the anode electrode.  Here, the electrons drift only a very short distance, inducing very 

little charge on the cathode and, although the anode weighting potential increases sharply 

at the anode surface, inducing less than the full charge on the anode as well.  Depending 

on the amount of drifting charge, the signal on both the anodes and cathode may be 

below the noise-discrimination threshold, missing the interaction.  Therefore, the anode 

dead layer thickness is a function of the deposited energy and the noise discrimination 

level, and it may also depend on the sub-pixel interaction position since the anode 

weighting potential varies in amplitude with lateral position at the same depth.  This 

complex dependence makes an exact model difficult.   

The behavior of charge liberated near the sides of the detector is poorly 

understood.  The anode electrodes cannot extend exactly to the edge, so the electric field 

may be weak or variable in the edge regions, making it difficult to collect charge or 

determine depth accurately [13].  A better understanding of this region is needed. 
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Pixel Jumping 

Previous studies have shown that exposing the cathode side of some crystals to a 

flood field of photons creates a much more non-uniform distribution of interactions per 

pixel than expected [13].  This is hypothesized to be due to pixel jumping, where electric-

field direction variations within the crystal cause charge in one pixel to drift into a nearby 

pixel.  Collimator experiments are consistent with this hypothesis [2].  The degree of 

pixel jumping varies between different crystals.  Shifting the recorded lateral interaction 

position by several millimeters can cause considerable errors in some imaging 

applications.  This effect needs further investigation so that it can be corrected or 

included in the model used for imaging and detection.   

Other Effects 

Besides those described above, there are a multitude of other complicating effects 

that have already been addressed satisfactorily in other works [1,2], including electrode 

amplitude calibration, non-linearity, time-amplitude walk, weighting-potential cross talk 

skewing the energies of nearby interactions, and peak-hold drop in analog shaping.  

Corrections are regularly made for these effects when reading events from the detector to 

achieve interaction parameters that better match the true parameters, leading to better 

imaging and detection performance.  In a sense, these detectors and our understanding of 

their operation are the giants on which we can stand as we analyze their data to better 

understand the radiation environment and detect threats.  Fittingly, in Greek mythology, 

the giant on whom the dwarf stood was the hunter Orion.   
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Chapter 3  

Imaging Methods 

To them, I said, the truth would be literally nothing but the 

shadows of the images. 

– Plato, The Republic, Book VII 

Passive and Active Imaging 

Imaging using gamma rays can be classified into two categories:  passive imaging 

and active-interrogation imaging.  In active interrogation, an interrogation system 

produces radiation (usually gamma rays or neutrons) and aims it at potential targets.  By 

recording what returns or passes through, one can determine properties of the material 

[14].  In medical imaging, measurement of the un-collided radiation is the basis for X-ray 

and CT systems.  In security applications, this method is used for the active interrogation 

of containerized cargo such as the “nuclear car wash” [15], and the scattered radiation is 

used for backscatter imagers [16,17,18].  The former can record material attenuation and 

look for products from nuclear reactions that identify materials.  Interrogation of targets 

can produce strong signals even for materials that naturally emit little or no radiation, 

such as explosive materials [19].  Additionally, SNM responds distinctly to interrogation 

with high-energy particles [15].  Nevertheless, concerns remain about portability and the 

safety to stowaways or bystanders, who may be exposed to high doses.  Also, active 

interrogation cannot be used in all situations, such as crowded venues.  For long standoff 

distances, very strong interrogating beams are required since beam strength and resulting 

signal will both fall off with the square of the distance.   

Instead, this work will focus on passive detection and imaging – relying on the 

signals produced intrinsically to detect and locate threatening materials or other sources.  

Passive methods therefore are limited to those objects that emit sufficient radiation to 

produce a signal at the detector.  In medical imaging, this process can be promoted by 
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administering radioactive tracers to a patient, which will give a sufficiently strong signal 

at the detector, as in SPECT or PET scanning.  But, in most passive imaging scenarios, it 

is not possible to radioactively tag targets of interest.  Passive imaging is therefore 

limited to radiation-emitting materials, specifically those that emit gamma rays or 

neutrons that are neither too distant nor too heavily shielded.  Signals of interest therefore 

are often weak, so detectors must be sensitive.   

Types of Radiation 

When designing a passive system to image a radiation environment, it is 

important to understand the expected emissions and their interaction methods.  No 

radiation can be detected unless it interacts directly or indirectly with a detector.  Of 

particles emitted from radioactive materials, gamma rays are the most common and 

easiest to observe.  This work will focus on detection and imaging using gamma rays.  

The vast majority of possible threat sources emit gamma rays.  Gamma rays have a long 

range in air and relatively high interaction probability in certain detector materials.  It is, 

of course, possible to shield gamma rays, but effective shielding requires high-Z material. 

Alpha particles and fission fragments have a very short range even in air [3], so 

are hard to measure directly unless the detector is nearly touching the emitting material.  

Some recent work has shown that secondary ultraviolet emissions from alpha-particle-

induced ionizations of air can be imaged from long distances; however, this requires a 

direct line of sight to a bare source [20].  Similarly, the range of beta particles in 

materials is short, so most source-packaging geometries prevent beta-particle emission.  

Neutrinos or antineutrinos are also produced, but these rarely interact and therefore are 

not practically detectable for most applications.   

A number of threat sources produce neutrons.  Like gamma rays, neutrons can 

travel long distances in air and then interact with reasonable efficiency with some 

detector materials.  The natural background of neutrons is low, so neutron-emitting threat 

sources are quite easily distinguishable from background.  However, not all threat sources 

of radiation emit neutrons, limiting their use primarily to SNM.  Still, many of the 

techniques used to detect and image gamma rays have analogs that have been applied to 

neutrons [21,22,23].  
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Gamma-Ray Imaging Concepts 

A gamma ray entering a detector may interact in a number of ways: through the 

photoelectric effect, Compton (incoherent) scattering, or pair production.  Each can be 

used to image the incident gamma-ray field.  In addition, it is possible for low-energy 

photons to undergo coherent scattering, by Rayleigh, Thomson, or Bragg scattering, 

which changes the photon‟s direction, but not its energy [24].  The following sections 

describe how each type of interaction mechanism can be used to image with any 3D-

position-sensitive detector system. 

Imaging Using Coherent Scattering 

Coherent scattering is not useful for detection directly since no energy is 

deposited in the detecting material, but Bragg scattering can be used to focus X-rays onto 

a detector to image their incident directions.  This is the key mechanism behind some X-

ray focusing mirrors [25,26].  Yet, this technology is primarily applicable, in reasonable 

geometries, to very low-energy photons.  Generally, we ignore coherent scatters in our 

system models because they tend to be prevalent with large scatter angles only at lower 

energies than are commonly imaged.   

Imaging Using Pair Production 

In pair production, a photon with energy over twice the electron‟s rest mass can 

create an electron and positron in the electromagnetic field of a nucleus.  The electron 

and positron share the photon‟s initial energy.  The positron will then go on to annihilate 

with an electron in the material to produce two almost-back-to-back almost-511-keV 

photons (or, in rare situations, any number of photons that sum to 1022 keV [27,28]), 

which subsequently may also interact in the detector.  Therefore, events with the 

signature of one, or two, 511-keV interactions (or a set of interactions that add up to 

511 keV) suggest a pair-production event.  If all but one interaction can be explained as 

undoubtedly from the 511-keV photons, the initial full energy can be determined 

unambiguously as the energy in that interaction plus 1022 keV.   
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Figure 3.1.  Compton scattering.  A photon with energy    transfers energy    to 

an electron and scatters with energy    at some angle   from its original 

direction in the same plane as the electron scatter (neglecting Doppler 

broadening).   

However, the direction of the back-to-back 511-keV pair is uncorrelated with the 

direction of the original incident photon, so, unless the initial direction of the electron and 

positron can be tracked, observing only a pair-production event gives no information 

about the spatial distribution of incident radiation besides from the attenuation distance to 

the pair-production location.   

Imaging Using Compton Scattering 

The Compton-scattering interaction is the basis for much of gamma-ray imaging 

that does not use collimation.  If the incident gamma-ray energy is known, its incident 

direction can be determined to within the surface of one or two cones by recording the 

deposited energy at two interaction locations.  With three or more interaction locations, it 

is theoretically possible to determine whether the full photon energy was deposited, and if 

it was, the photon‟s initial direction to within the surface of a cone.   

In Compton scattering, a gamma ray elastically scatters with a weakly bound 

electron, as shown in Figure 3.1.  Assuming the electron is free and at rest, conservation 

of energy and momentum uniquely define the relationship between the resulting energies 
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and scatter angle.  The scatter angle   as a function of incident, deposited, and scattered 

energies   ,   , and    respectively is 

        (  
   

   

    
) (3.1), 

where    
  is the rest mass energy of an electron (511 keV).  Alternatively, this can be 

expressed as the scattered photon energy in terms of the incident photon energy as  

 
   

  

  

    (      )   
 

(3.2). 

The distribution of scatter angles (or, equivalently, scattered energies) is predicted by the 

Klein-Nishina formula, and is more forward biased at high energies [3]. 

In practice, the weak binding of an outer-shell electron causes little deviation 

from these results [29].  However, the non-zero initial momentum of the electron causes 

an effect called Doppler broadening.  Eqns. (3.1) and (3.2) describe an interaction in the 

electron‟s rest frame.  In the lab frame, the scattered energies (or angles) are shifted due 

to the electron‟s initial motion.  Since the initial electron momentum is unknown, it 

appears as a broadening in scattered energy at a particular angle.  The effect roughly 

scales with atomic number and electron orbital structure and, at 662 keV in CZT, causes 

a few-degree FWHM in the scattered-angle distribution [30], with wide tails in the 

distribution [29].   

One- and Two-Interaction Compton Events 

A single Compton-scattering interaction is only useful for limiting the set of 

possible incident-photon directions if both the incident photon energy and the direction of 

the recoil electron are known.  However, in most cases, it is hard to track the recoil 

electron direction, especially since it tends to change direction quickly as it slows.  Very 

good detector spatial resolution is necessary to observe the initial electron direction 

[31,32].   

If the detector records two interaction locations from a single incident photon, 

more information is available.  In this case (except for the possibility of pair production), 

the first interaction must have been a Compton-scatter interaction and the second either a 

Compton-scatter or photoelectric interaction.  For now, we will assume the interaction 
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sequence is known.  With a recoil electron track measurement, the entire scatter collision 

can be reconstructed and the incident photon direction known.  The plane of the two 

interactions and the electron track define the plane of the incident photon.  The initial 

photon energy can be determined by the angle between the scattered photon direction 

(from the line between the interactions) and the electron track direction, which, together 

with energy deposited in the first interaction, gives the scatter angle.   

Without a measurement of the recoil electron track, the incident direction is more 

ambiguous.  Because the scattered photon has less energy than the original photon and 

the photoelectric probability increases with decreasing energy, it is likely that the second 

interaction will contain the entire scattered-photon energy.  Therefore, it is often assumed 

that the total deposited energy is equal to the incident photon energy.  In this case, the 

energy depositions can be used to calculate the scatter angle, using Eqn. (3.1).  The plane 

of the scatter is still unknown, however, so the incident photon direction is known only to 

within the surface of a cone.  It is, of course, possible that the second interaction could be 

a Compton-scatter interaction, in which case the assumed initial energy and scatter angle 

will be incorrect.  Other energetically possible initial energies could be assumed as well.   

Sequence Reconstruction 

In most systems, the order of interaction is not directly measured since the time 

delay between interactions is only due to photon travel time.  For small detectors, this is 

on the order of picoseconds.  Therefore, there can be up to two cones, one for each 

possible sequence order.  Often, one sequence is energetically impossible or can be 

eliminated based on assumptions of the direction to the source.  For instance, when full-

energy deposition is assumed and one interaction contains energy above the Compton 

edge at  

 
      

  

   
 

   
  

 
(3.3), 

(the greatest amount of energy that can be deposited in a single Compton scatter when the 

photon backscatters), this interaction must be the second (photoelectric) interaction.   

In many cases, however, the sequence order cannot be known definitively.  There 

are two options.  First, one could reconstruct both possible sequences, weighting each by 
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its probability to be correct, as described in the system model starting on page 21.  

Alternatively, one could choose one of these orders [29,33,34], as is commonly used in 

simple back-projection (see page 32).  Methods of choose one of the orders usually fall 

into one of two categories:  energy based or probability based.  Energy-based sequence-

reconstruction methods choose the best order based on which is most probable to occur 

based on the Klein-Nishina cross section, neglecting factors such as attenuation distance 

[33,34].  These tests are fast since they reduce to simple figure-of-merit calculations 

involving the recorded energies.  One such test simply chooses the interaction with the 

highest energy as the first interaction [29].  Probability-based methods also include 

probability factors such as attenuation distance in hopes of choosing a more likely order 

given the exact detector geometry, although not much improvement has been observed 

for two-interaction events detectors of 15 mm × 15 mm × 10 mm [29].   

Three- and Many-Interaction Events 

When n interactions appear in the detector, at least n-1 of them must be Compton-

scatter interactions (neglecting the possibility of pair production).  If the order of 

interactions is known, the energy and scatter angle are known for all but the first and last 

interactions from the interaction locations.  Therefore, Eqn. (3.2) can be solved for the 

initial energy, and the original photon‟s direction can be determined, again, to the surface 

of a cone.  With observed electron tracks, the cone ambiguity is removed.   

Sequence Reconstruction 

When the interaction sequence is unknown, there are up to n! possible sequences 

and as many possible cones.  Again, some of these can be eliminated if they are 

energetically impossible.  A number of methods can be applied to determine the best 

sequence of three or more interactions [34,35,36,37,38].  Since the only parameters 

needed for correct reconstruction of the photon direction are the initial energy and the 

first two interaction locations, the sequence of interactions past the second or third 

interaction usually do not need to be determined.  Nevertheless, at best, sequence 

reconstruction still chooses the incorrect order a small fraction of the time, so it will not 

reconstruct intensity in the correct direction for all events.   
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The best sequence is often found by assuming that the photon was completely 

stopped in the detector and choosing the sequence with the best match between the 

middle angle(s) calculated by energy    and by interaction geometry   .  That is, the 

sequence is chosen that has the biggest figure of merit (FOM) 

     
 

√   

     

 

 
 

(     ) 

 .   
     

 /
 (3.4), 

where    
 and    

 are the modeled uncertainties in the scatter angles.  With more 

interactions, the FOM is the products over all the middle angles.  This is known as the 

minimum-squared-difference (MSD) method [34].  Other FOMs are possible [36].   

Other Available Information in Compton Scattering 

It should also be mentioned that apart from the interaction angles, the interaction 

locations can tell us something about the source direction of the photon based on the 

interaction probability in surrounding or detector material.  This attenuation component is 

described more in the Imaging Methods section starting on page 21.   

Imaging Using the Photoelectric Effect 

In the photoelectric effect, a gamma ray interacts with an atom, ejecting an 

electron with energy equal to the incident gamma-ray energy less the electron‟s binding 

energy.  An X-ray or Auger electron later carries away the binding energy when the 

vacancy is filled.  The photoelectron emission direction tends to be at right angles to the 

incident photon at low energies and in the same direction as the incident photon at higher 

energies.  Around 100 keV, the most likely emission angle is about 45°.  However, the 

electron emission angle is not deterministic, but falls in a broad probability distribution, 

especially at low energies [24].  Therefore, even if the direction of the emitted electron 

can be determined, the incident photon direction can be known with a high confidence 

only at high energies.   

As in Compton scattering, the electron track is often hard to observe.  In addition, 

an interaction must be identified as a photoelectric interaction, so as not to confuse the 
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interaction with a Compton scatter.  This can only be done some of the time – when an 

X-ray is emitted that deposits its energy significantly far from the original interaction site.   

Though the measurement of each interaction may not specify the incident photon 

direction, the distribution of these interaction locations gives information about the flux 

distribution by considering the attenuation distance to each interaction location.  This is 

the basis for coded-aperture imaging, the centroid method, and single-pixel imaging, 

described below (starting on pages 19, 20, and 60).   

Coded-Aperture Imaging 

Coded-aperture imaging uses the shadows cast by a known arrangement of 

attenuating material to estimate the distribution of incident photons.  Like Plato‟s cave, 

the emissions cannot be directly observed and so we observe the shadows.  The simplest 

coded aperture is a pinhole camera or its inverse.  A pinhole camera consists of a block of 

attenuating material thick enough to block most gamma rays, with a single hole in it.  A 

position-sensitive detector behind this hence knows each photon‟s origin by tracing the 

interaction location back through the hole, allowing the angular distribution of incident 

photons to be reconstructed.  Because such a design is quite inefficient (most photons 

never make it to the detector), common coded-aperture designs increase the number of 

open regions in the mask until half of the mask is open [39].  Still, half of the photons are 

obstructed, so some designs use active masks – mask elements that are themselves 

detectors.  While active mask elements may not change imaging performance, counting 

efficiency is improved.  If the detector plane is itself a mask, coded-aperture imaging is 

possible in both directions from the detector planes [40].   

Many authors have studied the optimal arrangement of the mask elements to most 

accurately reconstruct images of the source distributions [41,42,43], but it is still an open 

problem, especially if reconstruction will occur with probabilistic reconstruction methods 

[44].  In designing the mask structure, one chooses the properties of the mask for ease of 

reconstruction or image quality.   

Coded-aperture imaging relies on significant attenuation within the mask material 

of the imaged gamma rays.  Therefore, coded apertures find most application when the 
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gamma-ray energy is relatively low, so that the mask thickness is not large compared to 

the hole size, which will introduce edge effects [26].   

Coded-aperture masks can also be combined with detectors designed for Compton 

imaging [45,46,47].  The mask improves Compton-imaging performance, at the cost of 

efficiency, by reducing the directions from which each event‟s photon was probable to 

originate.  It also allows single-interaction events to be used for imaging, as a standard 

coded-aperture imager.  Single-interaction events would otherwise not contribute to the 

image besides with the attenuation through the detector components, as described in the 

centroid method and single-pixel imaging sections (pages 20 and 60).      

The Centroid Method 

The distribution of the first interaction locations within a material follows an 

exponential distribution in distance x from the material surface that the photons strike.  

Mathematically, 

  ( )       
    (3.5) 

with attenuation constant μ dependent on the material and energy, and a total number of 

interactions along a ray   .  The attenuation constant μ generally increases with 

decreasing energy.  If the interaction locations can be accurately recorded and the 

incident energies known, the interaction-location distribution could be used to determine 

the directional distribution of gamma rays striking the detector.  The centroid method 

[48], and other similar methods for neutrons [22,49,50], make use of this fact.  

Comparing the first moment of the interaction distribution at a particular energy with the 

geometric first moment gives the direction to a single source at that energy.  This method 

only works for a single source at each energy and will give erroneous results if multiple 

sources are present.   

Several complications may arise.  First, surrounding materials and non-active 

regions of the detector must be accurately modeled, and the interaction locations must be 

accurately measured.  Dead layers, surrounding materials, or effects that shift the 

apparent interaction location in the detector will shift the centroid, resulting in an 

incorrect shift in the apparent source direction [48].  A more complicated model or 

experimental corrections are needed to correct for these detector effects.   
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Second, only the distribution of the first-interaction locations follows the 

exponential distribution.  Later interactions are distributed exponentially radially around 

the first interaction location.  Figure 5.8 shows this clearly for the 18-detector system.  

Although the distribution of later interactions may still be biased in the source direction, 

the distribution is smeared out compared to the distribution of first-interaction locations.   

In general, it is not possible to identify the first interaction with certainty.  Taking 

full-energy-deposition events that interacted only once guarantees that each must be the 

first (and only) interaction because all the energy is deposited in one interaction.  

Practically, these events are selected by choosing single-interaction events in the 

photopeak region.  Still, this usually also includes continuum events under the photopeak, 

which are single-interaction events but not full-energy depositions.  The distribution of 

such events tends to be biased towards the outer surfaces of the detector where it is most 

probable for the scattered photon to be lost.  That is, first interactions near the center of 

the detector tend to become multiple-interaction events as the scattered photon interacts.  

Therefore, even taking just single-interaction events in the photopeak region may 

introduce bias in the centroid due to the detector geometry.  Yet, for a strong source 

compared to background and a detector with large peak-to-total ratio, this bias is small.  

For multiple-interaction events, a sequence-reconstruction method, such as those 

described on page 15, can be used to estimate the most-probable first interaction, but 

usually the first interaction cannot be known with certainty.   

Imaging Methods 

Image-Formation Model 

The general imaging problem is to reconstruct parameters based on 

measurements.  In our case, this is reconstruction of the source distribution.  

Mathematically, we often assume a linear relationship between the source distribution 

and the measurement results, as   

  ̅( ⃑)  ∫  ( ⃑  ⃑) ( ⃑)   ⃑

 ⃑

 (3.6), 
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which describes the expected count density  ̅( ⃑) produced around event attribute vector  ⃑ 

in the detector due to a source distribution  ( ⃑) around source-space parameter  ⃑.  That 

is, the mean number of counts expected in an attribute bin around  ⃑ can be found by 

integrating the expected count density  ̅( ⃑) over the volume of the attribute bin and 

applying the appropriate measurement-time scaling.  The transfer function  ( ⃑  ⃑) gives 

the actual probability of a photon from near  ⃑ to produce a recorded event near  ⃑.  It 

includes detector sensitivity and detector effects that may shift the reported attributes of 

an event from the true attributes to different measured attributes.  Spurious events not 

arising from gamma-ray interactions are ignored.   

Attributes measured by the detector may be three-dimensional position and 

energy of each of N interactions, in which case 

 ⃑  (                                      ), and source distribution parameters 

may be direction and energy, in which case  ⃑  (     ).  More (or fewer) dimensions 

could parameterize the source distribution and detector as well.  For instance, the source 

distribution may include polarization of gamma rays, a three-dimensional spatial 

distribution, or time.  The detector may also be able to record other information such as 

the direction of the secondary electron in the interaction.   

Any elements that cause count-rate-dependent transfer functions between the 

source distribution and the measurements will make this relationship between source and 

events non-linear.  In our system, these include effects such as read-out dead time, 

coincidence events, and space-charge buildup in the detector.  As long as operation 

occurs only in relatively low-count-rate environments, these factors are small. 

In practice, the continuous functions in Eqn. (3.6) are approximated by discrete 

bins both in our measurements from the detector and in our reconstruction of the source 

distribution.  Systematic uncertainties from calibration and detector performance are 

included in the system matrix  .  So, 

  ̅,   -   ,   - ,   - (3.7) 

where  ,   - is the gamma-ray-source distribution in J source bins,  ̅,   - is the expected 

number of counts as reported by the detector in each of I detector bins, and  ,   - 

describes the fraction of photons in each bin of the source distribution that go on to create 
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each event.  One can think of  ,   - as containing elements that describe the probability of 

event creation 

      (                                     ) (3.8). 

The number of counts reported by the detector  ,   - follows a Poisson distribution with 

mean  ̅,   -.  We wish to estimate  ,   - based on limited events in  ,   -.  This matrix 

equation (3.7) may be under- or over-determined.  We would like imaging to work in 

both cases. 

System Model 

The true system matrix   describes the actual probability of recording a particular 

event.  We attempt to use a system matrix t that is as close to this as possible.  However, 

a number of factors are difficult to include and a perfect match is not possible.  Page 8 

describes some of these model-mismatch factors in more detail for our system.   

We choose to treat the detector output from our system as a set of interaction 

energies and locations with uncertainty in each determined by a simple equation.  

Fortunately, others‟ vast efforts to determine the energies and locations correctly and 

precisely (as introduced in Chapter 2) give a strong starting point for the system-matrix 

calculation.  Starting with these data, interaction physics can be used to calculate the 

likelihood that the photon came from each image bin.  Xu and He [51], and Wang et al. 

[52] have extensively described equations to calculate this approximate system matrix t 

for a 3D-position-sensitive spectrometer when the image is binned over directions and 

energy.  Others have presented similar equations [53,54].   

