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ABSTRACT

Techniques and Applications of Compton Imaging for Position-Sensitive
Gamma-Ray Detectors

by

Weiyi Wang

Chair: Zhong He

Three-dimensional position-sensitive CdZnTe gamma ray detectors are capable of

achieving excellent energy resolution at room temperature. With this versatile detec-

tor technology, many types of imaging techniques and applications become possible.

The maximum-likelihood expectation-maximization (MLEM) method estimates the

source distribution for which the set of measured events is most probable. This

method is capable of estimating the source image from each energy range as well

as the incident spectrum from each direction. The resulting deconvolved incident

spectrum, which has the correct branching ratio in the source direction, is useful

for identifying the source isotope and estimating the source activity from each direc-

tion, as well as estimating the presence, composition and thickness of any shielding

material.

To use a greater fraction of events, the system-response function is analytically

extended to three-interaction events, and then it is extrapolated to events with any

number of interactions from an array system. Also, by combining charge-sharing

xv



events, and including events with any number of interactions in the system model,

imaging makes use of all recorded events, and the angular resolution is improved.

Some interesting applications for which our detector and imaging algorithms are

shown to be capable include: reconstructing the distribution of the natural radiation

background, finding anomalies in a smoothly varying background, and compensating

for the known motion of a source. Two methods are proposed for motion compen-

sation. The first method rotates the imaging reference frame to track the movement

of the source. Alternatively, the second method extends the imaging space with

additional time dependent target bins. Both methods can be applied to simple back-

projection as well as the MLEM deconvolution. Also, when imaging directions are

desired to be associated with physical objects, an overlaid optical-radiation image can

be generated.

With the sub-pixel interaction position sensing capability of the new digital ASIC,

the image blur associated with the difference between the true Compton scattering

location and the measured centroid of the recoil electron cloud can be reduced by

altering the back-projection cone angle. Appreciable improvement of the image an-

gular resolution is achieved using this method with both simulated and experimental

data.