However, it should be noted that the detector output is actually a set of electronic 

signals that have undergone extensive processing to give interaction locations and 

energies that are as accurate as possible.  In some cases, ambiguous events can be 

interpreted as one kind of event when the same signals are also consistent with another 

type of event.  By considering the raw detector signals from an event and propagating 

probability from these, rather than from the reconstructed energies and locations, a better 

system model may be possible, at the expense of increased computation.   

According to Wang et al. [52], uncertainty and pixelation in interaction positions 

and energy contribute significantly only to limited portions of the system matrix that 
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relates recorded interaction energies and locations with an image in space and energy.  

These terms that include uncertainty and pixelation describe whether the direction to the 

next interaction is along the cone originating at the previous interaction position and 

whether the energy of interest is equal to the total measured energy.  Therefore, the 

system-matrix calculation primarily follows each step of the interaction physics without 

additional terms due to integrals over the uncertainty and pixelation regions.  The event 

probabilities depend on the number of interactions that were recorded.   

For single-interaction events, 
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(3.10) 

is the Compton attenuation coefficient for a photon of energy    to deposit energy    at 

location  ⃑ .  The other variables are defined in Table 3.1.  All factors that will be the 

same for every image bin j for a particular event i have been removed from Eqn. (3.9) for 

computational efficiency since they will cancel when used in the MLEM algorithm 

described below (on page 34).  Physically, the first term of Eqn. (3.9) is the probability 

for the photon to survive to the first interaction location.  The parenthetical term is the 

sum of the probability for the photon to undergo photoelectric absorption such that the  
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Table 3.1.  Description of variables used in this section.   

Variable Definition 

  ( ⃑) Total attenuation coefficient at energy E in material at position 

 ⃑ 

  (   ⃑) Photoelectric attenuation coefficient at energy E in material at  ⃑ 

     ⃑  Energy and direction (or position) associated with image bin j 

  
  Recorded energy deposited in n-th interaction when sequence is 

s 

   
  Expected uncertainty in recorded energy in n-th interaction for 

sequence s 

 ⃑ 
  Position of n-th interaction when sequence is s 

   
  Rest-mass energy of the electron (511 keV) 

   Classical electron radius (2.817940285 × 10
-13

 cm) 

  ( ⃑) The material electron density at  ⃑ 

 

deposited energy is equal to the assumed incident energy within the energy uncertainty, 

and the probability for the photon to undergo Compton scattering to deposit some of its 

energy and then exit the detector.  The integral in the term for the attenuation leaving the 

detector is along an average path along the possible cone of directions leaving the 

detector.  Figure 3.2 shows the directional portion of a row of the system matrix for a 

single-interaction event in the 18-detector array assuming full-energy deposition.   

For two-interaction events, 
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Figure 3.2.  Example single-interaction system matrix elements.  a) The 1565-

keV interaction location, marked in red, in the 18-detector array.  b) The spatial 

portion of the system matrix for this event, assuming full-energy deposition.  

Each system-matrix element corresponds to one pixel.  The direction 

perpendicular to the faces of the planes corresponds to 90° and 270° in the 

azimuthal angle and 90° in the polar angle. One can see the attenuation due to the 

other detectors in the image.   



 

27 

 

 

    ∑

[
 
 
 
 

 
 ∫    

 ⃑⃑⃑ 
 

 ⃑⃑⃑ 
( ⃑)  ⃑

 
   (     

   ⃑ 
 )

     

 

   

 
 

   
    (  

 )
 
 
.  

    
 /

 

   
  
 

 

  
 ∫  

     
 

 ⃑⃑⃑ 
 

 ⃑⃑⃑ 
 ( ⃑)  ⃑

 

(

 
   (     

   ⃑ 
 )

√  .   
 

     
 

 /

 

 
(     

    
 )

 

  ( 
  
 

   
  
 

 *

 
   (     

    
   ⃑ 

 )

     
 
 ∫  

     
    

 
 
 ⃑⃑⃑ 
 ( ⃑)  ⃑

)

 
 

]
 
 
 
 

  

(3.11), 

where the sum is over the possible interaction sequences,   
  is the angle from the cone 

axis to image pixel j,   
  is the scatter angle at the first interaction location, calculated 

with Eqn. (3.1), and    
  is the uncertainty in the cone angle relative to a fixed cone axis, 

as described by Xu et al. [33].  This uncertainty includes factors due to uncertainty in the 

recorded energies and interaction locations.  Physically, Eqn. (3.11) combines the 

probabilities for the photon to survive to the first interaction location, Compton scatter, 

go in the right direction along the cone of ambiguity to reach the second interaction 

location, survive the material attenuation to that location, and then either be absorbed 

through the photoelectric effect or Compton scatter and leave the detector.  The term 

describing the agreement between the image pixel and the scatter angle stands in for the 

probability that the calculated scatter angle is the correct size to hit the second interaction 

location.  The geometric attenuation inversely proportional to the distance between the 

two interactions is independent of the source bin and sequence, so it is not included.  

Figure 3.3 shows the directional portion of a row of the system matrix for a two-

interaction event in the 18-detector array assuming full-energy deposition. 

For three or more interactions, the form is similar,  
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Figure 3.3.  Example two-interaction system matrix elements.  a) The 390.9-keV 

interaction locations, marked in red, in the 18-detector array.  b) The spatial 

portion of the system matrix for this event, assuming full-energy deposition.  

Each system-matrix element corresponds to one pixel.  The direction 

perpendicular to the faces of the planes corresponds to 90° and 270° in the 

azimuthal angle and 90° in the polar angle. One can see the possible directions 

along the cone and the attenuation due to the other detectors in the image.   
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(3.12), 

where     
  is the scatter angle at interaction m determined using the deposited energies 

(using Eqn. (3.1)),     
 is the scatter angle at interaction m determined through the 

geometry of the interactions, and    
 

 is the quadrature sum of uncertainty in the two 

determinations of the scatter angle.  Again, terms that are the same for each image pixel j 

have been removed.  The terms are similar to those for two-interaction events, with the 

addition of the inverse of the distance between interactions to represent the probability 

that the next interaction falls on one portion of the cone that distance away.  The term 

‖ ⃑   
   ⃑ 

 ‖    (    
 ) is the circumference of the cone where it passes the next 
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interaction; the larger the circumference the smaller the probability the measured 

interaction position was on the direction of scattered photon.  In addition, interactions 

other than the first and last include a Gaussian-comparison term of the match between the 

scatter angle calculated by energy and that calculated by interaction locations.  This is 

analogous to the Gaussian-comparison term comparing   
  and   

  for the first interaction. 

Simple Back-Projection 

Many techniques exist to solve the system of equations in Eqn. (3.7).  If    , it 

may be possible to invert the system matrix t using one of a number of methods [55].  

Then, neglecting statistical noise,  

  ̂             ̅          (3.13), 

and the estimate of the source distribution is exact, as long as the modeled system matrix 

t matches the true system matrix  .  Without infinite statistics, the statistical noise in 

 ,   - skews the result.    

However, the system matrix t may not always be invertible or well conditioned 

and certainly will not always be square.  One can always apply the transpose of the 

system matrix to both sides of Eqn. (3.7).  Think of applying the transpose to the event 

vector as, for every event, putting intensity in the image proportional to the chance that 

the event was produced by a photon from that image pixel, then summing over all events.  

Then, neglecting statistical noise 

          (3.14). 

The simple back-projection (SBP) method says to estimate the source distribution as  

  ̂             (3.15), 

and hence, it assumes that  

       (3.16), 

where I is the identity matrix.  Practically, since each element of   is nonnegative, 

Eqn. (3.16) means that each event can only be produced by a photon from one of the bins 

in the source distribution.  A pinhole camera would give this type of response, for 

instance.  The more possible source distribution bins which could be responsible for a 

given event, the more blur will be included in the estimated image.   
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Figure 3.4.  Examples rows of     and     for a single 3D-position-sensitive 

CZT detector crystal.  (a) shows the response from a system that obeys 

Eqn. (3.16).  (b) represents a row of     for a single point source near 90° and 

270° in the polar and azimuthal directions using experimental multiple-

interaciton events in the detector.  (c) shows an approximation of the same row of  

    found by applying    to a simulated data set of multiple-interaction events.  

Finally, (d) shows the same row of     when using only single-interaction events, 

which supply less information about the source direction.   

Figure 3.4 shows some examples of a row of     and    .  These are known as 

point spread functions (PSFs) or point kernel functions (PKFs).  It is clear in Figure 3.4b 

that our detector system adds blur beyond a detector satisfying Eqn. (3.16) shown in 

Figure 3.4a.  Even eliminating most of the model mismatch in the true detector response 

as     in Figure 3.4c, there is significant blur due to reconstruction with SBP.  The 

FWHM of the PSF depends on source energy, location, and the type of events used and 

can range from below 10° to over 50° for multiple-interaction events in the 18-detector 

system.  Using less-informative events, such as single-interaction events, introduces even 

more blur, as shown in Figure 3.4d.   
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SBP System Matrix 

For the best SBP angular resolution, one should form narrow PSFs to best 

approximate Eqn. (3.16).  In this case, there is no reason why the approximate system 

matrix t needs to be similar to the true system matrix  , and, in fact, the best images 

occurs when they are purposefully different.  Intuitively, whenever back-projection 

intensities that will not contribute to the true direction are removed without greatly 

reducing the intensity in the true direction, the SBP image will improve, especially if the 

intensities are removed from bins far from the source location.  The true system matrix, 

therefore, has not changed, but the back-projection matrix    becomes sparser, which, if 

the most important components are kept, better approximates Eqn. (3.16).  However, care 

must be taken that certain directions or energies are not biased by consistently removing 

contributions to them from all events.   

Omitting uncertainties in the SBP    is one way to form narrower PSFs.  

Sampling events which include measurement uncertainty, then back-projecting the 

possible source locations while also including this uncertainty tends to double-count the 

uncertainty contribution, making a more blurry image then necessary.  Instead, during 

back-projection with sufficient counts, SBP angular resolution can be improved by just 

drawing a thin cone using the best estimates of the interaction positions and energies.  

The uncertainty contribution should not be included, except if the detector is incapable of 

recording events for which back-projection will contribute to the source bins in the 

omitted uncertainty region.  In this case, weightings should be used to correct for 

efficiency, or a more advanced reconstruction method should be used.  Nevertheless, 

well-designed imaging detectors rarely have such varying sensitivity over the region they 

are designed to image and they usually produce similar numbers and types of events for 

each image bin.  Therefore, these are able to neglect uncertainty in SBP.  However, it 

should be noted that with limited counts, including uncertainty in SBP offers smoothing 

that otherwise would be accomplished by simply recording more events.   

Forming narrow PSFs is also the reason to use sequence reconstruction, as 

described starting on page 16.  By back-projecting only the most-likely cone, significant 

intensity from (usually) the wrong direction is eliminated while not changing the intensity 

in the true direction as much.  If the source truly was in the other direction, most other 
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events will (correctly) add intensity to that direction (again, assuming similar numbers 

and types of events for each image bin).  Extending further to just back-projecting the 

most-likely direction on the cone is not used because some directions would be skewed 

hotter due to the detector geometry and dead layers.  In addition, attenuation weights 

through the material are usually not included in the SBP cones.  This is because, for many 

detector geometries, this tends to bias directions with a larger detector surface area more 

highly without significantly reducing intensity in the incorrect directions.   

Filtered Back-Projection 

Instead of making the assumption of Eqn. (3.16), one could instead invert the PSF 

    (    ) since it is square.  As long as matrix t has linearly independent column 

vectors,     has linearly independent column vectors, and     is therefore invertible.  In 

other words, the event distributions created by each possible source distribution must be 

different; it should not be possible to produce one row of     by simply combining other 

rows.  Visually, each row of    , as in Figure 3.4, should appear as a PSF around a 

different location.  This is often satisfied.  Then, ignoring noise 

 
 ̂    (   )      

 (   )     ̅  (   )  (   )    
(3.17). 

The PSFs can be found through measurement, or through simulation of point 

sources in each image bin followed by application of Eqn. (3.15) [56,57].  Alternatively, 

mathematical methods can be used [58,59].  This is called filtered back-projection (FBP).  

One can think of FBP as first converting events back to image space using SBP, then 

applying a filter to transform the SBP image to a better estimate of the source distribution 

[57].  FBP could be applied to spatial and energy space as well.  When it is applied to just 

the energy dimension, it is known as spectral deconvolution.   

Generally, this shift-variant deconvolution is computationally difficult since     

can be large.  Still, the inversion only needs to be performed once in preprocessing.  If, 

instead, each PSF is simply shifted for each bin in the source space, the system is a linear 

shift invariant and significant simplifications can be made.  Even when the PSF is not 

invariant, local invariance is often used to simplify the problem [57].   
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Figure 3.5.  The experimental PSFs for two different locations around the 18-

detector system using a Cs-137 source.  It is clear that the PSFs between these 

two locations are quite different.  a) The source at (270°, 90°).  b) The source at 

(180°, 90°).   

When the PSF is shift invariant, each row of     is shifted relative to the row 

above it and the matrix multiplication in Eqn.(3.17) can be computationally simplified 

using   

         (3.18) 

where    is the Fourier transform of  ̂   ,    is the Fourier transform of (   )  , and    

is the Fourier transform of     .  Similar transforms using spherical harmonics are used 

in a spherical image space [58,60].   

In a single-detector system, the PSF is approximately shift invariant [29].  

However, this is not true for the whole 18-detector system.  Two PSFs are shown in 

Figure 3.5 for the 18-detector system.  It is clear that the shape of each is quite different, 

so assuming a shift-invariant PSF will produce distorted results.   

One can show that Eqn. (3.17) is the least squares solution [55].  That is 

  ̂          
 

 ‖    ‖  (3.19). 

Maximum Likelihood 

Filtered back-projection attempts to find the image that best matches the 

measurements in the least-squares sense.  However, this is just one possible choice; one 

could find the best match in the least-cubes sense or least-absolute-distances sense 

instead, for example.  Maximum likelihood (ML) attempts to find the best match between 

the measurements expected from the estimated image and the actual measurements by 

equally penalizing any error over a tolerance level and assuming all parameter values are 
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equally probable.  Visually then, when finding the best parameter estimate if the 

probability of the measurements is a complicated function of the parameter value, the 

least-squares estimate would be the mean of the parameter on the probability versus 

parameter-value plot, while the maximum-likelihood estimate would choose the 

parameter that contains the largest area in a small region around it on that plot.   

Equally penalizing any parameter error implies that one should choose the 

maximum of the posterior density [61].  Mathematically,  
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  (   ) ( ) 

(3.20), 

where the last step is possible because for each experiment, the set of events is fixed.  

This is known as the maximum a posteriori (MAP) estimator.  If we assume no prior 

knowledge of the source distribution, the prior density of the image is uniform and 

Eqn. (3.20) reduces to the maximum-likelihood estimate 

  ̂         
 

  (   ) (3.21). 

It is important to note that the MAP and ML estimates depend on the modeled 

distribution of statistical and random variation in the measured events, whereas these 

were ignored in SBP and FBP.  If, for instance, the number of counts in each detector bin 

was modeled as Gaussian distributed with a constant variance    in each detector bin – a 

non-physical assumption – the conditional probability density function would be a joint 

Gaussian with independent parameters and the maximum-likelihood source estimate 

would be  
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    (3.22). 

Minimizing the negative logarithm of the right-hand side instead,  
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(3.23). 
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Therefore, the ML solution is equivalent to FBP (Eqn. (3.19)) when the number of counts 

in each detector bin is modeled as Gaussian with a constant variance.   

However, in reality, the number of counts in each detector bin    are distributed 

as independent Poisson random variables [62] with mean and variance 

  ̅    
  ∑      

 

   
 (3.24), 

because they represent the counts from a source with a small probability of creating an 

event at any time.  Then, the maximum-likelihood source-distribution estimate is 
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 (3.25). 

Again, maximizing the logarithm instead and ignoring the terms that are constant for a 

particular measurement, 
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 (3.26). 

There are a number of ways to find the maximum of this equation using standard 

optimization methods.  One method that has gained wide acceptance for this specific 

likelihood is the iterative maximum-likelihood expectation-maximization (MLEM) 

algorithm [63,64,65].  If we define the sensitivity of the detector to photons from a 

specific source bin as 

    ∑   

 

   

 (3.27), 

the sum of the probabilities of causing and detecting each possible event in the detector, 

the next best estimate of the source distribution is  

   
    

  
 

  
∑

     

∑        
  

    

 

   

 (3.28). 

The initial estimates of source intensity    can be any positive values, usually a uniform 

image.  The derivation of this equation is shown starting on page 39.   

The MLEM equation is guaranteed to converge to a maximum-likelihood solution 

if the initial estimates    are positive [29].  In addition, with a positive initial estimate, all 

intensity estimates stay non-negative, which is what is needed to describe physical source 
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densities.  Finally, one can show [29] that during the iterations, counts are conserved in 

the sense that 

 ∑  

 

   

 ∑  
   

 

   

          (3.29). 

List-Mode MLEM 

Eqn. (3.28) describes bin-mode MLEM in which the measurements are binned 

based on their values and the data from the measurement are the number of counts in 

each bin *  +.  In the limit of a large number of very small bins, it makes more sense to 

keep track of the events themselves since the storage space to record the measured values 

of each event will be smaller than storing the number of counts in each and every bin.  

Also, with high probability, each bin will hold zero or one counts [66].  Then, one can 

redefine i in Eqn. (3.26) and Eqn. (3.28) to index just the observed events with     .  

The rare case of repeated events can be treated as distinct events in different bins since in 

Eqn. (3.26)  

     (∑      
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 (3.30). 

This is known as list-mode MLEM and is the way we implement MLEM.  Note that the 

sum for the sensitivity in Eqn. (3.27) must still be over all possible events, or, since the 

bins are never explicitly defined in list-mode MLEM, another method must be used to 

find the sensitivity, as described next.   

Sensitivity Calculation 

The direct calculation of Eqn. (3.27) is difficult for two reasons.  First, this sum is 

dependent on the event-wise scaling of each system-matrix element, and these scale 

factors have not been implemented in our system matrix.  Second, the sum should be over 

all possible events, which is a very large set.  A distinct event consists of a set of 

interaction locations and energies, so even conservatively binning into 20 depths and 400 

energy bins, an 11-by-11-pixel detector will have about 10
6
 possible single-pixel events, 

10
12

 possible two-pixel events, and 10
18

 possible three-pixel events.  Even if a teraflop 

computer had instant access to the elements, the sum itself would take many years.   
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Figure 3.6.  The sensitivity of the 18-detector array as a function of source 

direction at 662 keV for two-, three-, and four-interaction events.  The direction 

perpendicular to the faces of the planes corresponds to 90° and 270° in the 

azimuthal angle and 90° in the polar angle.   

Therefore, the sensitivity as a function of direction and energy is calculated using 

a Monte Carlo method proposed by Xu [29,67].  First, gamma rays are simulated 

uniformly emitted from all directions around the detector and at all energies up to the 

maximum that will be reconstructed.  Then, since, with the appropriate sensitivity image, 

spectral and image reconstruction of this situation should reconstruct back to uniform in 

space and energy, the efficiency can be deduced from the first iteration of the 

reconstructed energy-dependent image.  Put another way, the forward projection during 

the simulation samples events according to their probability to occur, then the back-

projection during the first reconstruction iteration yields the relative probability to create 

this event from different directions and energies.  The sum of these gives the efficiency.  

Realistic energy and position resolution are included in the simulation, but other detector 

factors such as surrounding materials, dead layers, and detector-pixel non-uniformities 

were not included in the sensitivity calculation.  Neglecting these factors causes the 

sensitivity for single-interaction events to be skewed the most – making single-interaction 

events difficult to image, as discussed on on page 60.  Figure 3.6 shows the two-, three-, 

and four-interaction sensitivity at 662 keV as a function of direction for the 18-detector 

array.  The direction directly above the planes corresponds to 90° and 270° in the 

azimuthal angle and 90° in the polar angle.  The most sensitive directions are about 
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halfway between directly above one of the planes and to the side of the planes, and the 

sensitivity varies by about a factor of two between different directions.   

For a more direct measure of sensitivity that is independent of the modeled 

system matrix, it is also possible to simulate a source emitted from each bin in the image 

space sequentially, or even to approximately do this experimentally.  Counting the 

number of usable events from each trial relative to the number emitted will give the 

sensitivity.   

MLEM Derivation 

MLEM can be derived a number of ways [29,63,64,65].  One way is through 

optimization transfer [68].  The likelihood to minimize from Eqn. (3.26) is  
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By replacing  
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for    
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Eqn. (3.31) becomes 
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 (3.34). 

Now, the negative natural log function is a convex function, which means that  
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except where  
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   (3.36). 

Therefore,  
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except where intensity estimates are zero for every source bin with non-zero probabilities 

for a specific event.  But, an estimate of the source distribution for which a particular 

observed event is completely impossible is a poor estimate anyway.  We define 
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 (3.39). 

Eqn. (3.37) through Eqn. (3.39) describe a surrogate optimization function that is 

always above the function we wish to optimize   ( ), except where it is equal for a 

specific selection of    
 .  Unlike the original likelihood, the surrogate function   ( ) is 

separable in   , making minimization significantly easier since each source-bin intensity 

estimate can be minimized individually.   

Then, it may be possible to optimize   ( ) by starting at an initial source-

distribution guess, choosing the    
  terms so that the surrogate function matches the 

original function at this point, and then minimizing the surrogate.  We are guaranteed to 

find a point on the original function that is the same or smaller since the surrogate is 

equal in value at the starting point and always above the original function.  By repeating 

this iteration, convergence will occur.   

First, to find the selection for    
  to make the two functions equal, set  

   ( )    ( ) (3.40), 

and equality occurs when 
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 (3.41), 

where    is the source intensity estimate at the k-th iteration.  Next, the minimum of 

Eqn. (3.39) occurs when 
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(3.42). 

Combining Eqn. (3.42) with Eqn. (3.27) and (3.41), and identifying    as the next 

iteration estimate of   
   , 
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 (3.43), 

which is equivalent to Eqn. (3.28).   

Regularization 

The above discussion of MLEM assumes that there is no prior knowledge of the 

source distribution.  However, if properties of the image are expected, this prior 

knowledge can be built into the model as a prior in Eqn. (3.20), which manifests itself as 

a penalty added to the log likelihood.  This is called regularization [68].  Penalty 

functions can encourage image properties such as sparseness [69], smoothness, and flat 

regions with limited number of edges, for example [68].   

Summary 

Imaging with gamma rays is rarely a deterministic process.  In almost all 

modalities, a single observed event is consistent with a gamma ray incident from a 

number of possible directions and energies.  Therefore, it is necessary to use imaging 

methods that analyze a collection of events to estimate the radiation distribution.  In SBP, 

each event contributes intensity to some directions that seem most probable to have 

produced the event, yet the selection of these directions is an art, balancing using limited 

directions, correctly guessing the true direction, and not overly biasing some directions.  

In FBP, the PSF is deconvolved, yet because the problem is solved in the least-squares 

sense, counting statistics are (incorrectly with few counts) assumed to be Gaussian.  In 
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MLEM, Poisson statistics are used to find the source distribution that makes the observed 

events most probable, yet the solution can only be found iteratively.  The model relating 

the source distribution and observed events is used, to some extent, in all these 

reconstruction methods, yet it appears explicitly only in the MLEM reconstructions.  This 

model is useful in any reconstruction problem and will be used later in other imaging 

applications in Chapter 4 and detection methods in Chapter 7. 
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Chapter 4  

Applications of Maximum-Likelihood Expectation-

Maximization 

Remember that all models are wrong; the practical 

question is how wrong do they have to be to not be useful.   

– George E. P. Box and Norman R. Draper, Empirical 

Model-Building and Response Surfaces, 1987 

 

MLEM is a powerful tool for reconstructing intensities in a source distribution 

from event measurements when there is no prior expectation of the source-distribution 

properties.  It is applicable to many different types of reconstructions depending on the 

choice of basis functions used to describe the unknown source distribution and the type of 

measurements collected.  As long as the correct system response is used, best 

performance should occur when the input is the actual data recorded by the detector and 

the output is what you ultimately wish to learn with no other weightings.  The fewer 

source-distribution parameters that must be estimated, the better.   

The next few sections describe different choices for the unknown source 

distribution parameters that can be used for various applications.  The Spatial MLEM and 

Energy-Spatial MLEM methods have been reported by previous authors.  The Isotope-

Spatial MLEM and Energy-Target MLEM methods are proposed for the first time here to 

support applications in which the user is interested in either the isotopes responsible for 

emissions as a function of direction or the spatial distribution of emissions in moving 

objects.  Such algorithms may be beneficial for security applications using position-

sensitive detectors, for instance.  This chapter ends with the first results of using an 18-

detector array system for single-interaction imaging, which is important for improving 

the fraction of recorded events used for imaging.   
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Figure 4.1.  Spatial MLEM of a Cs-137 source in the energy window covering 

the full-energy peak from 620 keV to 700 keV, using 2 × 10
4
 events.  a) The 

image at the first iteration after a uniform image.  b) The image at the 25-th 

iteration after a uniform image.   

Spatial MLEM 

One of the most basic types of reconstruction is reconstruction to an image space 

consisting of the 2D or 3D space around the detector.  Two modes can be distinguished:  

when the energy of the incident radiation is known or can be assumed, and when the 

incident radiation may be from any energy.  The former is prevalent in the literature 

[29,33,34,53,70,71].  Often in that case, full-energy deposition is assumed for each event; 

the last interaction is assumed to be a photoelectric interaction [29,33,34,53].  Then 

Eqns. (3.9), (3.11), and (3.12) will not contain the second part of the sum in the innermost 

parenthesis that describes escape probability.  Neglecting the small spread due to energy 

uncertainty, each energy bin is independent and MLEM can be applied to each 

separately, reducing computation time since each event only need be used to update the 

image bins at its own energy.  From the overall spectrum, one can often know the 

energies of the sources that are present and only events from these energy bins can be 

used to simplify the calculation further.  According to this model, non-full-energy-

deposition events have scattered out of the useful energy range and no longer contribute 

to the sensitivity of the detector, so the sensitivity factor tallies only full-energy-

deposition events.   

Figure 4.1 shows a MLEM reconstruction of a Cs-137 source in the energy 

window from 620 keV to 700 keV.  Full energy deposition was assumed and 2 × 10
4
 

events were used.  The sensitivity scales the intensity to a number emitted per solid angle 

at some distance.  Figure 4.1a shows the first iteration past a uniform image; it is similar 
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to a SBP image with azimuthal and polar FWHM of about 45° and 47°, respectively.  

Figure 4.1b shows the result after 25 additional iterations.  The number of iterations are 

chosen to produce a clean image by stopping before the image has completely converged 

to the slightly more noisy maximum-likelihood solution.  The image in Figure 4.1b has 

better than 6° and 8° FWHM in the azimuthal and polar directions, however because the 

image is the result of an iterative process, this may not represent the true angular 

resolution of discriminating neighboring points.  To do this, an image with incrementally 

closer point sources is needed.  Angular resolution for this system using MLEM is 

presented by Wang [72]. 

Assuming full-energy deposition means that MLEM will always reconstruct some 

events – Compton-continuum events – incorrectly.  This is not a problem if the energy 

range of interest only covers the highest photopeak in the spectrum where there is no 

continuum from partial-energy depositions, but at other energies, artifacts appear that 

depend on the location of the source responsible for the continuum events.  Nevertheless, 

distributed background continuum will be spread more evenly over all directions and may 

not skew the image much.   

MLEM reconstruction to just the spatial domain allows simpler computation 

because only limited physics is modeled.  The way to remedy artifacts due to the limited 

physics is to model the physics of Compton scattering.  To model Compton scattering 

while reconstructing to just space, one could either assume an initial energy for all events, 

or integrate probability over energies assuming a prior on the energy spectrum to include 

the probability each event was from any energy up to some maximum expected.  

However, the first is problematic when photons of multiple initial energies are present, 

and, while the second includes correct probabilities, it throws away information about the 

true energy distribution.     

Energy-Spatial MLEM 

Instead, to include the physics of Compton scattering in the model when the 

incident energy distribution is unknown, deconvolution must take place over both energy 

and 2D or 3D space around the detector.  This is because the PSF in space depends on the 
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Figure 4.2.  An example energy-spatial MLEM deconvolution.  a) The raw and 

deconvolved spectrum from multiple-interaction events.  The directional spectra 

cover 0.5 steradians around the source direction.  The arrows denote expected 

emission lines with relative branching ratios over 8%.  b) The image in the 

energy windows covering the expected Eu-152 emission lines.  c) The image in 

the energy windows covering the expected Na-22 emission lines.  Note that this 

image shows a point source located exactly on the pole.   

energy of the incident radiation and the spectral response depends on the source position 

of the photons.  Therefore, deconvolution must be done in both simultaneously.  Here, the 

MLEM image space consists of bins, each describing a particular (small) energy range 

and region in space.  This image space was introduced by Xu and He [51] and later used 

by Maltz et al. [73] and is known as energy-imaging integrated deconvolution (EIID).  

The system-response functions and sensitivity image are described starting on page 23 

and page 37.   

Figure 4.2 shows an example of a measurement with an 18-detector array in 

which two sources, Na-22 and Eu-152, were placed in different directions.  The system 

collected 5 × 10
4
 multiple-interaction events and 10 iterations of MLEM were performed, 
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starting with an initial back-projection image, at which the energy-image changed little 

during each iteration.  Figure 4.2a shows the raw spectrum of multiple-interaction events 

and the deconvolved spectrum over all directions.  Arrows over the raw spectrum denote 

expected emission lines with relative branching ratios of over 8%.  The vertical scale of 

the deconvolved spectrum is in emission rate at some distance and can be scaled by a 

constant depending on the units chosen.  The spectrum in a 0.5-steradian region around 

the direction of each source shows the significant lines for each source.  While there is 

some noise in the deconvolved spectrum, one can imagine making a cut below an 

intensity of 4 to eliminate most of it.  The deconvolved spatial distributions in Figure 

4.2b and Figure 4.2c show a small hot spot for each source and very little intensity in 

directions not from either source.   

Isotope-Spatial MLEM 

One way to reduce the size of the problem in EIID is to choose basis functions in 

the energy domain other than the standard equally spaced bins.  In almost all applications, 

the set of possible isotopes that may be present is smaller than about 50.  The recorded 

energy spectrum will be made up of the emissions from isotopes within this set.  

Therefore, we can reduce the number of energy parameters that need to be estimated 

from several hundred energy bins to fewer than 50 isotopes that may be present.  This 

approach may help performance with limited statistics.  In addition, reporting isotope 

contributions instead of an energy spectrum may be more useful for end users.  Table 4.1 

shows a set of possible isotopes common in background or laboratory sources that are 

used in this study.  

If there were never material between the emitting atom and the detector, this set 

of isotope basis functions would be sufficient to describe any energy distribution 

observed in normal operation.  However, much of the energy distribution due to 

background sources has undergone significant scattering in the background material.  

This produces a broad continuum in the background energy spectrum.  Such a 

distribution is hard to predict without a detailed model of surrounding materials and the 

natural radiation distribution within them [74].   
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Table 4.1.  Library of background and common isotopes.   

Nuclide Energy (keV) Emission Fraction 

Na-22 511.0 0.6667 

 1274.5 0.3333 

K-40 1460.8 1 

Mn-54 834.8 1 

Fe-59 1099.2 0.5667 

 1291.6 0.4333 

Co-60 1173.2 0.4997 

 1332.5 0.5003 

Ga-68 511.0 0.9823 

 1077.3 0.0177 

Ru-103 497.1 0.9405 

 610.3 0.0595 

Cs-137 661.7 1 

Tl-208 510.7 0.1033 

 583.2 0.3864 

 860.6 0.0568 

 2614.5 0.4534 

Tl-209 465.1 0.4926 

 1567.1 0.5074 

Bi-214 609.3 0.4240 

 768.4 0.0454 

 934.1 0.0279 

 1120.3 0.1389 

 1238.1 0.0533 

 1377.7 0.0368 

 1408.0 0.0198 

 1509.2 0.0194 

 1729.6 0.0269 

 1764.5 0.1416 

 1847.4 0.0194 

 2204.2 0.0467 

Ac-228 338.3 0.1616 

 463.0 0.0631 

 794.9 0.0609 

 911.2 0.3700 

 964.8 0.0716 

 969.0 0.2266 

 1588.2 0.0462 

 

The distribution of photon energies after mono-energetic photons scatter one time 

follows the Klein-Nishina distribution [3].  To first order, this can be approximated as a 

rect function extending from the initial energy down to the Compton cutoff associated 
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with back-scattered photons.  Each photon may then scatter again to an energy between 

the Compton cutoff from backscatter and its initial energy.  So, a possible set of 

continuum basis functions would be rect functions extending from each possible energy 

down to its Compton cutoff.  Note, however, that from the physics of backscatter these 

Compton cutoffs are always less than 256 keV, which is near the lower limit for detection 

using two-pixel events on our system.  Since the system sensitivity is zero below about 

200 keV (the approximate Compton cutoff for 1000-keV photons), we simply extend 

these basis functions down to 0 keV for ease of implementation without change in 

response.  To reduce the number of parameters needed to estimate, the initial energies are 

spaced only every 100 keV and every 500 keV above 1 MeV.  In practice, this does not 

seem to be a bad approximation since the set of step functions is still similar to the shape 

of a continuum.  Adding more continuum bins above 1 MeV does not greatly change 

reconstruction results.  

One of the advantages of reconstructing to this new set of energy basis functions 

is that it directly gives quantities of interest.  End users are more interested in the isotopes 

present than the emission spectrum.  Rather than having to convert from spectrum to 

isotope identification in post-processing, a spatial source distribution is given directly for 

each isotope in the library.  

Method Implementation 

It is possible to use MLEM for reconstruction to the isotope and image domain by 

identifying the source distribution bins as a set of direction bins for each isotope in our 

isotope library.  With 2D direction bins, each pixel may be differently sized, so the solid 

angle    of each direction j must be considered.  For clarity, if we let j index the J image 

directions and n the N isotope bins, the MLEM equation in Eqn. (3.28) turns into 
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where    
  is the estimate of the fluence of photons (photons/steradian) for isotope n and 

direction j at iteration k, and     is the sensitivity of the system to observe photons from 

isotope n and direction j. 
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The sensitivity for each isotope-direction bin can be calculated from the 

sensitivity calculated for EIID in each energy-direction bin by combining energy bins 

since the set of energy bins {m} is a non-overlapping neighboring string of narrow rect 

functions that cover the energy dimension.  The sensitivity for isotope n in direction j can 

be calculated as  

     ∑       

 

   

 (4.2) 

where     is the normalized branching ratio (the fraction of emissions of isotope n that 

fall in energy bin m) and the sum is over all M small standard energy bins.  For isotopes, 

most     are zero, so the sum only has as many terms as emission lines from the source.  

For generality, the extra continuum basis functions are treated like isotopes with  
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 (4.3) 

where Mn is the number of standard energy bins below the maximum energy in the 

continuum function n.  

The system matrix elements      are calculated by taking the integral of the 

system-matrix elements for regular energy bins over the energy distribution of each 

isotope.  This is implemented as 

      ∑        

 

   

 (4.4) 

where      is the system matrix element calculated for the standard energy binning case 

for energy bin m and direction j. 

One of the most computationally intensive aspects of this reconstruction is the 

calculation of the system matrix elements.  When only reconstructing to a set of isotopes 

without the continuum bases, the calculation time is greatly reduced, since elements at 

most energies will not need to be evaluated.  However, when including the continuum 

bases, all      elements must be calculated, so this method will not reduce computation 

time for the system matrix over using standard energy bins.  Still, because there are fewer 

parameters to estimate, each iteration can be computed faster and fewer iterations may be 

needed.   
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 Performance 

Performance was tested in simulation and experiment using a single 3D-position-

sensitive 20 mm  20 mm  15 mm CZT detector described in Chapter 2, using only the 

well-studied two-interaction events. 

Simulation 

A simulation was performed with Geant4 [75] of a single radiation source at 

662 keV in parallel-beam geometry.  Realistic position and energy resolution were 

included, as were effects of the finite charge-cloud size and Doppler broadening.  Since 

the system model used in the reconstruction only approximates effects due to position 

resolution and does not fully consider the finite charge-cloud size and Doppler 

broadening, we expect some artifacts in the reconstructed image due to some degree of 

model mismatch. 

A set of 10
4
 two-interaction events were used in the algorithm to reconstruct the 

source‟s spatial and energy distribution.  Similar results were obtained using ten times 

more events.  The 4π field of view was pixelated into 36-by-36 pixels over the polar and 

azimuthal spherical coordinates.  The resulting energy distribution over all directions 

from reconstruction over 500 standard energy bins and from reconstruction with 

continuum basis functions and the library of isotopes in Table 4.1 are shown in Figure 

4.3.  The raw two-interaction spectrum for these 10
4
 events recorded by the detector is 

also shown in Figure 4.4 to illustrate the degree of deconvolution that is necessary.   

One can see that in simulation both methods reconstruct primarily a Cs-137 

source at 662 keV.  In the standard energy bin reconstruction, an intensity of 269 (in 

arbitrary units) is in the bin covering 660 keV to 664 keV and an intensity of 313 is in the 

5 bins from 652 keV to 672 keV that cover the primary photopeak region.  There is a 

small escape peak in the simulation that appears because of threshold differences with 

experiment, which has an estimated intensity of 27 over the region of 632 keV to 

652 keV.  Compare this with the slightly larger reconstructed intensity of 320 when 

isotope bins are used.   

Very similar degrees of deconvolution are achieved in both methods.  For an 

informed user, deconvolution to the standard energy bins may be clearer since the small  
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Figure 4.3.  The reconstructed energy distributions over all directions with 10

4
 

simulated events from Cs-137 after 25 iterations near convergence.  (a) Using 

500 standard energy bins as basis functions over the energy range 0 to 2 MeV.  

(b) Using a set of isotopes and continuum functions as basis functions over the 

same range.  The labels with energies on (b) represent the upper limit of a 

continuum basis function.  Both plots use a 36-by-36 spherical image mesh.  The 

reconstructed intensities have arbitrary units, but are comparable between 

methods.   

escape peak can immediately be identified to belong with the Cs-137 peak.  However, 

more novice users may prefer the direct deconvolution to the isotope domain where Cs-

137 is identified and the escape peak is classified as continuum.   

It is interesting to note how a small continuum component, besides the escape 

peak, appears in both reconstructions even though the simulation had no such continuum.  

This is attributed to model mismatch and is discussed in the next section.   
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Figure 4.4.  The recorded energy spectrum over all directions for 10

4
 simulated 

and experimental two-interaction events from Cs-137.  Compare the difference in 

spectral shape due to experimental factors not included in the simulation.   

Experiment 

An experiment similar to that of the simulation was performed of a single Cs-137 

point source.  Again, 10
4
 two-interaction events were collected and reconstruction was 

performed with the same methods as in the simulation case.  The estimated energy 

distribution over all directions is shown in Figure 4.5a for standard energy bins and in 

Figure 4.5b for isotope and continuum basis functions.  The comparison between 

methods is similar to simulation.  The peak channel in the reconstruction with standard 

energy bins has an intensity of 89 and the region from 652 keV to 672 keV contains an 

intensity of 169.  Compare this to the estimated Cs-137 intensity of 148 using isotope 

bins.  The degree of deconvolution is similar.  Again, it may be easier for an 

inexperienced user to use a system that reports Cs-137 rather than the deconvolved 

spectrum.   

Small components of Bi-214, K-40, and Ac-228 show up in the isotope 

reconstruction.  There is actually some evidence that these background isotopes are 

present in small quantities in this experiment.  For Bi-214, significant detectable lines 

should be at 609 keV and 1120 keV.  Because of extra events between the Compton edge  
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Figure 4.5.  The reconstructed energy distributions over all directions with 10

4
 

experimental events from Cs-137 after 25 iterations near convergence.  (a) Using 

500 standard energy bins as basis functions over the energy range 0 to 2 MeV.  

(b) Using a set of isotopes and continuum functions as basis functions over the 

same range.  The labels with energies on (b) represent the upper limit of a 

continuum basis function.  Both plots use a 36-by-36 spherical image mesh.  The 

reconstructed intensities have arbitrary units, but are comparable between 

methods.   

and full-energy peak around 600 keV in the original spectrum, a small Bi-214 component 

at 609 keV is estimated in the isotope deconvolution since such a shape could be due to a 

small peak at 609 keV.  A small peak of three counts is present at 1113 keV in the raw 

spectrum as well, which is near the expected 1120 keV energy.  The raw spectrum also 

has small (about three-count) peaks around 1460 keV and 911 keV, which suggest the 

presence of K-40 and Ac-228.  From this experiment, it seems that reconstruction in the 

isotope domain may be able to separate these weak signatures from continuum.  The 

presence of these sources is not obvious in the reconstruction to the standard energy bins.   
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Model Mismatch 

Figure 4.4 shows the experimental spectrum, and it is clear that the shape is 

significantly different from simulation.  This is due to effects such as scatter in 

surrounding electronics and supports, crystal non-uniformities, coincident events, 

Doppler broadening, and cross talk.  None of these effects are included in the system 

matrix for reconstruction, and most are not included in the sensitivity image.  The more 

distorted shape of the spectrum from what the system model expects causes degradation 

in reconstruction performance.  In Figure 4.5a, a larger continuum than in simulation 

appears from 200 keV to 662 keV since the experiment contains more of these events 

than expected.  This also shows up in the isotope reconstruction as significantly more 

continuum components, especially in the range of 0 to 700 keV.   

The effect of this mismatch between the true system and the system model used 

for reconstruction is also present, but to a lesser degree, in the simulation.  Mismatch in 

the simulation is due to simulated factors that do not appear in the reconstruction‟s 

system model.   

In simulated or experimental reconstructions, model mismatch appears to create 

somewhat of a continuum extending from the full-energy peak down to the threshold for 

recorded events.  Since this also matches one of the continuum basis functions used in the 

reconstruction to isotope bins, the effect of model mismatch is, to some degree, moved to 

a continuum bin without greatly skewing which isotopes are estimated.  Much of the 

time, these continuum bins may be ignored as either model mismatch or background, but 

the presence of large amounts of continuum can also be indicative of shielding around a 

source.  So, best performance can obviously be obtained by including factors in the 

system model that reduce this mismatch.  

Multiple Sources 

Figure 4.6 shows the raw spectrum from an experiment with 8434 events from a 

Na-22 point source and a Cs-137 point source.  Figure 4.7 shows the estimated energy 

distribution over all directions using standard energy bins in Figure 4.7a and isotope and 

continuum basis functions in Figure 4.7b.  As before, the intensity in the energies or 

isotopes that contain a true source is large and there is continuum present.  In the isotope  

 



 

56 

 

 

Figure 4.6.  The recorded energy spectrum over all directions for 8434 

experimental two-interaction events from a Na-22 point source and a Cs-137 

point source in different directions.   

reconstruction, the two largest contributions, besides continuum, are from the two sources 

present.   

However, there is also large estimated intensity for Fe-59 and some intermediate 

estimated intensity for Co-60, Ga-68, K-40, Ru-103, and Ac-228.  The significant 

intensity in the misidentification of Fe-59 is troubling until we look closely at the 1274-

keV peak in the raw spectrum.  Because of calibration error, this peak has shifted to 

higher energies, so according to the model, only the left half is consistent with a Na-22 

source.  The right half matches perfectly with the higher-energy line from Fe-59.  The 

other line for Fe-59 falls at the upper edge of the Compton edge for 1274 keV.  As we 

have seen before, experimental data tends to have more counts than expected in this 

region, which supplies the evidence for the other Fe-59 line.  Because of these two 

effects, the reconstruction may see a large Fe-59 component.  In addition, detector 

sensitivity at these higher energies is small, so even a few counts provide evidence of 

large source intensity.  Co-60 also may occur due to high counts past the Compton edge 

in this region.  Ga-68 is easily explained by overlap with the Na-22 line and the high  
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Figure 4.7.  The reconstructed energy distributions over all directions with 8434 

experimental events from a Na-22 point source and a Cs-137 point source after 

25 iterations near convergence.  (a) Using 500 standard energy bins as basis 

functions over the energy range 0 to 2 MeV.  (b) Using a set of isotopes and 

continuum functions as basis functions over the same range.  The labels with 

energies on (b) represent the upper limit of a continuum basis function.  Both 

plots use a 36-by-36 spherical image mesh.  The reconstructed intensities have 

arbitrary units, but are comparable between methods.   

Compton edge.  The 511-keV peak is explained better by Ga-68 than Na-22 since the 

entire 1274-keV peak is not associated with Na-22.  Based on their location in the spatial 

part of deconvolution, K-40, Ru-103, and Ac-228 all are associated with misidentification 

of photons from the Na-22 source.  All show up in a band near the Na-22 source location.   

Conclusions 

In this study, we have presented basis functions for the energy dimension of 

emission imaging that consist of a set of common isotopes and step continuum functions.  

These functions may allow for faster computation and the need for fewer measurements 
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since fewer parameters need to be estimated.  In addition, the reconstruction result 

directly reports isotope spatial distributions that are important to the end user.  To some 

degree, the continuum functions can keep the most obvious effects of model mismatch 

from qualitatively skewing isotope intensity estimates, but effects such as non-linearity in 

the raw event spectrum can still affect the resulting set of identifications and intensities, 

as was shown when a Na-22 peak was shifted to higher energies.  Nevertheless, the 

degree of deconvolution achieved is similar to using standard energy bins.  

In the future, the model mismatch leading to incomplete deconvolution to the 

source that is present should be investigated.  Currently, continuum bins are ignored since 

they often contain just the effects of model mismatches.  However, the continuum bins 

could describe other effects such as the amount of shielding if the amount of model 

mismatch were reduced.   

In addition, if one were concerned with situations where one expects only a few 

sources present, some form of sparsity regularization could be included.  However, such 

regularization could be undesirable in other situations where a large set of spatially 

distributed sources are present.  

Energy-Target MLEM 

Another choice of basis functions for the spatial dimension is useful when there 

are objects with known motion in the field of view.  By choosing basis functions as a 

regular mesh over stationary space with additional bins that follow moving targets, 

intensity can be reconstructed for each of the moving targets and the stationary space (the 

backdrop) simultaneously.  This allows the user to locate both moving and stationary 

sources even when sources pass the same direction concurrently.  This is called energy-

target integrated deconvolution and is represented graphically in Figure 4.8.  Theory and 

performance is presented in detail by Jaworski et al. [76,77]. 

Mathematically, the intensities that must be estimated are    , where we define m 

as the energy bin, and j as the image bin 

                         ∑   
   

   
       ∑   

 

   
 (4.5), 



 

59 

 

 
Figure 4.8.  The idea behind energy-target integrated deconvolution.  A 

stationary mesh covers the backdrop and a moving object mesh covers each of 

the objects with known motion.
1
   

where there are R moving objects and the number of image bins around the r-th moving 

object is   .  The definition of the system matrix elements is the same, but for    , the 

incident photon direction is set to the direction from the bin at the time of the event.  The 

sensitivity terms, however, are now a function of time, and hence event, because the 

direction to some image bins relative to the detector geometry change as a function of 

time.  Therefore, the MLEM equation in Eqn. (4.1) must be further modified to  

    
       

 ∑
    

    ∑ (   ∑            
  

    )
  ∑   

 
   

    

 

   

 (4.6) 

with the solid angles constant over time (determined by the mesh structure chosen for 

each object) and the sensitivity calculated from the direction to the image bins at the time 

                                                 

1 Image from Jeffrey Fessler, University of Michigan, Ann Arbor. 
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of event i.  It is, of course, also possible to use isotope bins for the energy dimension and 

modify the elements appropriately.   

This energy-target integrated deconvolution should be able to determine the 

spectrum and intensity from each moving object as well as each direction in the 

stationary space.  There will not be crosstalk even between objects that pass through the 

same region of space simultaneously – as long as they do not share their entire paths – if 

the system model is accurate and enough events are collected.  To understand why, 

consider standard spatial-only deconvolution.  A single event has a positive probability to 

be from a number of spatial bins, but the ML solution ascertains which of these directions 

is genuine using the other collected events.  Even with multiple sources present, in which 

a number of events have probability to be from the direction of either source, the entire 

collection of events allows MLEM to find the correct energies and intensities for the two 

sources.  In the same way, when the direction dimension contains a stationary space and 

target space, it is inconsequential that events that occur during the overlap of two targets 

have probability to be from either target.  The other events collected when the targets are 

not co-directional allow MLEM to deconvolve the energies and intensities that were 

emitted from each target.   

Single-Interaction Imaging 

Single-interaction events make up a large fraction of events for gamma-rays 

below a few MeV; therefore, it is useful to be able to include them for imaging.  MLEM 

can image photons that only interact once in the detector by defining the system matrix 

and sensitivity similarly as with events that have multiple interactions [78].  

Mathematically, single-interaction events are no different from other events, so they can 

be inherently combined with other events to create the image due to all events, with no 

event weighting necessary.  The system-matrix elements are defined for single-

interaction events in Eqn. (3.9) and the system matrix for one example event with 

assumed full-energy deposition was shown in Figure 3.2.  Compared to the system matrix 

for a multiple-interaction event, as shown in Figure 3.3, the system matrix for single-

interaction events is much less sparse and less concentrated at a particular direction or  

 



 

61 

 

 
Figure 4.9.  The single-interaction images after 15 iterations of MLEM for 

simulated 122-keV parallel-beam sources coming from a) a polar angle of 0°, b) 

a polar angle of 45° and azimuthal angle of 180°, c) a polar angle of 90° and 

azimuthal angle of 180°, and d) a polar angle of 90° and azimuthal angle of 315°.   

energy.  Nevertheless, with the correct system model and sufficient statistics, 

deconvolution is possible.   

A parallel beam of photons at 122 keV was simulated striking the 18-detector 

array system with realistic position and energy resolution.  The photopeak sensitivity was 

calculated through direct individual simulation of 122-keV point sources at 18 × 18 

directions around the detector.  Using 1000 single-interaction events, rough 

deconvolution is possible, as shown in Figure 4.9 for a number of directions.  Because 

there is little Compton scatter at these energies, full-energy deposition was assumed.  In 

most cases, the hottest direction appears in the direction of the source, and there is always 

a hot region in the direction of the source.  Even with simulation, there is significant 

model mismatch that skews the image.  For instance, the probability calculation does not 

include the finite size of the detector voxels.  This is a significant effect at low energies 

where the almost all interactions occur in just the surface pixels.   

Whereas imaging multiple-interaction events is most sensitive to the direction 

between the interactions, imaging single-interaction events depends on the distribution of 

event positions within the detector, especially near the detector edges where most  
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Figure 4.10.  A row of the system matrix for the same event as in Figure 3.2 

when coded apertures are placed in front of the detector planes.   

interactions occur.  However, this is the region of the detector that is also least 

understood.  The distribution of single interactions in experiment, therefore, is dissimilar 

to what the model expects.  This large model mismatch skews the estimated source 

distributions.   

A better understanding of the detector effects that contribute to this model 

mismatch are needed before single-interaction events can be combined with multiple-

interaction events for MLEM imaging.  Single-interaction events are beneficial because 

they make up a large fraction of all events, especially at low energies.  Below a few-

hundred keV, all events are single-pixel events.  Therefore, using these events can extend 

imaging to lower energies, even without a coded-aperture mask.  The additional 

modulation provided by the presence of a coded-aperture mask and mask attenuation in 

the system model may help improve angular resolution for single-interaction imaging at 

the expense of efficiency.  Figure 4.10 shows a row of the system matrix when masks are 

present on both sides of the array system (as described by Joshi [13]).   
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Chapter 5  

UMImaging Software 

UMImaging 

It slices. 

It dices. 

And, it entices 

Those who ask “Radiation?  Where?” 

Introduction 

Three-dimensional-position-sensitive detectors offer a multitude of unique 

capabilities due to their ability to image a radiation field.  Several position-sensitive 

detector systems have previously been developed to record gamma-ray interaction 

locations and energies in an uncollimated detector [5,79,80,81,82].  Such systems offer a 

multitude of analysis possibilities for count-rate analysis, spectral analysis, imaging, 

automated detection, source localization, verification of correct system performance, and 

other categories.  Each type of calculation encompasses a wide range of possible 

algorithms.  For instance, in order to create an image of the radiation field, algorithms can 

range from computationally simple techniques such as back-projection (SBP) [33] to 

more computationally demanding methods such as maximum-likelihood (ML) estimation 

[51] or regularized reconstruction [69].   

Instead of independently implementing each possible analysis method, it makes 

sense to combine an assortment of these analysis methods into a library.  UMImaging 

attempts to provide a framework for this analysis in a general manner that will allow use 

by different detector designs and applications.  These analysis methods are supported by 

a range of unique features that allow fast, accurate, and multidimensional data analysis.  

UMImaging also incorporates the newest algorithms originally developed for imaging 

and detection on 3D-position-sensitive CZT detector arrays [5], but implemented for any 

position-sensitive detector. 
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Other software for some of these imaging tasks already exists, such as for 

Compton-telescope simulation and image reconstruction [83].  Our design starts from the 

ground up, looking at what features are required for position-sensitive-detector data 

analysis, then designing a flexible, modular framework to handle this analysis in a 

general manner.   

Currently, the main components of UMImaging have been implemented.  

Additional modules and functionality are added continuously as they are needed.  The 

library currently stands at 125 C++ classes with over 30,000 lines of code.  

This paper describes the design and unique features of UMImaging.  The first 

section describes the software architecture design and descriptions of the implemented 

reconstruction methods.  This is followed by discussions of features of the code and 

example usage.  Finally, other distinctive features are mentioned.  

Design 

UMImaging is designed to allow a diverse set of analysis methods to operate in 

the same framework with maximal reuse of code.  The structure centers around an 

interconnect class which holds a number of reconstruction methods and directs work, as 

shown in Figure 5.1.  The interconnect acts as a buffer between the user interface and 

calculation classes, allowing different types of user interfaces for different types of 

applications, such as GUIs for different applications, command-line interfaces, or scripts.  

This also allows the addition and modification of reconstruction methods without having 

to modify the user interface.  A graphical user interface is implemented using the Qt 

library [84].   

Below the interconnect, design centers around reconstruction methods and 

supporting classes.  A reconstruction method is any algorithm that performs any type of 

analysis.  Such methods may ask for events and geometry information, perform 

calculations based on user specified options, and/or return or save results.  Multiple 

reconstruction methods of the same or different types can run simultaneously.  A wide 

variety of reconstruction methods are available in UMImaging, each implemented in its 

own class, with inheritance from related classes as necessary.   
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Figure 5.1.  The basic design of the software library.  Boxes represent classes or 

collections of classes and arrows represent the direction of communication.  Only 

one instance of the interconnect, event coordinator, and geometry are created, but 

there may be multiple instances of the reconstruction classes.   

Each reconstruction method points to an event coordinator that provides the 

reconstruction method with events to analyze.  An event is a collection of coincident 

signals that have already been calibrated to give energy deposition for each detector 

voxel.  The event coordinator seamlessly provides events from different sources 

(different format files or internet connections) to the reconstruction method without the 

reconstruction method needing to know the source.  The event coordinator provides all 

active reconstruction methods with events when they are requested.   

There is also a time-dependent global geometry that is available to supply the 

reconstruction methods with detector location, orientation, and specifications.  It also 

includes functions for geometry calculations, such as ray tracing.  Currently, this 

geometry includes an arbitrary arrangement of rectangular box detectors with 

corresponding information about their material and resolutions.  These detectors are 

collected into a detector array tied to each file or internet-connection event stream.  Time-

dependent geometry can be passed in by the internet connection or read in from a file in 

XML format [85].  An example of such a geometry file is show in Figure 5.2.  
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Figure 5.2.  An example XML file of a geometry specification.  In this example, 

a single 2 cm × 2 cm × 1.5 cm CZT detector is placed at the origin at time zero.   

Analysis methods often have a number of free parameters for reconstruction, such 

as what subset of events to use or how much to smooth.  Therefore, each reconstruction 

method has a set of reconstruction options that are stored in a tree structure grouped by 

category.  Reconstruction options, ranging from the number of events to analyze to what 

technique to use, can be added at any point in this tree.  Each option class has its own 

methods to validate the input or limit it to a certain range.  The tree coordinates inter-

relations between options.  The option tree can be read/written to XML and converted 

automatically to a dialog window in the GUI for ease of changing parameters and 

options.  Figure 5.3 shows an example of such a dialog.   

Finally, analysis methods have output that is often multidimensional.  

Reconstruction results and helper classes are responsible for managing this 

multidimensional database as it is output from the reconstruction method.  Reconstruction 

results can hold any binned output from the results of reconstruction methods and 

currently has multidimensional data as a function of direction, space voxel, moving 

target, energy, detector array, detector, type of event, locations and geometry of  
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Figure 5.3.  An example options dialog for simple back-projection.   

interactions, reconstructed cone angle, and iteration.  Plotting classes can query the 

reconstruction-results object, by way of the interconnect, to obtain a reduced data set with 

binning over a limited number of the original dimensions with filters applied to other 

dimensions.  

Reconstruction Methods 

Figure 5.4 shows the reconstruction methods in UMImaging and the relationships 

between them.  All methods inherit from „Reconstruction Method‟, which provides 

general functionality such as keeping track of whether the reconstruction is running and 

how much progress it has made.  It also stores basic options and keeps track of where 

results will be stored.  „Simple Back-Projection (SBP) Reconstruction‟ inherits from 

„Reconstruction Method‟ to get all of its functionality.  „SBP Reconstruction‟ also serves 

as a base class for „Probability-Based Reconstruction‟; methods to perform back-

projection from „SBP Reconstruction‟ are needed in „Probability-Based Reconstruction‟.  

„Probability-Based Reconstruction‟ cannot run on its own.  Rather, it provides functions  

 



 

68 

 

 
Figure 5.4.  The inheritance structure of current reconstruction methods.  The 

direction of the arrow defines the “inherits from” relationship.   

to calculate and manage a list-mode system matrix for the collected events.  These 

functions are used by other algorithms that perform probability-based reconstruction.   

All reconstruction methods run in real time; events are processed as soon as they 

are available.  If the event rate is too high to keep up computationally, even with parallel 

computation, events will be processed in the order of arrival, with a jump to more recent 

events after a set event lag has built up.   

Traditionally, MLEM is a post-processing algorithm in that a set of data is 

collected, then analyzed all at once.  In real-time imaging, it is useful to do as much of 

this as possible while events are being collected.  So, in UMImaging, a row of the list-

mode system matrix and the contribution to the initial iteration is calculated when each 

event becomes available.  Iterations of MLEM are performed whenever the algorithm has 

excess computation time while waiting for the next event it will analyze.  Events that 

occur during this iteration stage are stored and analyzed as soon as the iterations finish.  

In this way, the MLEM image can be calculated in real time for reasonable count rates.  

For long measurements, it is important to realize that since the number of collected 

events is large, each iteration can require significant time.  However, by only performing 

iterations when there is excess computational time, the time between iteration 
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calculations will also increase since the events collected during the previous iteration 

stage must first be added to the system matrix.  This self-limiting behavior allows 

iterations to occur only as often as the computation load can be sustained.  In addition, to 

reduce iteration time, the system matrix could be shrunk to include only the most recent 

or best events after a long measurement has occurred.  For high count rates, the iteration 

stage will occur rarely if ever.  Instead, the iterations may be calculated after a 

predetermined interval of collected events set by the user.   

Multidimensional Data 

One of the features of UMImaging is its support for highly multidimensional data 

analysis.  This allows the user to easily view and filter complex data.  For instance, one 

could choose to reconstruct a spectrum just using events with three or more recorded 

interaction locations, or one could choose to reconstruct a spectrum for all types of events 

but bin by the number of interactions in the event.  In the latter case, the user could then 

look at the spectrum due to all events or the spectrum only from events having a certain 

number of interactions.  The options for each reconstruction method contain options to 

set the multidimensional filters and binning for the reconstruction results.  Before the 

reconstruction begins, these binning and filter parameters are set for each dimension 

either by the user or from defaults.  When reconstruction begins, the data structure is set 

to hold this multidimensional histogram, as shown in Figure 5.5.  A contiguous memory 

space holds the database with each dimension nested into the one above it.  During 

reconstruction, each event, or the image associated with each event, can be added to the 

appropriate multidimensional bin if it passes all of the filters.   

For simple linear binning, as would be performed for spectrum reconstruction or 

SBP, for instance, each event can simply be summed to the data already present.  First, 

each event is checked to make sure it passes the filters for each dimension.  For instance, 

if a filter is applied to just a small energy range, events with total energy above and below 

this will be thrown out.  For the remaining events, the algorithm next finds the bin 

location in each dimension with which this event is associated.  For multivalued 

parameters, such as interaction location, which may have several values for a single  
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Figure 5.5.  An example multidimensional data structure implemented in 

UMImaging.  (A) represents the reconstructed intensity for single-interaction 

events in the third detector that have total energy in the second energy bin and 

reconstruct to the third pixel of the image.  (B) and (C) represent the fraction of 

reconstructed intensity for three-interaction events due to events from the third 

detector that have total energy in the third energy bin and reconstruct to image 

pixel 1 or 2, respectively.  The length of each dimension is M, I, N, and P, 

respectively for detector, interactions, energy, and pixel.  The index of location 

(A) is                 .  The index for location (B) is         
        .   

event, all possible locations are returned.  From these, the multidimensional index I is 

calculated as 

      ∑ (  ∏  

   

   

+

   

   

 (5.1) 

where    and    are the zero-indexed bin location and the number of total bins in 

dimension i, and D is the number of total dimensions.  This is repeated for each possible 

combination of bin locations for the event (to allow for multiple parameter values).  

Finally, a fraction of the intensity is added to each unique multidimensional index 

location.  The fraction guarantees that an integral over all bins will produce the total 

intensity.  For instance, for a spectrum reconstruction of a two-interaction event with one 

interaction in detector module 1 and one interaction in detector module 3, 0.5 counts will 

be added to the multidimensional index location for detector 1 and 0.5 counts will be 

added to the multidimensional index location for detector 3.   

When displaying data from this database, the software must be able to select 

subsets of events and convert the multidimensional data set into reduced dimensional data 

for display.  This is performed with a recursive function that works through each 
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dimension of the data and “folds over” those dimensions that will not be included in the 

final data.  For instance, in the example in Figure 5.5, if the user wishes to see the total 

image from two- or three-interaction events that involved the first detector, regardless of 

the total deposited energy, the sum 

         , -   ∑ ∑ ∑      ,                -

   

   

 

   

 

   

 (5.2) 

is calculated, where P, N, and I are the lengths for the pixel, energy, and interaction 

dimensions.   

This is implemented in the general case with a recursive algorithm.  First, the bin 

locations i in each dimension p that pass the new filters are identified.  These are stored 

into a two-dimensional vector called vBinLoc.  These may be a continuous or 

discontinuous range of bin locations.  Also, flags are set for those dimensions that the 

final data needs to be binned over and stored to the one-dimensional vector, vBinByParm.  

Finally, a new vector associated with the original multidimensional data is defined where 

           , -  {∏  

   

   

    

     

 (5.3). 

A similar vector, vNewBinsBelow, is defined for the down-binned data set.  The 

vectors holding the original data and the down-binned data are named vData and 

vNewData, respectively.  Then, the recursive function pseudo-code in Figure 5.6 can be 

called starting with origLoc=newLoc=0 and p equal to one fewer than the number of 

total dimensions.  This will fill the new vector that holds the reduced data set.  This can 

also contain integration constants to include factors such as solid angles, depending on 

the units of the original data vector.   

Figure 5.7 through Figure 5.9 show examples of multidimensional binning for an 

18-detector 3D-position-sensitive CZT detector array.  It has two planes of 3 × 3 

detectors, each of 2.0 cm × 2.0 cm × 1.5 cm with 11 × 11 anode pixels.  Interaction depth 

is found from the cathode-to-anode ratio or, for multiple-pixel events, drift time.  The 

system is capable of using multiple-pixel events for imaging, either from a single detector 

module or from distinct modules.  The system is similar to that described in [5].   
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Figure 5.6.  The recursive algorithm for reducing the dimension of a data set.  

The variables are defined in the text.   

 
Figure 5.7.  Images of a Cs-137 point source measured with the 18-detector 

system using various cuts on interaction separation distance.  (a) The distribution 

of the interaction separation distance for two-interaction events.  (b) The image 

of all two-interaction events.  (c) The image of two-interaction events with 

separation distance of 7.5 cm or greater.  (d) The image of two-interaction events 

with separation distance of 1 cm or less.   

Figure 5.7 shows a series of images from a simple experiment of a single Cs-137 

point source on one side of the 18-detector system.  Simple back-projection Compton  

 

recursiveDownbin(origLoc, newLoc, p)  

{ 

 if p == -1 //base case 

 { 

  vNewData[newLoc] += vData[origLoc]; 

  return; 

 } 

 for each element i in vBinLoc[p] 

 { 

  int nextOrigLoc = origLoc + vBinLoc[p][i]*vBinsBelow[p]; 

  int nextNewLoc = newLoc; 

  if vBinByParm[p] 

   nextNewLoc += vBinLoc[p][i]*vNewBinsBelow[p]; 

  recursiveDownbin(nextOrigLoc, nextNewLoc, p-1); 

 } 

} 
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Figure 5.8.  The distribution of interaction locations over one plane of the 18-

detector system for a simulated parallel beam coming from the bottom of the 

figure.  Only full-energy deposition events are kept.  There are 3 × 3 detectors, 

each with 11 × 11 pixels, separated from the other detectors by 2 mm.  The 

detector edge pixels are excluded since they appear hot due to slightly larger 

area.  (a) includes only single-interaction events and (b) includes only three-

interaction events.   

imaging of two-interaction photopeak events produces the image in Figure 5.7b.  

However, one can bin the images by the separation distance between the interaction 

locations.  The separation-distance distribution is shown in Figure 5.7a.  Most 

interactions happen very close together, but because of the 5.5-cm separation between the 

two planes, there is a collection of events that interact many centimeters apart.  Imaging 

just those interactions that are farther than 7.5-cm apart produces Figure 5.7c.  This has 

significantly better angular resolution (below 10° FWHM) because the long average 

separation distance reduces uncertainty in the cone axis.  Conversely, imaging just those 

interactions closer than 1 cm produces Figure 5.7d.  This has near 50° FWHM because of 

large cone-axis uncertainty.   

With multidimensional binning, one can investigate the distribution of 

interactions among and within detectors as a function of the number of interactions that 

occurred.  Figure 5.8 shows the results of a simulation of a parallel beam of 662-keV 

photons incident at one end of the planes.  Figure 5.8a shows the locations of single-

interaction events depositing full-energy and Figure 5.8b shows the locations of three-

interaction events depositing full-energy.  Each shows the relative number of total 

interactions which occurred in each pixel in the nine detectors in one plane.  Each  
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Figure 5.9.  The intensity in selected pixels of a 64 × 64 image summed over 500 

energy bins during iterations of the energy-imaging integrated deconvolution 

algorithm.  The source-direction pixel scale is twenty times that of the other 

pixels.  All pixels start with the same average value.  The data are 1000 multiple-

interaction events from a Cs-137 measurement.   

complete event contributes one count, so each interaction in a three-interaction event 

contributes 0.33 in these figures. 

It is clear that there is a significantly different distribution of counts in these two 

cases.  Full-energy single-interaction events are most common near the entrance surface 

(y-pixel of 33) and decrease slightly due to attenuation towards the other side (y-pixel of 

0).  Full-energy three-interaction events are most common near the center of the array, 

slightly shifted towards the photon entrance side.  This is because those photons 

scattering near the center of the array are more likely to be captured elsewhere in the 

array, becoming a multiple-interaction event.  Similarly, interactions from multiple-

interaction events occur more often at intermediate depths in the detector than at either 

surface.  In this figure, detector edge pixels are ignored since they are slightly larger in 

area and hence receive more events and make the distribution of counts harder to 

observe.   

When performing iterative reconstructions, it may be interesting to observe the 

value of parameters as iteration progresses.  Figure 5.9 shows the value of selected pixels 

in a 64-pixel-by-64-pixel image of 4π space of a point source measurement through each  
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Figure 5.10.  Isotope-binned image for Cs-137, Na-22, and Co-60.  Each isotope 

is displayed as a different color in an intensity scale from transparent to opaque, 

and a current photograph of the environment is included as a backdrop.  All can 

be created in a single reconstruction.  The arbitrary-region binning can include 

multiple, non-contiguous regions of energy space into a single bin.   

iteration of the energy-imaging integrated deconvolution algorithm [51].  Through the 

iterations, the source direction pixel becomes hottest while most other directions decrease 

in intensity.   

For parameters with continuous values, it is possible to define bin regions as 

arbitrary unions of ranges.  This allows, for instance, the energy dimension to act 

alternatively as an isotope dimension.  Events with energy falling in any of the photopeak 

regions of a particular isotope can be added to a single bin for that isotope.  Events with 

an energy near photopeaks from multiple isotopes can contribute to each isotope.  One 

application of this it to separate an image by the components due to each library isotope 

instead of the component due to each energy range.  Figure 5.10 shows an image of three 

isotopes in our laboratory using this binning.   

Parallel Performance 

Since increases in computing power are expected to occur more through increased 

parallelization than serial clock speed, support for parallel algorithms is important to  
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Figure 5.11.  The speedup in calculation time due to running in parallel on six 

CPU cores with hyper-threading enabled as a function of the number of active 

threads for three types of calculations.  Parallel implementations of these 

algorithms allow a near seven-fold increase in execution time over a single 

processor (with or without hyper-threading technology) by efficiently using all 

available processing resources.   

allow reconstruction to occur as close to real time as possible.  Many image 

reconstruction algorithms are embarrassingly parallel, in that the reconstruction for each 

set of events can occur separately and be combined at the end.  We expect large speedup 

from such methods, so parallel implementations are desirable.  Most classes are therefore 

thread safe – multiple processors can access the same functions simultaneously to do 

things like get events or perform geometry calculations.  For parallel implementation, we 

chose to use OpenMP [86] because of its relative simplicity and presumed future support.  

This restricts use to a single shared-memory machine.  However, since each 

reconstruction method only interacts with other data structures through a handful of 

simple commands, expanding to reconstructions using a distributed memory machine 

could be done on the level of the reconstruction method without significantly changing 

the rest of the architecture.  

Figure 5.11 shows the speedup obtained for three types of calculations on a 

system with six processor cores.  Simple back-projection, working on data from a 

CdZnTe pixelated detector, reconstructs 2 × 10
4
 events to a 3.24 × 10

4
-pixel mesh in 

104 s using a single processor, but it only requires 14 s when running in parallel on six 
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processors.  More than a factor-of-six speedup is possible because the processor‟s hyper-

threading ability allows each core to be used more efficiently.  Very similar speedup was 

also obtained for iterative image reconstruction using the maximum-likelihood 

expectation-maximization (MLEM) method [51] on 1000 events with a fine energy and 

spatial mesh.  MLEM requires extensive geometry calculations during the creation of the 

system matrix and extensive RAM access while performing iterations.  Figure 5.11 shows 

the speedup for both steps of the calculation.  

Other Design Features 

Besides those described above, UMImaging has a number of other features that 

support analysis of events from 3D-position-sensitive detectors.  Some of these are listed 

below. 

 Many different operating systems are used commonly in data analysis, including 

multiple flavors of Microsoft Windows, Linux, and Mac.  UMImaging is written 

in standard C++ to be platform independent with minimal use of outside libraries.  

This allows the same version of UMImaging to be used on all systems.  The GUI 

and parallelization libraries are currently supported (and expected to be supported 

in the future) on all three systems.   

 The software should be accessible to new users, both in the use of current libraries 

and in how to extend them for other purposes.  The code is therefore highly 

documented with over 5000 header comment lines parse-able using the Doxygen 

documentation generator [87].  

 Optical images overlaid with gamma-ray images can be useful to locate source 

positions accurately.  UMImaging supports overlaid 4π optical images streamed 

over the internet or read from file. 

Conclusions 

A software package has been designed and implemented to support a wide range 

of data-analysis tasks from 3D-position-sensitive detectors.  The software is platform 

independent and easily extensible.  The use of an interconnect allows the user interface to 
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be specialized to the application and include graphical and other user interfaces such as 

scripts and command-line operation.  A modular framework allows advanced 

reconstruction methods to be developed more quickly using existing tools to set options, 

get events, perform geometry calculations, manage output, and display results.  Options 

are stored in a tree structure, which can easily be converted to a GUI interface.  Event 

managers transparently pass events from files or internet connections to each 

reconstruction method as the events are available.  Geometry classes can store any 

arbitrary geometry (currently arrays of boxes) and perform geometry calculations needed 

in image reconstruction.   

The framework supports high-dimensional data output.  Each dimension of the 

data can have an arbitrary binning structure, which, for instance, allows isotope binning 

in the energy dimension.  Multidimensional data analysis requires functions to bin events 

quickly and down-binning functions to view the data.  Examples have been presented for 

several situations, including the distribution of interaction locations within a detector 

array and the image quality as a function of interaction separation distance.   

A range of reconstruction methods have been implemented through the course of 

our work and are able to process events from arbitrary detector geometries in real time.  

MLEM achieves pseudo-real-time by applying extra processing time to perform 

iterations.  Throughout, classes and functions are designed to work in parallel.  Parallel 

implementations of reconstruction methods show near seven-fold speedup on a six-

processor computer with hyper-threading.  New features and algorithms continue to be 

added to this software package to support new analysis methods for 3D-position-sensitive 

radiation detectors.  
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Chapter 6  

Detection Analysis 

If you hired me to walk through the cellars of Washington 

to see whether there were atomic bombs, I think my most 

important tool would be a screwdriver to open the crates 

and look.  I think that just walking by, swinging a little 

gadget would not give me the information.  

– J.  Robert Oppenheimer, 1946 [88] 

 

The automated detection of gamma-ray-emitting threat sources within a gamma-

ray background is of interest in many applications, such as security and non-proliferation, 

where a threat source, such as special nuclear material or a radiological dispersal device, 

may be hidden in some environment.  Although well-trained operators are often able to 

observe the detector output and make informed decisions based on unexpected features in 

the count rate, spectrum, or image, automating detection decisions allows inexperienced 

operators to use the system and may give better performance than the most expert of 

operators.  While the best way to discover a threat source – considering economic 

consequences, international cooperation, privacy, expense, and other factors – is a matter 

of debate, this chapter will investigate the more limited subject of automated passive 

detection of gamma-ray-emitting threat sources using spectroscopic 4π-imaging 

detectors.   

In this chapter, we are primarily interested in understanding the conditions under 

which imaging improves detection and quantifying those improvements.  This chapter 

will give some background on non-imaging systems and contrast their common detection 

methods with what may be achievable using an imaging system.  This is followed by new 

analysis of the contribution of imaging to the automated detection of point sources on the 

18-detector array system.  The steps of this analysis can be replicated in future systems to 

quantify their imaging performance and inform comparisons between imaging systems.  
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Because much of this analysis only relies on the simplest imaging algorithms, the 

performance measures can be more algorithm independent than if the performance of 

advanced detection algorithms were compared for a number of specific situations.  In 

addition, the results of the analysis report the contribution to detection from each type of 

event, which can be used to improve the system design.   

It is useful to classify automated detection approaches by the type of information 

they work on: count rate, spectrum, image, or a combination of these.  In some situations, 

prior background measurements may be available, but in many others, the gamma-ray 

background may be relatively unknown.  Similarly, the identity of this source may or 

may not be known.  In addition, the search may occur over a wide area, or may focus on 

standoff detection in a known target region.  The best approach to each of these situations 

may be different.  The following sections will give an overview of current detection 

technologies, and then present an analysis of detection ability for many of these 

situations.   

Overview of Detection Systems 

Gross-Counting Systems 

Among the most basic of radiation-detection systems is the gross-counting 

system.  This reports a number of received counts, so automated detection occurs through 

the count rate.  A Geiger-Mueller counter is the canonical example of this type of system.  

Polyvinyl-toluene plastic scintillators may also operate as gross-counting detectors in 

portal monitoring [89,90].  The fundamental operating principle follows the equations 

standardized by Currie [91], and sketched much earlier, in which detection occurs when 

the measured count rate is above the rate that is probable to be produced by just 

background [3].  Gross-counting systems hence need an estimate of the background 

intensity from a prior measurement and a model of background variation.  For instance, 

in gross-counting portal monitors, numerous studies have attempted to better track the 

background levels in order to better estimate the background intensity [89,90,92,93,94].   

Gross-counting detection methods are therefore susceptible to performance 

degradation due to spatial and temporal shifts in the background that reduce the quality of 
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the background estimate [89,90,95,96].  This may occur, for instance, when moving the 

sensor to a new environment containing a hidden source.  Then, as a new background is 

estimated, it will likely incorrectly include a contribution from the hidden source that the 

system is trying to detect.  The erroneously high background estimate will decrease 

sensitivity to additional counts introduced by the source.  In gross-counting portal 

monitors, there is a concern that the slow approach of a source will skew the background 

estimate, allowing even a strong source to pass through undetected if moved slow enough 

[97].  Background variation can also occur over time due to weather conditions and time 

of day, and some of these changes can be quite rapid [90,98]. 

It should be noted that, in the hands of an experienced operator, handheld gross-

counting systems can reveal the spatial distribution of activity.  As the operator moves 

the system around the region, she mentally converts the scalar count-rate field due to 

geometric and material attenuation into an activity distribution.  Operated as such, the 

system becomes a non-spectroscopic imaging detector and so may not suffer the same 

problems as a stationary gross-counting system.  In addition, if targets are moving, the 

time-varying count rate may be used to identify the target distribution of radioactivity 

[95,99]. 

Spectroscopic Systems 

Other systems attempt to reduce the need for an estimated background by 

observing the energy spectrum of incident photons.  The full-energy peaks expected in 

most backgrounds are known, so automated detection occurs by observing the presence 

of other peaks associated with non-background isotopes [100,101].  Many software 

libraries have been written to automate this spectral peak finding and isotope 

identification [102,103,104,105,106,107,108], leading to a number of comparison studies 

[103,109,110,111], yet none has gained a widespread following and myriad new peak-

search algorithms continue to be proposed such as 

[103,112,113,114,115,116,117,118,119,120] and [121,122,123,124].  Other spectral 

analysis algorithms rely on template matching – instead of searching just for spectral 

peaks, the entire spectral shape can be used to deconvolve or unfold the incident energy 

spectrum and hence the isotopic sources [125,126,127,128,129,130,131,132,133,134].  



 

82 

 

This method allows a greater fraction of events to contribute to the signal, but it is highly 

dependent on a good spectral-shape model or prior measurement [135].  Varying source 

direction or surrounding materials can skew the spectral shape.   

One complicating factor in spectral detection and identification is the presence of 

significant shielding between the source and detector.  Besides greatly reducing the signal 

from the source, shielding scatters gamma rays from the photopeak into the continuum, 

hampering peak detection and skewing template matching.  In the later analysis, we will 

assume no shielding is present. 

As long as the target isotopes have lines distinct from background lines, spectral-

based detection can perform well.  However, when the emission energies from a threat 

source overlap those found in background or naturally occurring radioactive materials 

(NORM), peak presence is not sufficient for detection.  The background intensity and 

spectrum must be estimated in the same manner as in the gross-counting case, leading to 

similar performance degradation from spatial and temporal background shifts.  

Furthermore, the peaks expected from background in contaminated regions may not be 

known or may be at the same energy as threat sources, so detection must rely on 

background estimates.   

Spectroscopic Imaging Systems 

Since threatening sources are often point-like, other studies have developed 

methods to differentiate point sources from benign distributed sources by extracting the 

unique signatures of point sources on detector systems with spatially varying responses 

[95,96,99,136,137].  It has been shown that the addition of imaging – reporting the spatial 

or angular activity distribution – can improve the background estimates in the local 

region near the point source [96,136].  Therefore, a detector with imaging capability in an 

unknown background performs at least as well as a non-imaging detector in 

approximately known local background.  Even in the case of exactly known background, 

Lingenfelter et al. have shown that a detector with uniform detection efficiency in 

direction with imaging capability always has better detection performance than a similar 

system without imaging capability [138].  With imaging, detection occurs by looking for 
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localized hot spots in an otherwise smooth background image, rather than by looking at 

deviations from a previously estimated background intensity or spectrum [139].   

A detector that can produce an image in a single measurement has one other 

significant advantage over systems that require multiple measurements:  localization of 

the possible source direction can occur in a single measurement.  The resulting vector 

field that is traced as the system moves is more informative than a scalar count-rate field 

and hence benefits the search for localized sources.  The improvement in search 

performance – being able to locate a threat source – is distinct from the improvement in 

detection performance – being able to know a threat source exists.  The analysis that 

follows focuses on the detection, rather than search, problem.   

Summary 

Each system described above considers different types of information to make a 

detection decision, and each makes different assumptions about the environment.  Table 

6.1 summarizes some of these assumptions for different algorithms.  Parameters labeled 

„Will estimate‟ are parameters that the algorithm does not need to know before making a 

decision, but can be estimated in the process of making the decision.  If the parameter 

value is known exactly or approximately a priori, it can be given to the algorithm to 

improve detection performance. 

Statistics of Detection 

Spectrum Only 

In the following section, we will investigate the performance of the 18-detector 

array system in terms of the signal-to-noise ratio (SNR) for detection.  Although the SNR 

may not capture all the subtleties of some detection algorithms, it is suitable for 

comparing the relative ease of detectability using different systems and signals.   

First, consider operating the 18-detector array as a spectrometer to detect an 

isotope with known emission lines that has at least one emission line not present in the 

background.  We will assume that the system knows neither the background spectrum nor 

the background count rate and is stationary.  In this case, the unique signatures of the  
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Table 6.1.  Types of information used and estimated by different types of 

standard detection systems.  Variations on these systems exist.  The last column 

describes the algorithms described later in this chapter.   

 
Gross-
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Spectroscopic 
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Spectroscopic 

Imaging 

Detection 
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Will estimate 

Will 

estimate 

Spectral 

Distribution 
Not used Will estimate Not used Will estimate 

Will 

estimate 

Spatial 

Distribution 
Not used Not used 
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uniform 
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sources) 
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estimate 

(assumes 

point 

sources) 

Count rate 
Will 

estimate 
Will estimate 

Will 

estimate 
Will estimate 

Will 

estimate 

Shielding Not used Can estimate Not used Will estimate Can confuse 

 

source are the full-energy peaks in the spectrum at the source-emission energies that are 

distinct from background lines.  A template-matching scheme would also use the full-

energy peaks (as features in the template) to determine the presence of the isotope since 

the background spectral shape is unknown.  In a strong background environment, the 

continuum is quite uninformative even to a template-matching algorithm since down-

scatter in surrounding materials can produce a range of continuum shapes.  For optimal 

detection of these full-energy peaks when there is known source intensity and known 

background continuum, the likelihood ratio test (LRT) [61] says to threshold on the test 

statistic 
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 (6.1), 

where    is the number of recorded counts in energy bin i,    is the number of counts in 

each energy bin of the background in the region around the peaks, and    
 is the number 

of counts expected in the i-th energy bin of the source distribution.  Poisson statistics are 

assumed in each energy bin.  For small SNR, when the peak size is small compared to the 

background under the peak, this acts like a matched filter – i.e., a dot product is formed 

between the measured and expected spectral shapes.  Here I have assumed, and will 

continue to assume, a single emission line distinct from background, but these equations 

can be generalized to look for multiple lines as well.   

However, since both the source and background intensities are unknown, they 

first need to be estimated.  A test that uses the estimated source and background 

intensities (rather than the true intensities) is the generalized likelihood ratio test (GLRT), 

which may no longer be optimal [61].  Instead of applying a GLRT here, for simplicity 

and consistency with future sections, I will simply count the events falling above the 

background continuum in the peak region for the test statistic.  That is, the filter is square 

rather than matched, and the number of counts in the peak region is compared to the 

number of counts in neighboring regions.  Such a test lends itself to easy SNR analysis 

without straying far from the optimal test.   

A practical application of such a test would involve determining the continuum 

contribution in the spectrum on either side of the full-energy peak and subtracting this 

from the number of counts in the peak region.  Usually, the continuum is approximately 

linear in the region around the peak, so the sum of the average number of counts in equal-

sized regions to either side of the peak can approximate the continuum contribution under 

the peak.  Then, if, for instance, the nearby regions for determining the continuum 

contribution together are as wide as the peak region, the number of counts in the 

continuum region B may be subtracted from the number of counts in the peak region P to 

estimate the source counts:  

       (6.2). 

The uncertainty in the calculated source counts is then 
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Figure 6.1.  The relative experimental SNR for a Cs-137 source in background 

using the spectrum of various sub-sets of events recorded in 18-detector-array 

experiments.  The „combined‟ category has a different peak region width for each 

type of event and combines the counts from each into a single sum.  The 

„Spectrum with Cuts‟ series throws out three- and four-interaction events 

believed to be in the continuum.  The transparency of each bar is proportional to 

the signal relative to the signal in the combined spectrum case.   

    √  
    

  √    √   (6.3) 

where the last approximation holds if the source is weak or missing.  Note that when the 

continuum level under the peak is known exactly, the variance in S is just 

   
      (6.4). 

Again, the last approximation holds when the source is weak or missing.  Therefore, 

whether the continuum is known or unknown, 

     
 

√ 
 (6.5) 

since the uncertainty (noise) is proportional to √ .  In the following sections, I take the 

peak region to have the width that gives the optimal SNR.  For a Gaussian approximation 

of the peak and in practice, this is 1.2 times the FWHM of the peak.    

Figure 6.1 shows the results of applying this test to a long measurement with 

particular background and Cs-137-source strengths using the 18-detector system.  Each 
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bar shows the SNR achievable for different subsets of events.  However, because 

different signal or background strengths will scale the vertical axis by the same fraction 

for all subsets of events, the relative SNR comparison is applicable for any signal and 

background strengths.  The „Spectrum‟ series uses all events that are thought to interact a 

certain number of times.  It is clear that events that interact the fewest number of times 

give the highest SNR.  This is because these events offer better energy resolution and 

they are more common.  With better energy resolution, the signal in the full-energy peak 

is situated in a narrower region, so the contribution of the background continuum under 

the peak is therefore reduced, improving the SNR.  More events reduce the relative 

variation in the background continuum, also improving the SNR.  On the other hand, if 

we exclude events that only interact once or twice in the detector, we preferentially 

exclude Compton-continuum events.  Therefore, the limited set of events that have 

interacted many times will have a larger peak-to-total ratio, which should improve the 

SNR by reducing the continuum level under the peak.  However, it is clear from Figure 

6.1 that the additional decrease in peak statistics and increase in peak width for multiple-

interaction events overwhelms any improvement.   

In the „Spectrum with Cuts‟ series, three- and four-interaction events in which 

there is poor agreement between the observed scatter angles and the scatter angles 

calculated through energies are eliminated.  The calculated scatter angles assume full-

energy deposition, so agreement only occurs when the gamma ray deposits its entire 

energy in the system.  Therefore, the preponderance of the remaining events are full-

energy deposition.  This further accentuates the large peak-to-total ratio [140], but the 

inadvertent reduction in true peak events reduces the signal significantly enough to 

reduce the SNR as well.   

The tradeoff between statistics, resolution, and peak-to-total ratio for detection of 

Cs-137 is easily seen by combining events in different combinations.  All events together 

give better counting statistics than only single-interaction events, with only some loss of 

resolution, resulting in better SNR.  The four-interaction events contribute little to 

increased statistics and degrade the overall resolution, therefore the addition of four-

interaction events may even slightly decrease SNR in this system.  The wider peak region 
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needed to cover the peak will incorporate a larger amount of background while 

contributing only a small portion to the signal.   

It should be noted that it is possible to include all events together in a single test 

by accurately modeling the uncertainty in each.  The best SNR in this example can be 

achieved by taking all events and splitting them into spectra by the number of recorded 

interactions.  Then, taking the number of events within the optimal width of the peak on 

each spectrum and summing contributes the largest signal relative to the background 

continuum noise, resulting in slightly better SNR, as shown in the „Combined‟ category 

in Figure 6.1.   

For isotopes other than Cs-137, the energy of the emissions will produce different 

fractions of each type of event, in which case, the tradeoff between statistics and spectral 

shape may be different.   

Spectrum and Image 

Now, consider a simple detection scenario involving an imaging detector, in 

which the user knows both the target direction and source identity before commencing 

the measurement and attempts to detect the source.  As before, the target emits at least 

one energy line not present in the background, but the background count rate and 

spectrum are otherwise unknown.  In this case, the signatures of the source are a hot spot 

in the direction of the target and peaks in the spectrum at the source-emission energies.  

An appropriate algorithm could use all events, but for ease of analysis, the signal could 

be those events (1) that fall above the extended background in the image in the direction 

of the target or (2) that fall above the background continuum in the spectrum at the 

expected energies of the source.  For the 18-detector array, the events in the second set 

are generally larger than those in the first set since, in most cases, accurately estimating 

the correct total energy is simpler than estimating the possible direction.  Put another 

way, all correctly imaged events usually appear in the full-energy peak, but not all full-

energy peak events will be reconstructed through the correct direction.  For this reason, it 

makes sense to identify the signal as the number of events that fall in the full-energy 

peaks of the spectrum after filtering out events that do not pass the source direction,  
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Figure 6.2.  The set of events (a) that fall in the full-energy peak of the spectrum 

after filtering out events that do not pass the source direction, and (b) the set of 

events that fall in the hot spot of the image after filtering out events not in the 

correct energy regions.   

rather than the number of events that fall in the hot spot of the image after filtering out 

events not in the expected energy regions (see Figure 6.2). 

Note that the original spectrum information still exists; it is just spread over the 

extra image dimensions.  This is shown in Figure 6.3.  Two parameters exist, derived 

from the original spectrum and the spectrum in the source direction.  An algorithm could 

simply ignore the image dimensions and have the same performance as the spectrum-only 

case, as along the horizontal axis in Figure 6.3.  Alternatively, an algorithm can rely 

completely on the spectrum in the source direction in the image, as along the vertical axis 

in Figure 6.3.  A suitable algorithm could therefore always perform at least as well as just 

spectral detection by appropriately combining these two parameters using the (possibly 

paltry) image dimension as a check for its spectral detection.  However, these two 

parameters are quite correlated, as shown in Figure 6.3, therefore, the improvement 

gained from their combination is quite small.  For instance, transforming the two- 
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Figure 6.3.  The correlation between the number of two-interaction events in the 

photopeak region around Cs-137 and the number of rings passing the source 

direction in the image.  The blue is background and the red includes the source.  

The SNR is not significantly improved by using the distance from the origin 

instead of the number of rings passing the source direction.   

dimensional data to a one-dimensional data set by the distance of each sample from the 

origin does not improve SNR over the SNR of the best of the axes (the vertical axis, in 

this case).  Therefore, I will simply choose to use the axis that provides the better SNR, 

remembering that slight improvement is possible by intelligently using both together.   

We have investigated the spectral axis above.  Here we investigate the image axis 

by throwing out events that do not pass the known source direction.  This acts to decrease 

both the background and signal contributions.  Therefore, the modified SNR is 

     
   

√   
 (6.6) 

with two factors    and    that decrease the number of source and background counts.  

We expect the decrease in background counts to be considerably more than the fractional 

decrease in source counts if we have a good imaging system.  As long as  
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√  
   (6.7) 

the SNR will be larger by filtering of events based on the image.  Therefore, to see the 

relative SNR improvement due to the addition of imaging, one can calculate this term 

with different subsets of events, analogous to the procedure in the previous section.  This 

acts as a figure of merit for the imaging system.   

As in the last section, I will use a simple count of events over the region.  

Considerably better performance is possible using a more complex function to weight 

events based on the distance of the ring from the center of the region.  However, for 

simplicity in understanding the statistics and comparing data, the simple sum is used.  

Assuming a Gaussian-shaped hot spot, the optimal width of the cut for the sum should be 

rings that pass within 1.2 times the hot spot‟s FWHM as in the spectral case above.  To 

achieve this, I widen the rings and take the value in the direction of the source rather than 

using narrow rings and integrating over a region in the image.  I also use the best-

performing sequence-reconstruction methods to choose the most-probable sequence for 

each event before performing SBP.  These are the simple comparison method for two-

interaction events and the MSD method for three- and four-interaction events.  This gives 

better results than using all possible sequences.   

Figure 6.4 shows the SNR improvement factor as a function of the ring width 

(from center to edge) for different subsets of events.  It is clear that the best improvement 

factor occurs for two-interaction events, although the improvement is only about 43% at 

the best width.  As shown in Table 6.2, at the optimal width, a surprisingly small fraction 

of events contribute to the signal in the target direction.  For four-interaction events, only 

40% of source events are reconstructed through the correct direction.  The ring width 

needed to produce the largest SNR improvement matches well with the expected width 

based on the hot-spot FWHM, as shown in Table 6.2. 

If we now apply this improvement to the spectral results in Figure 6.1, we can see 

the improvement in the SNR for all events with the imaging information available in 

multiple-interaction events.  This is shown in Figure 6.5.  When more than one type of 

event is combined, the width of the ring in the image of each is still the optimal width for 

that type of event.  Using just multiple-interaction events, the SNR is improved by 40%  
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Table 6.2.  Summary of SNR improvements due to imaging.   

Case 

Image 

FWHM 

(degrees) 

Expected 

Optimal 

Ring Width 

(degrees) 

Optimal 

Ring 

Width 

(degrees) 

Fraction of 

background rings 

through target 

direction 

Fraction of 

source rings 

through target 

direction 

2-interaction 30-40 18-24 25 0.30 0.79 

3-interaction 24-26 14-16 15 0.17 0.52 

4-interaction 20-30 12-18 10 0.09 0.40 

 

  
Figure 6.4.  The SNR improvement due to filtering by events that only pass the 

known source direction as a function of ring width (or equivalently integration-

area radius) for different subsets of events.  Factors great than unity show 

improvement in the SNR using imaging.  The optimal ring width agrees well 

with that expected based on the FWHM observed in the image.   

with the addition of imaging.  However, since single-interaction events constitute a 

majority of the events, the best SNR is achieved when combining all types of events with 

their own optimal energy windows, and imaging only improves the SNR by 7% in this 

case.  The improvement may be different for sources other than Cs-137 that emit 

different energies and produce different fractions of each type of event.   

Spectrum and Image with Unknown Target 

In the previous section, imaging information was used to improve the SNR of the 

spectrum when a target direction and source identity were known before the measurement  
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Figure 6.5.  The relative experimental SNR for a Cs-137 source in background 

for different subsets of events.  The „Combined‟ category has a different spectral 

peak region width for each type of event and combines the counts from each into 

a single sum.  The „Spectrum with Imaging Cuts‟ series throws out events that do 

not pass the source direction.  The transparency of each bar is proportional to the 

signal relative to the signal in the combined spectrum case.  Each series‟ 

transparency is scaled separately.   

commenced.  Consider now another situation in which neither is known, as may occur 

when looking for a threat source in the field.  For now, we will assume that the source 

identity is among those in a library and each possible isotope emits at least one line that is 

absent from the background.  This is a multiple-hypothesis testing case.  Detection 

methods in this case might involve estimating the possible direction and isotope that may 

be present and then applying the analysis from the last section.  However, the existence 

of this extra estimation step hinders performance.  Statistical fluctuation of the 

background may cause a small fraction of background-only trials to appear as if they 

contained a particular isotope in a particular direction.  As long as the test focuses on a 

certain isotope and certain direction where the target may be, there is only a small 

probability for such false-positive reports.  However, when the test looks for signals from 

a number of isotopes and directions, these small probabilities build, resulting in a much 

higher false-positive fraction – and lower specificity – at the same sensitivity level.  

Therefore, the sensitivity must be reduced so that the probability for any background 
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statistical fluctuation to look like any library isotope anywhere is kept low.  In other 

words, high specificity requires lower sensitivity when there are multiple hypotheses.  

The Bonferroni Correction describes the sensitivity decrease that must accompany 

multiple hypotheses to keep a constant false-positive rate.   

Because each event may have come from multiple directions and multiple 

incident energies, there is some degree of correlation between the reconstructed signal in 

different directions and energies.  If one pixel in the image is high, the others near it tend 

to be high as well, and if one pixel in the image is low, the others near it tend to be low.  

This acts to reduce the severity of the Bonferroni Correction needed compared to the 

same number of independent pixels.  Still, one can imagine an equivalent number of 

independent bins that is less than or equal to the original number of bins, which can be 

used to describe the distribution of the maximum in the image.  Dubey, Armitage, and 

Palmer suggest the approximation for the number of independent regions as  

                       
    (6.8) 

where r is the average correlation between bins [141].  However, in the 18-detector array 

system, the average correlation between image pixels tends to be independent of the 

number of image pixels, so this approximation does not work.  Instead, to get an idea of 

the number of independent regions, one can plot the distribution of the image maximum 

for a background measurement as the number of pixels in the image is increased.  This is 

shown in Figure 6.6.  The important part of these curves is the high-side tail at which the 

threshold will be set to limit the false-positive rate.  It is clear that the distribution of the 

maximum changes little above a mesh of 15 × 15, so an upper bound on the number of 

independent regions is 15
2
=225, although a better estimate is probably significantly 

lower, since signs of convergence occur after a mesh of just 3 × 3.   

Figure 6.7 shows what we would expect if there were no correlation between each 

image pixel.  As expected, the distribution with one image pixel matches well, but the 

distribution in the 9-pixel image is significantly sharper than observed because of 

correlation between pixels in the actual image.  Nevertheless, the high-side tail is similar.  

The case without correlation in Figure 6.7 continues to increase past the 7 × 7 mesh since 

each region is independent.   



 

95 

 

 
Figure 6.6.  The distribution of maximum values in an image of background 

using two-interaction events with an average of 10 events per image.   

 
Figure 6.7.  The expected distribution from completely independent image 

regions.  Compare to Figure 6.6.   

With multiple independent regions of the image, the false-positive fraction in each 

pixel must be reduced to  

          (        )
 

              (6.9) 
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where        is the required false-positive rate [141].  For low false-positive rates, this is 

approximately  

        
      

            
 (6.10). 

The Bonferroni Correction when the target direction and isotope are unknown 

significantly impacts detection performance.  Although the directional spectrum may 

have 7% higher SNR, the requirement to increase the threshold in each pixel may trounce 

this advantage.  The degree of the trouncing, of course, depends on the number of 

equivalent independent regions in the image, but also on the required false-alarm rate.  

Because of the tail behavior of the maximum-in-the-background distribution, each 

fractional decrease in false-positive probability requires a corresponding smaller increase 

in SNR to achieve similar detection probability.  Therefore, at some requirement of low 

false-positive probability, the 7% SNR enhancement is enough to counter the large 

threshold increase required on each pixel no matter the number of independent regions.  

However, when a large false-positive probability is specified, the fractional increase in 

SNR for imaging is not enough to overcome the Bonferroni Correction.   

This is shown in Figure 6.8.  The SNR in the original all-event spectrum required 

to achieve 50% detection is plotted as a function of the false-positive probability 

specified by the application.  The „Without Imaging‟ series is what is expected with 

standard Gaussian-distributed counting data.  The „With Imaging‟ series takes into 

account both the Bonferroni Correction and the 7% SNR improvement above the spectral 

SNR achievable when including imaging.  At high false-positive fractions, the 7% SNR 

improvement due to imaging is not enough to offset the higher threshold required in 

imaging.  At low false-positive fractions, the imaging SNR improvement is enough to 

offset the Bonferroni Correction.  A lower raw SNR in the original spectrum can still 

produce a certain detection fraction when imaging is employed.  For a set fractional 

improvement in SNR between an image pixel and the overall spectrum, this improvement 

is largest when there are fewer independent regions in the image.  However, we expect a 

larger fractional SNR improvement in images with more independent regions, leading to 

the best performance when there are many independent regions in the image.  Figure 6.8 

shows the expected improvements when there are between 2 and 49 independent image  
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Figure 6.8.  The SNR in the spectrum required for 50% detection of Cs-137 as a 

function of required false-positive fraction.  This assumes a normal distribution 

of values in independent image regions with a 7% improvement in imaging SNR 

over the spectrum alone.  At low false-positive rates, imaging can perform 

slightly better than simply using the spectrum alone.   

regions.  As described above, the actual number of regions lies somewhere between 9 and 

225.   

The improvement in detection performance of Cs-137 using imaging only seems 

to occur in Figure 6.8 at very low false-positive probabilities, and even then, the 

improvement is minimal.  This is not to say that an imaging system is useless, however.  

In the worst case, an imaging system still provides all the same information as a 

spectroscopic or gross-counting detector, so the spectral axis in Figure 6.3 can be used 

instead and the pure detection performance will never be worse than similar-designed 

spectroscopic or gross-counting systems (with appropriate algorithms).  The imaging 

system also provides an image.  Although this may not improve detection in all cases, it 

can help guide the user to the source and characterize the source distribution.  It can 

answer questions like “How many sources are present?” and “Which source is in which 

direction?” that are more challenging without an image.   

It is also important to note that when the target direction or isotope is not known 

exactly, narrowing the possibilities can reduce the magnitude of the Bonferroni 

Correction.  For instance, outside, it might be a reasonable assumption to assume that no 
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sources will be above you.  Looking in fewer directions reduces the number of 

independent pixels that must be tested.   

In addition, imaging is important when the other signals (spectrum and gross 

counts) cannot be used for detection.  For instance, if one cannot assume that each 

possible target isotope will emit at least one line that is absent from the background and 

the background spectrum and intensity are unknown, the recorded spectrum provides no 

clues to the presence of a source.  It is impossible to distinguish the emissions from the 

background and source.  In this case, a hot spot in the image is the only signature of a 

source, so imaging is required for any detection.  The SNR in this case is the SNR 

between the events passing the source direction and those in all other directions that 

describe the background continuum.   
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Chapter 7  

Detection Methods 

Grant me to know and understand, Lord, which comes first: 

… to know you or to call upon you?  Must we know you 

before we can call upon you?  Anyone who invokes what is 

still unknown may be making a mistake.  Or should you be 

invoked first, so that we may then come to know you?   

– St. Augustine, The Confessions, Book I 

 

The previous chapter described algorithms for detection with gross-counting or 

spectroscopic detector systems.  There exists a need for detection algorithms that include 

imaging information, especially for situations in which the threat source may not have 

emission lines distinct from the background.  In this chapter, I will apply two statistical 

algorithms, the generalized likelihood ratio test (GLRT) and the source-intensity test 

(SIT), to detect point threat sources [142].  These algorithms can be applied to a range of 

situations, but I will focus on a case for which only imaging detectors can be used – when 

the source possibly shares emission lines with the background and the background energy 

spectrum is unknown.  The GLRT and SIT use imaging information to distinguish 

between a smooth background and a background with an additional point source while 

making minimal other assumptions about the situation.  The GLRT and SIT algorithms 

are applicable to any radiation-imaging system, but will be tested using an 18 detector, 

3D position sensitive, CdZnTe, Compton imaging system.  They will make use of the 

list-mode system matrix previously derived for deconvolving the incident energy 

spectrum in each direction around the detector as described starting on page 23.   

Imaging detectors have an inherent ability to locate point sources in a single 

measurement, which non-imaging detectors do not.  Therefore, all other things being 

equal, one would expect imaging detectors to find the direction to a source more quickly 

than non-imaging detectors and hence perform better in source-search applications.  The 
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algorithms I will present, on the other hand, focus on the detection performance:  the 

ability to discriminate between an environment of just background and an environment 

containing a source while operating at a fixed location.  The sources and detector are 

therefore assumed to be stationary.  Future work could extend the algorithms to detectors 

and sources with known or unknown motion trajectories. 

I will compare these statistical detection methods with Genie 2000 spectral 

analysis software.  While not directly comparable in terms of assumptions and 

information required (see Table 6.1), Genie can give a baseline for the performance of 

other methods under the same conditions.   

First, I will introduce the comparison algorithm, Genie 2000 [101] and show some 

sample results.  Then I will discuss the statistical detection algorithms, the GLRT and 

SIT, and describe the model for the background and source.  Then, I will show their 

performance for sample cases with various sets of known and unknown parameters.  I 

also comment on performance degradation due to model mismatch.  Finally, I will show 

performance for detection of multiple sources simultaneously.  Most cases will 

benchmark performance using Genie 2000 commercial identification software for 

spectrometers.   

Genie 2000 

Genie 2000 is a spectral analysis software by Canberra [101] that finds spectral 

peaks and identifies the nuclides that are present by comparing peak locations with a 

library.  When Genie is presented with a spectrum, it first finds all peaks larger than a 

threshold value (the „peak significance‟) set by the user.  Then, it finds peak areas, 

correcting for efficiency, as provided by the user.  The output is an estimated source 

activity associated with each peak and a confidence associated with each isotope in the 

library with matching peaks.  Efficiency as a function of energy was calculated by 

finding the average photopeak size from a simulation of point sources distributed around 

the array.  All events in the detector were used, and the spectrum had 1-keV energy bins.   

Genie was given the library in Table 7.1, which consists of a number of isotopes 

with energies in the Compton-imageable range using multiple-interaction events for the  
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Table 7.1.  The nuclide library used in this section.   

Nuclide Energy (keV) Emission Fraction 

Cs-137  661.7 1 

Mn-54  834.8 1 

Co-60  1173.2 0.4997 

 

1332.5 0.5003 

Na-22  511.0 0.6667 

 

1274.5 0.3333 

Fe-59  1099.2 0.5667 

 

1291.6 0.4333 

Cu-64  511.0 1 

Ga-68  511.0 0.9823 

 

1077.3 0.0177 

Sr-85  514 1 

Ru-103  497.1 0.9405 

 

610.3 0.0595 

Ag-110m 446.8 0.0119 

 

620.4 0.0088 

 

657.8 0.3095 

 

677.6 0.0347 

 

687.0 0.0211 

 

706.7 0.0536 

 

744.3 0.0158 

 

763.9 0.0743 

 

818.0 0.0241 

 

884.7 0.2386 

 

937.5 0.1123 

 

1384.3 0.0817 

 

1475.8 0.0138 

 

system.  Isotopes with lines outside the Compton-imageable energy range were not 

included since these would not be possible to detect using the statistical imaging methods 

described later.  The isotopes near the end of the list are included to expand the library 

and give a more realistic impression of false-alarm rate.  For instance, the Ag-110m 

source suggests the false-alarm rate that might occur for similar sources with many lines.   

No background sources are explicitly included in the library, with the possible 

exception of the 511-keV line labeled Cu-64.  We expect that if these sources were 

included, Genie would detect them with high activity and confidence.  Yet, the goal of 
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this study is to see if Genie can detect possible threat sources, not background.  

Therefore, background isotopes were not included in the library.  The absence of these 

isotopes will not affect detection of the other sources because Genie reports the 

confidence for each isotope independently of the other isotopes in the library.  That is, if 

a peak at some energy is detected and one source in the library emits just that line, the 

addition of another isotope with that same line will not decrease the confidence or 

activity estimates of the first.  Rather, both will be estimated with the same activity and 

confidence as if they were the only isotope in the library.   

I have investigated using a test statistic for detection with Genie that is either the 

largest confidence or the largest activity reported for each of the isotopes.  I determine the 

isotope activity by finding the smallest reported activity of the lines detected that were 

associated with the isotope.  In every trial, the nuclide with the largest estimated 

confidence or source intensity was chosen as the identification for that trial.  The optimal 

test statistic depends on the application and the choice of peak significance [143].   

For the types of sources, library isotopes, and activity ranges in this study the 

optimal test statistic seems to be the source activity, using a peak significance of 3.5 for 

the 18-detector array and a peak significance of 0.1 for a single detector.  The first case is 

shown for a trial Cs-137 source measured with an 18-detector array in Figure 7.1.  

Similar results were found using a Na-22 source.  Measurements were taken as explained 

below (on page 115) to obtain 5-minute trials of background or background with Cs-137.  

All recorded events are used for Genie, although only multiple-interaction events will be 

used in the statistical methods.  The plots show the probability to alarm and report each 

of the sources in the library when the Cs-137 is present versus the probability to false 

alarm as each isotope in the library.  In the array system, the highest correct alarm rates 

occur when using peak significance of 0.1, but these are accompanied by high false-alarm 

rates, giving worse ROC performance.  The performance using confidence or activity is 

similar, but activity generally performs slightly better in terms of correct detections for 

low false-alarm rates.  Genie will be used as a benchmark for statistical detection 

methods.   

It is important to note that Genie assumes that the emission lines it is trying to 

detect from the threat sources are not present in the background.  If they were, the  
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Figure 7.1.  The detection and identification probability as a function of threshold 

using four different settings on Genie 2000.  a) Confidence with 0.1 peak 

significance, b) Confidence with 3.5 peak significance, c) Activity with 0.1 peak 

significance, d) Activity with 3.5 peak significance.  Trials with no source 

present gives the false-alarm probabilities and trials with a Cs-137 source present 

give the true-alarm probabilities.  An average of 4.5 × 10
4
 background events 

were used per trial, and the source contributed an average of 2000 counts.   

presence of a peak would not be sufficient evidence for detection of the source.  

Therefore, comparison with the GLRT and SIT is only to benchmark performance, and is 

not mean to imply that the algorithms are applicable to the same situations.   

Statistical Detection Methods 

Generalized Likelihood Ratio Test 

The generalized likelihood ratio test (GLRT) test statistic,  , is the ratio of the 

probability to see the observed events under the hypothesis that a source is present and 

the probability to see the observed events under the hypothesis that only background is 

present.  To calculate each probability, the most-likely values of unknown parameters are 

first estimated from the data.  Detection of a threat occurs if the test statistic falls above a 

detection threshold γ [144].  The probability in the denominator uses the maximum-
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likelihood background intensities found independently when the source intensity is set to 

zero.  

Mathematically, the algorithm reports detection when 

   
   
       

 (            )

   
 

 (          )
   (7.1), 

where  ( ) denotes probability, r is the data vector,    is the event of detection of these I 

recorded events,   is the source intensity,   is the source direction, H is the source 

isotope, and   is the vector of background intensity in each energy bin.  The 

maximization of the numerator and denominator are performed separately, as described 

below on page 111.   

Source-Intensity Test 

The source-intensity test (SIT) also takes the most-likely parameters, but uses 

them directly to form the test statistic 

   
 ̂   

√ 
    (7.2) 

where    is the sensitivity to record photons from the estimated source m,  ̂ is the 

estimated source intensity, and   is the total number of recorded events, which reports 

detection when the test statistic   falls above the threshold   .  A similar test was used by 

Bethel and Bell [145].  This function was developed because it was observed that using 

the source-intensity estimate alone gave good separation between the source-present and 

background-only cases when the background count rate was held constant, but as more 

background counts were added, the source-intensity estimate increased proportionally to 

the square root of the number of counts.  Therefore, by normalizing by the square root of 

the total number of counts, this test was observed to have a constant false-alarm rate for 

all background count rates and measurement times.  The efficiency factor converts the 

source-intensity estimate into observed counts for better performance with multiple-

source libraries.  
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Model 

I will consider applications where the background energy spectrum and intensity 

may both be known, unknown only in intensity, unknown only in energy distribution, or 

completely unknown in both intensity and distribution.  I will neglect any possible prior 

information about common background spectral shapes.  One of the consequences of 

assuming a completely unknown background energy spectrum is that a point source with 

emission energies also significantly present in the background appears no differently to 

the algorithm than a source with independent emission lines.  Therefore, the algorithm 

can handle sources emitting lines also emitted by the background.  I will use a library to 

inform the algorithms of possible point-source emission energies.  Without an explicit 

library, a list of energy bins could be formed to represent the possible emission energies 

of a source.  Identification would then identify the energies rather than the isotope of the 

source.  Nevertheless, if available, a known set of emission energies can give the best 

detection performance.    

Spatially, the model will assume a uniform intensity background.  Since this is 

often not true, the effect of the spatial non-uniformities in experimental background will 

be presented in the analysis section on page 127.  Finally, for simplicity, the algorithms 

will assume unshielded point sources so the true branching ratios reach the detector.  If 

this is not the case, the model mismatch will cause performance degradation.  To include 

the effect of shielding, the library could be extended to include each line separately, or 

one could add a shield term to the source model.   

The first step in the GLRT and SIT is the estimation of the maximum-likelihood 

(ML) estimates of the unknown parameters in the model.  The model used here is a 

spatially uniform background with arbitrarily varying intensity in the energy dimension.  

This appears as an independent background intensity    in each of K=200 energy bins k 

from 0 to 1.5 MeV.  There are M radiation point sources present, indexed by m, each with 

a source identity    (from the nuclide library), source direction    (in 4π space), and 

source intensity   .  Each library source has an associated intensity as a function of 

energy of  

            (7.3). 

In most cases, this is the branching ratio distribution of the isotope.   
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Mathematically, the maximization that must be performed when no prior 

knowledge is assumed is 

  ̂  ( ̂  ̂  ̂  ̂)                (            ) (7.4) 

where we define θ as the vector of unknown parameters to be estimated,  (      ) is 

the likelihood of θ based on the data vector of discrete recorded attributes of photon-

interaction events r such that all I have been detected, and  ,  ,  , and λ are vectors of 

parameters for each source or energy bin.   

The likelihood of the parameter vector θ is calculated as the product of the 

likelihood of the parameter vector given the attributes for each separate event and the 

likelihood of the parameter vector given the number of recorded events I [66] as 

  (      )   (    )∏ (       )

 

   

    ̅   ̅
  ⁄ ∏ (       )

 

   

 (7.5) 

where    is the recorded attributes of photon event i.  For instance,    contains the detector 

pixel, recorded depth, and recorded energy for each interaction in the event.  Eqn. (7.5) 

used the fact that the recorded attributes for each event are independent of the other 

events and total number of events (assuming a low enough count rate that detector dead 

time, space-charge buildup, and coincident events are small contributions).  Each event 

only requires that at least that many total events have been recorded, so 

  (                 )   (       )   (      )         (7.6), 

where   is the detection of this event.  Here the total number of events I is modeled as a 

Poisson distribution with mean  

  ̅  ∑     

 

   

 ∑    

 

   

 (7.7) 

where  

    ∑         

 

   

 (7.8) 
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  (7.9). 
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With slight abuse of notation,      
 is the system efficiency for detection of a 

photon emitted from energy bin k and the direction of source m, while      is the system 

efficiency for detecting a photon emitted from energy bin k and the direction of pixel j.  

The solid angle subtended by pixel j is represented by   .  The sensitivity terms,    and 

  , hence represent the detection efficiency for photons from the source and the spatial 

average detection efficiency at a particular energy, respectively. 

The distribution of the recorded attributes for a particular event is a mixture of the 

distribution due to photons from the source and the distribution due to photons from the 

background, with mixture coefficients determined by the relative source and background 

intensity parameters.  Mathematically,  

 

 (      )   (      ) 

 ∑  (      ) (       )

 

   

 ∑ (      ) (       )

 

   

 

 ∑
    

 ̅
 (       )

 

   

 ∑
    

 ̅
 (       )

 

   

 

(7.10) 

where    represents a photon originating from source m and being detected, and    

represents a photon originating from energy bin k of the background and being detected.  

The probabilities of the occurrence of event i when a detected photon originated from 

either a source or a background energy bin can be calculated by noting 

  (       )  ∑ (          ) (       )

 

   

 (7.11) 

and 

  (       )  ∑ (          ) (       )

 

   

 (7.12), 

where j parameterizes the image pixels, so  (      ) is the probability for a photon to 

be emitted from pixel j under the conditions of X.  Since the sources are point sources, the 
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photons are only emitted from one pixel, so the last term in the sum of Eqn. (7.11) is zero 

except when      .  Therefore  
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(7.13) 

where    represents an initial photon energy from energy bin k, and         
 is the 

system-matrix element for the detection of event i in direction    and energy k: 

        
  (                                            ) (7.14). 

Since the model for the background is for a spatially uniform distribution of 

emission,  
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 (7.16). 

So, combining Eqns. (7.10), (7.12), (7.15), and (7.16),  
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 (7.17). 

The probability of an event recorded from either a source or the background is 

therefore the ratio of the system matrix elements and the system efficiency in either the 

direction of the source or the integral over all directions, respectively.  Finally, combining 

Eqns. (7.4), (7.5), (7.10), (7.13), and (7.17), the parameter maximization is in the form 
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(7.18). 

Taking the natural logarithm and removing constant terms,  

 

 ̂                ( ) 

                  (            ) 

              0 ∑     

 

   

 ∑    

 

   

 ∑   .∑   ∑           

 

   

 

   

 

   

   ∑  ∑        

 

   

 

   

/  1 

(7.19). 

It is instructive to investigate the behavior of this function when no sources are 

assumed to be present.  Then, 
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This is maximized when 
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Consider the special case where full-energy deposition is assumed in the system 

model.  In this simplified system model for Compton imaging, a two-interaction event is 

assumed to be due to a Compton-scatter in one pixel followed by a photoelectric 

interaction in another pixel.  The possibility for photons to be scattered out of the second 

pixel that was included in the original complete system model is ignored, causing 

incorrect modeling of non-full-energy events.  Nevertheless, the same set of events is 

used in either model.  In the simplified system model, each event has non-zero 

probability only for possible photons coming from one of the energy bins, so most 

elements in the system matrix are zero.  Therefore, the denominator for each event in 

Eqn. (7.21) only depends on the intensity estimate at the energy of the event.  So,  
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 (7.22). 

Hence, in this special case, the best estimate of the background contribution at 

each energy is the number of recorded events at that energy.  The same argument can be 

used when a source is present but has energies different from a particular background 

energy.  Therefore, in the full-energy assumption case, the best estimate of the 

background energy distribution with no source present is the recorded spectrum.  When a 

source is present, all background energy bins other than those overlapping with the 

source emission lines can be trivially estimated as the recorded counts at that energy.  

Furthermore, terms involving these independent background components will cancel in 

any likelihood ratio, allowing faster computation.  This greatly reduces the computational 

scale of the problem and decreases computation time by almost two orders of magnitude 

for the same number of events.   

In the particular 18-detector array system used for testing, only multiple-

interaction events are used.  This is because single-interaction events, as described on 

page 60, lack a sufficiently accurate model to contribute meaningfully to the image.  The 

energy spectrum of these events is not useful if the background spectrum is unknown and 

the source could share emission lines with the background, which is the situation in 

which we are most interested.  Including the spectral information from single-interaction 

events would be useful if the background spectrum were known or were expected to have  
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Figure 7.2. The algorithm for estimating the most-likely parameters in 

Eqn. (7.19).   

distinct emission lines from all threat sources.  In addition, further constraints could be 

added to the spectral estimate if the background were known to have emission lines 

distinct from all threat sources.   

Parameter Estimation 

Next, we must find a way to maximize this likelihood in Eqn. (7.19).  The method 

we use depends, to some extent, on the types of known information.  For simplicity, 

when necessary, we will estimate source identity and position with an exhaustive search.  

Since computation increases quickly with the number of exhaustive search parameters, 

the parameters for multiple sources are found using sequential exhaustive searches.  For 

each possible source position and identity, we will estimate the background and source 

intensities with either coordinate descent or maximum likelihood expectation 

maximization (MLEM).  Algorithmically, this is shown in Figure 7.2. 

In coordinate descent, a step of Newton‟s method is applied sequentially for each 

unknown parameter while holding the others fixed, and this cycle is repeated until the 

estimates converge.  Source and background intensities are forced to be non-negative at 

each step.  With initial guesses from the raw background shape, convergence usually 

occurred in fewer than tens of iterations.  The steps of coordinate descent are 
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For each possible source m 

{ 

 For each possible source identity (isotope) 

 { 

  For each possible source location 

  { 

   Estimate intensity for background and all sources so far 

   Calculate likelihood 

  } 

 } 

 Find and store most likely identity and location for source m 

 Set identity and location for this source as constant for future 

} 

Choose number of sources present 
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and  
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(7.28). 

These can be significantly simplified when the full-energy assumption is used.   

In the case where the background spectral shape but not intensity is known, a 

simple scale factor can be included in the likelihood and the updates for coordinate 

descent computed in a similar way.  If other parameters are known exactly or within a 

range, the exhaustive search space can be modified and known values can be used in 

place of the intensity estimates. 

Another method to estimate the intensity parameters is to use the maximum 

likelihood expectation maximization (MLEM) method [66].  We can group terms so that 

the negative log likelihood is in the form 
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 (7.32). 

The intensities    represent the means of Poisson random variables, so the MLEM 

method can be applied.  The MLEM iterative solution to minimize (7.29) is 
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where n is the index for the iteration and one may start with any positive initial guesses.  

Note that similar computation is required for each step of coordinate descent and MLEM.  

The MLEM has the advantage that total counts are always conserved and the intensity 

estimates are always non-negative. 

When the background is known exactly, the same equation can be used, but the 

background estimates should not be updated; that is, in Eqn. (7.33),        .  In the 

case where the background spectral shape, but not intensity is known, Eqns. (7.30), 

(7.31), and (7.32) can be replaced with  
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where       is the intensity scale factor to the known background   .   

Model Order Selection 

If the detection test aims to determine whether no sources or some known number 

of sources M are present, the standard form of the GLRT with estimated parameters for 

each of the sources provides the needed test statistic.  But, if the number of sources is 

unknown, the number of sources – and hence the model order – must first be estimated.  

When choosing the number of sources, the maximum likelihood estimate will always 

choose the maximum number since this will effectively increase the model order.  

Therefore, the GLRT must be modified to penalize the addition of multiple sources.  Kay 

[146] suggests the test statistic   
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(7.37) 

where  ( ) is the step function that is 1 for inputs greater than 0.  Kay has a scale factor   

of unity that works when there is no model mismatch, but we introduce a larger scale 

factor that helps to penalize the addition of multiple sources further.   

Speedup Using Guessed Direction 

The exhaustive search over direction can take significant computational power, 

especially if the image space uses a fine mesh.  Instead of searching over all directions, 

the algorithm can quickly guess a probable direction to use as a stand-in for a known 

direction.  One such direction can be obtained by choosing the hottest point in the image 

obtained from the first iteration of MLEM at the energies of the estimated source isotope, 
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but with a sensitivity factor for the isotope as a whole so as not to magnify statistical 

noise at energies with low sensitivities.  Mathematically, 
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 (7.38), 

where    
 is the efficiency of the detector to photons from isotope m in direction j. 

Experiment, Results, and Analysis 

Experiment 

In order to investigate performance of these algorithms, experimental data were 

collected of background events and events due to Cs-137, Co-60, and Na-22 samples.  

Two different systems were used:  a single 2.0 cm × 2.0 cm × 1.5 cm CZT detector, and 

an array of 18 of those detectors.  The case of unknown background with a single source 

was investigated with a single detector while cases of known background with a single 

source and multiple sources were investigated with the 18-detector array.   

To produce data consistent with a challenging detection scenario, events from 

background and source measurements were combined with various frequencies.  For the 

single detector, we took a measurement of just background within the laboratory over 

8.6 days and another of a 6.58-μCi Cs-137 sample at 23 cm from the detector.  Similar 

measurements were performed for Co-60 and Na-22.  The stored events from both 

measurements were combined with a frequency to produce, on average, a background of 

5000 two-interaction events and 79 two-interaction source events per trial, to give 

intermediate detection performance.  Approximately 50 trials of the background-only 

case and the source-present case were performed.  Both background and source events 

were accepted from 0 to 1.5 MeV, so Compton-continuum source events (non-full-

energy-deposition events) were counted.  This number of background and source counts 

corresponds to about a 4-hour measurement with a 2-mCi Cs-137 source at 100 m.  The 

number of background and source counts were chosen from a Poisson distribution, but 

had no additional background variation as one might see due to background variation in 

the environment.  Since we are only using the well-studied two-interaction events, we are 

likely understating performance compared to using all multiple-interaction events over 
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the same measurement time.  Single-interaction events will not improve performance 

unless the background spectrum is known.  Genie, on the other hand, uses all events in 

the detector, including single-interaction events, since it assumes that the presence of 

source peaks proves the presence of the isotope.   

For the 18-detector array, 4050 to 8100 multiple-interaction background counts 

were combined with an average of 235 multiple-interaction source counts from a Cs-137 

source.  Although the background rate within the lab is steady, time-variable background 

intensity was used in the known background case to simulate background in a search 

scenario.  The background count-rate fluctuation is similar to that observed in 

experiments in the field [5].  The number of counts is consistent with a 5- to 10-minute 

background measurement in our lab, and a 7.5-minute measurement of a 0.5-μCi Cs-137 

source at 1 m, or, alternatively, a 13-mCi Cs-137 source at 100 m.  

A representative trial for the 18-detector array is shown in Figure 7.3 and Figure 

7.4.  The spectrum in Figure 7.3 shows all the events used in one trial, including single-

interaction events.  The blue region contains those events contributed from the 

background measurement and the red region also contains those events contributed from 

the Cs-137 measurement.  There is a small photopeak due to Cs-137 at 662 keV in the 

source-present case.  The simple back-projection images in the photopeak region are 

shown in Figure 7.4 for a background trial and for a trial using the same background but 

with additional source events.  The source is present at approximately 90º polar and 150º 

azimuthal, although this is not immediately obvious from these low-statistic trials.  In 

actual measurement, there is, of course, no distinction between background and source 

events.   

For the study of multiple-source detection, 4050 multiple-interaction background 

counts were combined with an average of 235 multiple-interaction source counts from 

Cs-137, Co-60, or Na-22.  This is consistent with a 5-minute background measurement.   

The library of ten sources shown in Table 7.1 on page 101 was used to inform the 

algorithms of possible point-source emission energies.  These were selected to be sources 

with emission lines in the Compton-imageable range for the system.  Some are likely to 

be seen in practice, one has many lines, and some have similar emission energies to each 

other.   
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Figure 7.3.  A representative spectrum from one detection trial with the 18-

detector array.  The contribution to the spectrum from background and source 

events is shown, however this distinction is not passed to the detection 

algorithms.   

 
Figure 7.4.  Representative images from the Cs-137 photopeak region from one 

experimental detection trial.  Image (a) shows just events originating from the 

background and (b) includes the contributions from a Cs-137 source placed at 

150° azimuthal and 90° polar.   

Unknown Background and Unknown Source Direction 

In a sample experiment, we tried to detect and identify a Cs-137 point source in 

standard background in our laboratory with data collected on a single detector.  Using the 

complete system model required approximately 8 hours of computation for each trial on a 
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4-core PC, but using the simplified system model that assumes full-energy deposition 

(described on page 110) required less than 3 minutes.  

For experimental data, the SIT performed slightly better using the simplified 

system response compared to the complete system model, so the simplified response will 

be used for the tests with the SIT, unless stated otherwise.  In simulation, the best 

performance using the SIT occurred when the more realistic complete system model was 

used, as expected.  The difference may be because of the additional model mismatch 

introduced by the detector performance in experiment and the need to non-trivially 

estimate more parameters when using the complete system model.  This small effect was 

not observed for the GLRT, however.   

The ability of the algorithms to differentiate trials of just background events from 

trials of background and source events are shown in Figure 7.5a in the form of an ROC 

curve, which plots the probability of detection as a function of the probability of false 

alarm.  I define detection probability as the probability of detecting any source when one 

is truly present, and the false-alarm probability as the probability of detecting any source 

when one is not present.  For the best performance, the GLRT used the complete system 

model, while the SIT used the simplified system model.  The curve also shows 

benchmark performance using Genie 2000 using its optimal settings.  For all three 

methods, the solid curves show the performance with known source identity and the 

dashed curves show the performance using the library in Table 7.1.  The source location 

is unknown. 

Both the GLRT and SIT perform as well or better than using the maximum 

reported source activity from Genie 2000, even though the GLRT and SIT do not assume 

that the emission lines from the sources are distinct from background.  This may be 

because imaging information is being used in these statistical algorithms to discriminate 

point sources from extended background sources, whereas Genie uses neither statistical 

algorithms nor imaging information.  The SIT is able to estimate source intensity better 

than Genie‟s peak-fitting algorithm, at least to the extent that it can discriminate between 

zero counts from a source and a positive number of counts from a source.  It is not 

immediately clear whether the GLRT or SIT is better in all cases.  The SIT seems to 

perform best with a small library size.   
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Figure 7.5.  ROC curves of the experimental detection performance for a 

background of 5000 events, Poisson distributed, and (a) a Cs-137 source with an 

average of 79 events, (b) a Co-60 source with an average of 158 events, or (c) a 

Na-22 source with an average of 158 events, Poisson distributed.  Approximately 

50 trials of the background-only and each source-present case were performed 

using a single detector module.  The performance of the three methods are shown 

in the case of known source identity (solid lines) and using the source library in 

Table 7.1 (dashed lines).  In all cases, the source direction is unknown. 

We performed similar experiments with a Co-60 source and a Na-22 source.  Poor 

detection was observed for all methods with an average of 5000 two-interaction 

background and 79 two-interaction source events, probably because of the lower full-

energy efficiency and multiple emission lines of these sources.  Figure 7.5b and c show 

the performance with twice the source strength, 158 two-interaction source events, with 

the same methods used in Figure 7.5a for Cs-137 and 50 trials.  Again, Compton-
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continuum events were included.  Relative performance between the three detection 

methods is similar to the Cs-137 case.   

Interestingly, Genie has better detection performance for Na-22 when a larger 

library is used.  This is likely because of incorrect source-isotope estimates causing 

inflated source-intensity estimates.  When the Na-22 source is present, the 511-keV peak 

from background and Na-22 is obvious whereas the 1274.5-keV peak from Na-22 is very 

small due to low detector efficiency at that energy.  Therefore, Genie may estimate a Na-

22 source intensity near zero.  However, the estimated source intensity for Cu-64 or Ga-

68 may be relatively large, since the primary line for these isotopes, at 511 keV, is strong.  

In the source-present case then, we have observed that identification skews towards Cu-

64 and Ga-68 and the source-intensity estimate is larger than if Na-22 were the only 

isotope in the library.  When only background is present, we observed that the intensity 

estimates for Cu-64 and Ga-68 rarely were larger than those for Na-22.  Therefore, when 

the only library source is Na-22, the difference in estimated source intensity between the 

background and source-present case is small, but when the full library is used, the 

difference is larger, due to the larger values for Cu-64 and Ga-68.  This results in 

improved detection performance, but poor identification performance.   

Figure 7.6 shows how often the correct isotope is estimated for the point source – 

the identification performance – for the described algorithms and for Genie.  

Identification in the described algorithms occurs at the parameter-estimation stage, and is 

therefore the same for the GLRT and SIT.  However, the estimated parameters are 

different when using the simplified system response rather than the complete system 

response.  As stated before, the complete system response gave the best detection 

performance in the GLRT and the simplified model gave the best detection performance 

in the SIT for experimental data, so these are used for detection.  However, the best 

detection performance does not imply the best identification performance.  Figure 7.6a 

shows the performance using the complete system response matrix and Figure 7.6b 

shows the performance when full-energy deposition is assumed.  Both show the fraction 

of trials that are estimated to most likely contain a point source with that identity, when 

the algorithm is forced to choose from the nuclide library.  The first column for each 

nuclide is for trials with just background present and the next three columns are for trials  
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Figure 7.6.  The experimental identification performance using (a) the complete 

system model, (b) the simplified system model, or (c) Genie 2000.  The bars 

show the fraction of time each nuclide on the horizontal axis was reported for the 

background-only trials and for each set of source-present trials for each of the 

three isotopes.  Background was an average of 5000 events and the source 

contribution was an average of 79 events, Poisson distributed, using a single 

detector module.  The difference between the identification fraction for a source 

with only background present and the identification fraction when the true source 

is present gives a measure for identification performance.  In all cases, the source 

direction is unknown. 

with either a Cs-137, a Co-60, or a Na-22 source present with the background.  In these 

figures, each source contributed an average of 79 two-interaction events and the 

background contributed an average of 5000 two-interaction events.   

It is important to note that for each trial, even if it is most likely for no sources to 

be present, the algorithms are forced to choose the most-likely single nuclide.  The 

maximum-likelihood estimate of the source nuclide is needed to compute the GLRT and 

SIT.  The nuclide it chooses is shown on the identification performance plots, while the 

detection performance was shown in Figure 7.5.   

In Figure 7.6a and b, a larger fraction of the trials are identified as a source when 

that source is present than when only background is present, as expected.  The difference 

between the fraction of trials identified as a specific source when just the background is 
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present and when the true source is present tells how well the algorithm can correctly 

identify the present nuclide.  In addition, a flatter distribution of nuclides for the 

background-only case shows that the algorithm does not preferentially identify any 

nuclide in the background spectrum.  One can see that the identification performance is 

better when the complete system model is used compared to the simplified system model.  

This is probably because the complete system model also makes use of the Compton-

continuum events to better determine which source is present.  In the best case, 65% of 

trials were identified correctly as Cs-137 when it was present.  

Figure 7.6c shows the same measure of identification performance using Genie 

2000.  In the Co-60 and Na-22 cases, identification is better than the statistical methods, 

probably because all events were used, rather than only two-interaction events.  However, 

using only two-interaction events in Genie 2000, identification performance is much 

weaker than the GLRT and SIT in all cases because the full-energy peaks in the spectrum 

due to the sources are small.  An interesting plot feature is the large fraction of trials 

identified as Na-22 in the background.  This is due to a natural background peak at 

511 keV, an emission line of Na-22 as well.  So, identification of Na-22 might be 

expected due to background lines since this line was included in Genie‟s library for Na-

22.  In the algorithms developed here, however, Na-22 is not identified as often, 

especially using the complete model, because, although a peak may be present in the 

spectrum, it can be recognized as background because the intensity is not localized in 

space like a point source.  This shows how imaging can be used to find the presence of a 

point source with emission lines also present in the background.   

Unknown Background and Known Source Direction 

Figure 7.7 shows the experimental detection performance when the possible 

source direction is known for the Cs-137 source scenario described above.  Here, the 

source direction is known within a cone half-angle of 10°.  The possible source direction 

may be known in applications where one is interested in the presence of a source within a 

container, for instance.  

The performance in this case is compared to the performance when both the 

possible source direction and identity are unknown.  The difference between these shows  
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Figure 7.7.  An ROC curve of the experimental detection performance for an 

average background of 5000 events and an average Cs-137 source of 79 events, 

Poisson distributed, for the cases of known (solid lines) and unknown source 

direction (dashed lines) using the source library in Table 7.1.  Approximately 50 

trials of background-only and source-present cases were performed using a single 

detector module.  The performance of each of the algorithms described is shown.  

Genie 2000 does not benefit from known source position.   

the large detection improvement available to an imaging system when it can focus on a 

specific direction or object.   

The performance improves because at a constant test-statistic threshold, the rate 

of false-positive detections decreases by approximately the fraction of the solid angle 

subtended by the possible source directions to the solid angle in all directions, as 

described in Eqn. (6.9) and Eqn. (6.10).  This allows a lower detection threshold while 

keeping the same false-alarm rate and, hence, the ability to detect less obvious sources.  

Figure 7.8 shows the identification performance for the same experiment, when 

the simplified system model is used.  The performance using the complete system model 

is similar.  Identification performance is better when the possible source location is 

known compared to when it is unknown, reaching 76% and 81% correct identification 

respectively when using the complete system model and when using the simplified 

system model.  Interestingly, the simplified system model performs better in this case,  
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Figure 7.8.  The identification performance using the simplified system model 

when the possible source direction is known.  The bars show the fraction of time 

each nuclide on the horizontal axis was reported for the background-only trials 

and for the Cs-137-present trials.  Background was an average of 5000 events 

and the source contribution was an average of 79 events, Poisson distributed, 

using a single detector module.  The difference between the identification 

fraction for a source with only background present and the identification fraction 

when the true source is present gives a measure for identification performance.   

primarily because there is a larger fraction of Ag-110m identifications in the source case 

when using the complete system model.  This may be due to forcing the algorithm to 

choose a source position that may not appear especially hot.  The fraction of trials 

identified as each isotope in the background and source-present cases when using the 

simplified system model is shown in Figure 7.8.  Compare this to the background and Cs-

137 cases in Figure 7.6b when the source direction is unknown.  

Counting Time and Unknown Background 

Thus far, experiments have looked at situations with a weak signal-to-noise ratio 

with a large number of background counts.  In this section, we investigate the effect of 

increasing the measurement time (or equivalently the detector-system efficiency) as the 

source-to-background ratio is held constant.  Figure 7.9 shows the detection performance 

for each algorithm as the measurement time increases from that required to collect an 

average of 10 background events to that required to collect an average of 1000 

background events.  The source is Cs-137 with a strength of 11% of the background 

intensity, and at least 200 trials of each case were performed.  
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Figure 7.9.  An ROC curve of the experimental detection performance on a single 

detector module for an average background of between 10 and 1000 events, 

Poisson distributed, as noted in the legend, and an average Cs-137 source 

intensity of 11% of the background strength, using the source library in Table 

7.1.  At least 200 trials of background-only and source-present cases were 

performed for each curve.  The performance of each of the algorithms described 

is shown.   

As the measurement time increases, detection performance improves for all 

algorithms, at approximately the same rate as one would expect due to a signal-to-noise-

ratio argument, although for even longer counting times, performance may improve faster 

than this as enough events are collected to begin to produce smooth images and spectra.  

At any particular measurement time, the algorithms presented here perform similarly to 

using all events with Genie.  However, using the same set of two-interaction events, these 

algorithms perform better than using a test statistic from Genie, with the GLRT‟s 

performance with a background of only 10 events near that for Genie‟s after 100 

background events.  

Identification performance is shown in Figure 7.10 for the complete system 

model.  When few total events are present, sometimes the likelihood ratio is unity for 

each possible source, so all are equally unlikely.  In this case, no source can be identified.  

However, after collection of 100 events, there is always a most-likely source.  The figure  
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Figure 7.10.  The identification performance using the complete system model as 

the source-to-background ratio is held constant and the collection time is 

increased.  The bars show the fraction of time each nuclide was reported for the 

background-only trials and for the source-present trials.  The order of the 

isotopes in each column matches that of the legend.  In a few cases, all nuclides 

were equally unlikely, so none was reported.  The source was Cs-137 with a 

strength of 11% of the background.  The difference between the identification 

fraction for a source with only background present and the identification fraction 

when the true source is present gives a measure for identification performance.  

A single detector module was used.   

shows that when no source is present, Cs-137 is chosen as the most-likely source about 

13% of the time, no matter how many events have been collected.  When Cs-137 is truly 

present, it is identified as such a much larger fraction of the time.  Even when receiving 

1.1 events on average from Cs-137 for the shortest measurement time, the algorithm 

chooses Cs-137 as the most-likely source 35% of the time.  A similar trend is present 

using the simplified system model, with comparable background performance and correct 

identifications in the source-present case occurring in about 10% fewer of all trials.  

Genie identifies Cs-137 in between 1% and 12% of trials in the background case and 

produces correct identifications in the source-present case similar to those in Figure 7.10.  
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Unknown Background Simulation Performance 

So far, only experimental performance has been shown.  The system model 

includes a number of assumptions that may degrade performance in experiment, 

including assumptions of a spatially uniform background, no surrounding materials, 

uniform detector performance, and simplifications in probability calculations [51].  All 

but the last of these is absent in simulation, so a simulation can give an idea of the 

performance degradation due to model mismatch within experimental results.  In 

addition, the performance degradation due to the assumption of spatially uniform 

background can be quantified by comparing simulations of spatially uniform and non-

uniform background.  

A simulation with the same source and background intensities as the experiment 

was performed using Geant4 [75].  The background was simulated as either uniform in 

space or with one hemisphere hotter than the other, with an emission spectrum similar to 

the measured background spectrum, developed by Robinson et al. [74].  In the non-

uniform case, one hemisphere was either twice as hot or eight times as hot as the other.  

Experimentally, in our laboratory, the background image is about a factor of two non-

uniform with extra non-uniformity due to detector response.  Other environments may be 

more or less uniform.  A 662-keV parallel-beam flood source was used as the source and 

was placed in either the hot or the cold hemisphere.  In experiment, the source was on the 

boundary between the hemispheres.  Realistic energy and position resolution were 

simulated.  

The detection performance using the simulation is shown in Figure 7.11 for 

approximately 50 trials of the background-only and source-present cases.  It appears that 

model mismatch of background non-uniformity has little effect on the simulated 

performance when the background is a factor of two hotter in one hemisphere, no matter 

where the source is located.  That is, the background events still appear more probable to 

be spatially uniform than to be spatially uniform with a single point source matching the 

energy spectrum of a library source, whereas the source events still appear to come from 

a localized direction with a spectrum in the library even when mixed with the background 

events.  This may be because many background events are equally likely to be caused by 

photons from one hemisphere as the other, but the events are not as likely to be due to  
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Figure 7.11.  An ROC curve of the detection performance for an average 

background of 5000 events and an average Cs-137 source of 79 events, Poisson 

distributed, using the source library in Table 7.1 and a single detector module.  

Simulated performance with spatially uniform background (solid lines) and 

background with a hemisphere twice as hot as the other (dashed lines) or 8 times 

as hot as the other (dot-dashed lines) is compared to experimental performance 

(dotted lines).  In the simulation, the source position was always in the cold 

hemisphere where detection performance is worst.  Approximately 50 trials of 

background-only and source-present cases were performed.  The two colors 

correspond to two different detection algorithms.   

photons from the exact same place as other events.  The assumption of spatially uniform 

background may therefore be sufficient for backgrounds that are a factor of two non-

uniform between two hemispheres.  

When the background is a factor of eight non-uniform, there is no performance 

degradation when the source is in the hot hemisphere (not shown in Figure 7.11), but the 

performance can be significantly worse if the source is in the cold hemisphere, especially 

for the GLRT.  Because the background modeled in the algorithms is spatially uniform, 

point sources in the cold hemisphere can appear more like a uniform background than a 

uniform background with single hot spot.  Point sources in the hot hemisphere stand out 

more since they fall on top of a hot region.  
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Also included for comparison is the performance using experimental data.  

Performance is always better in simulation than experiment except for the case of 

background with factor-of-eight non-uniformity and a source in the cold region.  

Although a portion of the performance degradation may be due to local non-uniformities 

in the background, the significant difference between simulation and experiment in the 

case with non-uniform background suggests that a large portion is due to other model 

mismatch.  The achievable performance with model or detector improvements is seen in 

the simulated results.  

Genie performance is not included on this figure since the simulated background 

includes a significant peak at 662 keV (an emission line of Cs-137).  Genie therefore 

detects Cs-137 presence whether or not a point source is present.  With unknown 

background, Genie therefore cannot differentiate between detection of the 662-keV line 

from background and a Cs-137 point source.  

Known Background 

In some situations, one might know something about the spectral distribution of 

the background – either the spectral shape or the shape and intensity.  In this study, an 

18-detector system was used to study the improvement achievable when the background 

is known.  First, the GLRT and SIT performance in an unknown background is shown for 

this system using multiple-interaction events when the background count rate can vary by 

up to a factor of two.  This is compared with the performance of Genie 2000 using its 

optimal parameters, when it is allowed to use all events from the detector.  Finally, 

known background is included and the performance shown.   

GLRT and SIT with unknown background 

Performance of the GLRT and SIT are shown in Figure 7.12 and Figure 7.13 for 

an unknown background using an 18-detector array.  This is the baseline performance 

when nothing is known about the background or sources.  In this case, as above, the 

background spectrum must be estimated along with the source information.  Using the 

complete model for both the GLRT and SIT, detection and identification performance is 

better than using Genie 2000, as shown in Figure 7.12 and Figure 7.13.  The full-energy  
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Figure 7.12.  Detection performance for the GLRT and SIT using either the 

complete system model or the computationally simpler full-energy model for a 

Cs-137 source around the 18-detector array system when the background 

spectrum is unknown.  A trial is considered a detection if the test statistic was 

above a threshold.  In addition, Genie 2000 performance is shown for the same 

measurement time.   

 
Figure 7.13.  Identification performance for the GLRT or SIT using either a) the 

complete system model or b) the computationally simpler full-energy model for a 

Cs-137 source around the 18-detector array system when the background 

spectrum is unknown.  Since both the GLRT and SIT use the same parameter 

estimates, identification performance is the same for both detection methods.  c) 

The identification performance for Genie 2000 using its optimal settings.  If any 

sources were equally likely, one of the sources was choosen randomly.    
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model presumably performs less well than the complete model because of greater 

mismatch between the experiment and the model.  Since the GLRT and SIT make no 

assumptions of background spectral shape but use imaging, they are also able to detect 

the presence of point sources with emission lines also present in background and locate 

the direction of sources, which is not possible using Genie 2000.   

GLRT and SIT with known background 

The performance for the GLRT and SIT are shown in Figure 7.14 and Figure 7.15 

when a background spectral shape, but not intensity, is provided.  This spectral shape was 

from a prior long background measurement.  Detection and identification significantly 

improve over an unknown background.  Known background spectral shape produces 

more accurate likelihood calculations since the background is known rather than 

estimated, and it also produces better estimates of other parameters, such as the source 

intensity and source direction.  Therefore, if the background spectrum is known, it can be 

used to improve detection and identification performance.  

Again, the model assuming full-energy deposition does not perform as well as the 

more complete system model, presumably because of model mismatch.  However, when 

the background shape is known, the performance degradation in using this more 

computationally efficient method is less severe. 

Performance in Genie changes very little if the background is known.  Subtracting 

background even when the background count rate is known results in a very similar curve 

to the unknown background case [147]. 

Multiple Source Detection 

Unknown number of sources 

When the number of possible sources is unknown, the number of sources must be 

estimated, as described on page 114.  The modified GLRT has two parameters that affect 

the false- and true-alarm rates:  the threshold on the test statistic T and the amount to 

penalize each additional source  .  The latter describes the sensitivity to the presence of 

multiple sources, and the former describes the total-alarm probability.   
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Figure 7.14.  Detection performance for the GLRT and SIT using either the 

complete system model or the computationally simpler full-energy model a Cs-

137 source around the 18-detector array system when the background spectrum is 

known.  A trial is considered a detection if the test statistic was above a 

threshold.  In addition, Genie 2000 performance is shown for the same 

measurement time.   

 
Figure 7.15.  Identification performance for the GLRT or SIT using either a) the 

complete system model or b) the computationally simpler full-energy model for a 

Cs-137 source around the 18-detector array system when the background 

spectrum is known.  Since both the GLRT and SIT use the same parameter 

estimates, identification performance is the same for both detection methods.  

Genie performance is similar to that shown in Figure 7.13c.   

Figure 7.16 shows the probability to estimate the presence of two sources when 

two Cs-137 sources are present and when no sources are present as a function of the 

model-order parameter  .  Each Cs-137 source contributes an average of 235 multiple-

interaction events in a background of 4050 multiple-interaction events.  Full-energy 

deposition was assumed, the background was unknown, and the sources were assumed to  
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Figure 7.16.  The probability to estimate two sources instead of one as a function 

of the model order parameter   for the case of just background, one true Cs-137 

source, and two true Cs-137 sources with two different source strengths.  200 

trials of each case were performed.   

be from the library in Table 7.1.  If the model-order parameter is set very low, two 

sources are estimated to be present in every single trial, even if one source or no sources 

are present.  As the parameter increases and more highly penalizes multiple sources, the 

trials with the two sources are estimated to have two sources a larger fraction of the time 

than the background or single-source trials.  Increasing the source strength or decreasing 

the background gives a larger separation; the stronger the single source, the lower a 

model-order parameter is needed to estimate it as a single source and the stronger each of 

the two sources, the higher the model-order parameter can be to still estimate two 

sources.  This is shown in the figure for a single source with twice the strength and for 

two Cs-137 sources with thrice the strength.  A similar curve exists for trials with two 

different isotopes or when using the complete radiation-interaction model.   

Due to model mismatch, the model-order parameter must be significantly larger 

than unity.  The choice of operating location depends on the consequence of incorrectly 

alarming for two sources when one or none is present and the consequence of missing a 

second source that is truly present.  We choose to operate, rather arbitrarily, with a   

value of 16 that gives just over 50% correct estimation of two sources for the weakest  
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Figure 7.17.  The types of alarms as a function of test-statistic threshold when the 

model-order parameter is set to 16.  The complete system model is used in a) and 

b), and the full-energy model is used in c) and d).  Source trials in a) and c) have 

a single Cs-137 source present and in b) and d) have two Cs-137 sources present.   

case studied without estimating two sources a large fraction of the time in the background 

or single-source case.   

Figure 7.16 also shows that when only one Cs-137 source is present, it is correctly 

estimated as a single source even a larger fraction of the time than for background.  This 

result is reasonable because the test statistic for detection for the background trials is 

generally lower than for any of the source-present trials.  That is, the background trials 

see little evidence that any source exist, but if forced to say a source or sources are 

present, the data can often be explained better by estimating two sources rather than one.   

To understand the detection statistic suppressed in this plot better, consider Figure 

7.17.  Figure 7.17 shows the types of detections as a function of the threshold on the test 

statistic for the single- and two-Cs-137 case when the model-order parameter is set to 16.  

The false-alarm rate recorded from the background trials is shown as negative alarm rates 

and true positive alarms recorded from the source-present trials are shown as positive 

alarm rates.  The solid line shows the fraction of multiple-source detections as a function  
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Figure 7.18.  The ROC curve detection performance for each Cs-137 source 

individually in background and when both sources are present in the same 

background.  a) uses the complete sytem model and b) uses the full-energy 

model.  Any test statistics over the threshold is considered a detection or false-

alarm irrespective of the identification or number of sources estimated.  The 

model-order parameter   is set to 16.   

of threshold.  It is important to remember that the fraction of multiple-source detections 

can be increased by decreasing the model-order penalty parameter.  Then, a larger 

fraction of two-source trials will have both sources detected and correctly identified, at 

the expense of incorrectly estimating two sources when only one is present.   

As in Figure 7.16, Figure 7.17 shows that a larger fraction of trials are identified 

as containing two sources when two sources are actually present, compared to 

background-only or one-source trials.  This is true whether the full-energy model or the 

complete system model is used.  In addition, we see that in this case the overall detection 

performance – if an alarm goes off when at least one source is present and does not when 

all sources are absent – is significantly better when there are two sources.  This is not 

always the case, especially if there are multiple sources of the same isotope.  Depending 

on their locations, multiple sources can look like a uniform spatial background (if they 

are spread evenly in space), or a single hot spot (if they are close to one another).  The 

second case gives much better detection.  In this example, better detection can be 

explained by the second source being located in a direction – directly in front of a plane – 

that is more easily detectable.  Figure 7.18 shows the ROC curve for each Cs-137 source 

individually and for both together.  It is clear that detection in the two-source case is 

similar to that when just the second source is present.   
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Figure 7.19.  The ROC detection performance for each Cs-137 source 

individually in background and when both sources are present in the same 

background when the number of sources present is known for each set of trials.  

a) uses the complete sytem model and b) uses the full-energy model.  Any test 

statistics over the threshold is considered a detection or false-alarm irrespective 

of the identification or number of sources estimated.   

Figure 7.17 also shows identification performance.  The background trials 

estimate all isotopes about evenly, with no isotope being estimated in more than 17% of 

the trials, except for Ag-110m, which tends to be preferentially estimated as the second 

source, appearing as the second source 22% of the time.  In the source-present trials, 

identification as Cs-137 is almost always correct, especially when two sources are 

present.  Those trials in which the second source does not exist, or is incorrectly 

identified, the identification is spread evenly between all sources, but with a preference 

for Ag-110m, especially when the complete system model is used.   

Known number of sources 

When the number of sources that could possibly be present together is known a 

priori, the standard GLRT can be used for detection just by adding new parameters to 

estimate the position, identity, and intensity of each extra source.   

Figure 7.19 shows the detection performance when the number of sources is 

known for each case in Figure 7.18.  Detection performance is very similar no matter if 

the number of sources is known.  For the case of two sources, each trial will give two 

identifications.  Figure 7.20 shows the results of identifications reported for each trial 

regardless of whether they were detected.  The distribution of isotopes chosen as the first 

source when there is just background is the same whether there is thought to be a single  
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Figure 7.20.  The identification performance when the number of sources present 

is known for each set of trials with one source present and with trials in which 

both sources are present.   

source or two sources.  When asked to find a second source, very similar isotopes are 

estimated, as shown in the second series of Figure 7.20.  When there is a source present, 

the identification performance depends on the source position.  In these trials, the second 

source is in a position with very good imaging performance and therefore has better 

detection and identification even though the number of recorded counts is similar.  The 

last two series of Figure 7.20 show the identification performance for each source alone.  

When two sources are present together, the algorithm is correct a larger fraction of the 

time for the first source it estimates since this is the easier source to find.  This is 

consistent with other source pairs tested.  Still, the fraction of trials with correct 

identifications for both sources is similar to the fraction correct when each source appears 

individually.  The same is true for the estimated source locations.  For these sources and 

locations, there does not appear to be any confusion due to the presence of multiple 

sources. 

Conclusions 

This study investigated the use of direction and energy information to detect and 

identify point sources of radiation in an unknown or known background.  Two algorithms 

were applied that both use maximum-likelihood estimates of the background intensity 

and spectrum and the source identity, intensity, and direction.  In the case of a weak 
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single source possibly present in a somewhat spatially non-uniform, unknown 

background, the generalized likelihood ratio test (GLRT) and the source-intensity 

estimate scaled by efficiency and the square root of the total counts (the SIT) both 

performed as well or better than using a test statistic of the maximum reported source 

activity from the commercial spectral-analysis software Genie 2000.  In addition, the 

GLRT and SIT, unlike Genie, made no assumption that the source lines were absent from 

background.  The better performance of the GLRT and SIT may be because they are 

statistical algorithms and can discriminate the presence of a point source from distributed 

background.  Using the methods described above, identification performance was also 

observed to be similar with Genie, and the algorithms presented in this work were 

correctly able to reject a possible source with emission line also present in the 

background.  

Knowing the source direction was shown to improve detection performance by 

decreasing the false-alarm rate.  This has implications for applications in stand-off 

detection on a specific target or, with a more efficient detector system, at chokepoints 

where the possible source is known to be in a moving vehicle or container.  By visually 

tracking the object, one can assume a possible source direction, improving detection. 

Performance degradation due to some aspects of model mismatch also was 

presented.  However, no significant performance degradation was observed due to 

background that had one hemisphere twice the intensity of the other when the model 

expected a spatially uniform background.  

Performance was also investigated using an array system consisting of 18 

position-sensitive CdZnTe detectors.  The GLRT and SIT have improved detection and 

identification over standard spectroscopic software running on the same set of events 

when the system model including partial-energy deposition is used, even when the 

background is unknown.  With known background spectral shape, detection and 

identification performance greatly improved.  Therefore, if information about the 

background spectrum is available, it should be included in the detection and identification 

methods.   

Finally, performance was investigated when multiple sources are possibly present, 

both when the number of sources is known a priori and when only the maximum number 
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is known.  In the first case, detection and identification was found to perform similarly to 

when a single source is present.  In the second case, a penalizing function was used to 

control the sensitivity to additional sources.  This gave some degree of separation 

between trials with two Cs-137 point sources and a single Cs-137 source.  Background 

trials estimated the presence of two sources more often than when a single source was 

present, although with a low detection test statistic.  Although estimation of the number 

of sources was not always reliable, detection and identification performance of the 

sources that were estimated to be present was similar to looking for each source 

individually.   

The GLRT and SIT are useful for detection and identification of threat sources 

when the background is unknown and may contain the same emission lines as a threat 

source.  In this situation, Genie and standard spectroscopic methods cannot function.  

Yet, even when the source has distinct emission lines from background, the GLRT and 

SIT often have better detection performance than Genie.  Therefore, even for situations in 

which the source emission lines are known to be distinct from background or the 

background spectrum is known, the GLRT and SIT may improve detection over 

implementations of standard spectroscopic methods such as Genie.  However, since the 

types of algorithms in Genie and in the GLRT and SIT are quite different, the 

performance difference may be explained by differences in the capability of the 

algorithms to detect a weak signal along with differences in the utility of the information 

each uses.  Nevertheless, the GLRT and SIT have not been designed for the situation of 

unique source-emission lines; better performance is still possible by including constraints 

on the background spectral shape so as not to contain emission lines similar to a source 

and by using the spectral information from single-interaction events.   
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Chapter 8  

Summary and Future Work 

There are more things in heaven and earth, Horatio, 

Than are dreamt of in your philosophy. 

– Shakespeare, Hamlet, Act 1, Scene 5 

Summary 

Three-dimensional position sensitive, room temperature, semiconductor detectors 

offer a number of advantages over other systems, including good energy resolution, quick 

start-up time after calibration, and the ability to image.  This dissertation has presented a 

number of new imaging and detection algorithms to use the data from these systems for 

practical applications.  In addition, software has been designed to implement these 

algorithms.   

Imaging gamma-rays with position-sensitive detectors can take many forms, using 

the different types of gamma-ray interactions.  In most all methods, the inverse problem 

must be solved – finding the gamma-ray distribution from a set of measurements.  Simple 

back-projection solves this roughly by multiplying the count distribution by the transpose 

of the modeled forward-projection matrix, with heuristic modifications so that it better 

approximates a true inverse.  If the forward-projection matrix is known well, better 

images can be obtained by estimating the maximum likelihood gamma-ray source 

distribution using the MLEM method.  The dimensions of the reconstruction can be 

chosen to match the situation.  The new method presented here of reconstructing to an 

isotope-direction domain instead of an energy-direction domain can give the isotopes 

present in each direction or location around the system.  In addition, the smaller number 

of parameters may improve estimates, especially with few events.  Current results are 

complicated by model mismatch and energy calibration.  When moving targets are 

present, a new method is now available to reconstruct the image portion to a combined 
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backdrop and target space to find the energy distribution and intensity in each direction of 

the backdrop and each moving target.   

To perform these imaging algorithms efficiently with a number of options, 

software called UMImaging was designed.  UMImaging is platform independent, with a 

modular structure that allows easy redesign of the interfaces and easy addition of 

reconstruction methods and options.  A number of basic geometries are included to 

perform calculations for the reconstruction methods.  It supports highly multidimensional 

data analysis with arbitrary binning in each dimension, which informs the user about 

detector and algorithm performance.  It also supports parallel computation.   

The extra dimension of imaging available on position-sensitive gamma-ray 

detectors can help improve the detection of point sources in an extended background.  

Analysis has been performed to quantify this improvement.  Using only the spectrum for 

an 18-detector array, best SNR for detection of a known source with emission lines not in 

the background occurred using all events.  By only including events that passed the 

known Cs-137 source direction, the SNR using multiple-interaction events improved 

considerably, but total SNR using all events was only 7% higher when imaging was 

included.  Applying the Bonferroni correction when the source direction is unknown, the 

addition of imaging only improved detection performance at very low false-alarm rates 

on this system.  Similar analysis can be applied to future imaging systems to quantify 

their imaging performance for detection and inform system design. 

Still, imaging is important when searching for a source, by telling the user in 

which direction to look.  Imaging is also the only way to detect a point source that may 

share emission lines with the background since in that case the presence of a peak is not 

sufficient evidence for the presence of the point source.  Two algorithms have been 

applied to this situation.  The GLRT and SIT use a model of a spatially uniform 

background with either unknown energy distribution, known shape of the energy 

distribution, or completely known background, and a set of point sources with some 

intensities, directions, and isotope identities.  Performance for detection and identification 

has been shown for each case and, in almost all cases, exceeds that of detection based 

only on the spectrum using peak fitting.  Known source location, source identity, or 

background shape can considerably improve detection performance.  Finally, detection of 
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multiple sources using a modified GLRT performs as well as detection of a single source 

when the number of sources is known.  Estimation of the number of sources present is 

also possible, and trials with two sources present estimated two sources a larger fraction 

of the time than trials with only one source. 

Future Work 

Future work may make incremental improvements in these methods to estimate 

better, handle more situations, and run faster.  As in all science and engineering, there is 

also the possibility for fresh, new ideas that will perform better than these, which are not 

even dreamt of in our philosophy.  In this section, I hope to briefly describe some of the 

incremental improvements that will make the imaging and detection systems more 

accurate, versatile, and rapid.   

Imaging 

Over the last decade, imaging algorithms for three-dimensional-position-sensitive 

systems have emulated those in the medical-imaging field, from simple back-projection, 

to filtered back-projection, to MLEM.  It is hence useful to imitate some of the more 

recent advances in medical imaging, including calculation speed improvements, motion 

compensation, image regularization, quantitative imaging, and model improvements. 

Model Improvements and Quantitative Imaging 

One of the most pressing, yet incremental, issues in the current system is 

mismatch between the modeled response and the true response.  This hurts detection, 

skews intensities of sources in different directions, reduces the usefulness of 

deconvolution into the isotope domain, and limits the use of single-interaction and coded-

aperture imaging.  Detector characteristics such as the finite detector voxel size, anode 

and edge dead layers, pixel jumping, and surrounding material currently are omitted from 

the model, as are physical processes such as pair production.  Some of these factors need 

to be included in the system matrix calculation itself, while others, such as surrounding 

materials, need only be included in the simulations used to calculate the sensitivity.  

Together with dead time corrections, the system should be able to accurately estimate the 



 

143 

 

activity of radioactive sources at known distances.  In addition, significant work is still 

needed to understand and predict the error in MLEM estimates. 

Regularization 

As mentioned on page 41, regularization can be used to improve image quality if 

we expect certain features in images.  For instance, in all the situations described above, 

the energy-image is expected to be smooth, or even flat, in most regions, with a few sharp 

peaks in the image (point sources), and the spectrum (photopeaks).  The extent of the flat 

regions may even be known by looking for object edges in an optical image of the same 

scene.  Regularizers can be built to encourage energy-images that appear as expected and 

penalize energy-images that look significantly different.   

Moving Objects and Detectors 

Imaging the radiation produced from moving objects now occurs using the known 

object direction from optical cameras.  Stronger sources could also be tracked by 

matching up the recorded data themselves, as is sometimes done in medical imaging to 

improve image quality.   

With a moving detector, or multiple detectors, reconstruction will probably occur 

in three-dimensional space.  However, it is not clear how to define the region over which 

to reconstruct.  Reconstructing a high-resolution map everywhere can become quite 

memory and computationally intensive due to the possibly large regions and additional 

spatial dimension compared with 2D imaging.  On the other hand, reducing the region 

size could lead to spectral and spatial artifacts if a hot source exists just outside the 

region.   

Moving or multiple detectors also provide a rich field to investigate for detection 

algorithms.  For instance, how should the detectors move or where should they be placed 

for optimal detection or search performance?  Do the answers change when the detectors 

can image?  How can you quantify the effect of detector or algorithm improvements in 

search scenarios?  What methods can be used to reduce computation when there are many 

detector systems providing copious data?  Would coincident events between detector 

systems ever be useful? 
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Calculation Speed 

The limiting factor for many of these improvements is computation time.  Very 

accurate system models are possible with numerical integration through all possible 

uncertainties, but doing so requires significant computation [148].  Therefore, by 

improving the system model, we may increase computation time.  Many studies in 

medical imaging have shown order-of-magnitude improvement in image reconstruction 

speed using graphics processing units (GPUs).  GPUs excel at the ray tracing required for 

calculating path lengths and intersections, so it is worth considering this approach for 

image reconstruction, especially in 3D reconstructions.  It might also be worth 

considering alternative energy and spatial parameterizations, which could reduce 

calculation time by simplifying some calculations or reducing the number of bins in some 

regions.  Other imaging and detection algorithms may also be faster.   

Detection 

There are a few limitations with the detection algorithms presented in this work.  

First, they assume a spatially uniform background.  While this does not seem to affect 

performance for the backgrounds in laboratory environments, more non-uniform 

backgrounds could be problematic.  The performance of these algorithms should be 

tested in other background environments, and, if necessary, other background spatial 

distributions should be included in the model by parameterizing background spatial 

distributions using an appropriate set of basis functions.  Exploiting optical images of the 

scene may help to include background spatial distributions.   

Second, these detection algorithms require a known emission spectrum from the 

threat sources for best performance.  Shielded sources, however, have an emission 

spectrum partially shifted to lower energies due to interactions in the shield.  Certainly 

the direct radiation can still be detected as indicative of the source, but the additional 

gamma rays at lower energies may confuse identification and will not contribute to the 

source signal.  One could build the type and amount of shielding into the model to handle 

situations with shielded sources.   

Third, the algorithms do not make use of time-series data, which could be 

informative.  For instance, some sort of background tracking could help to inform the 



 

145 

 

algorithm of the range of possible backgrounds, giving performance in between known 

and completely unknown background.  The effect of poor background estimates should 

also be studied.   

Fourth, the GLRT and SIT rely on a library of source identities, and detection will 

not occur unless a source matches one of these.  Sources not in the library should be 

detected as well; however, expanding the library size leads to more false alarms and a 

greater computational burden.  Other types of algorithms, such as anomaly detection, do 

not require an explicit library [149].   

Finally, the GLRT and SIT are computationally slow unless tricks are used which 

somewhat degrade performance.  Including shielded sources or non-uniform backgrounds 

in the model could worsen this.  Also, the optimization algorithms for isotope identity 

and source location could certainly be faster.  Beyond this, there are a multitude of other 

detection algorithms, such as pattern recognition, anomaly detection, or simple peak-

fitting algorithms, which might have as good, or better, detection performance with less 

computation and fewer of the drawbacks described above.   

System Improvements 

The future work described above is independent of any hardware improvements.  

Possible changes to the hardware for better performance in different scenarios are 

extensive, but one stands out as practical for improving imaging and detection:  digital 

waveform readout.  Reading the digital waveforms from each electrode allows sub-pixel 

resolution of the interaction location and more precise understanding of the interactions, 

such as discriminating multiple interactions under a single pixel or identifying 

photoelectric absorptions in some situations.  These new data can be used in the system 

model to improve imaging and detection.   

Other Applications 

Applications for 3D-position-sensitive semiconductor systems abound.  In the 

field of detection and imaging for security applications, for instance, these systems could 

be used for imaging of thermal neutrons using the high thermal-neutron cross section of 

Cd-113 [150], muon tomography to find high-Z and dense objects in cargo [151,152], 
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active interrogation, or other missions.  Certainly, this technology has come far, but there 

is still much to be done.    
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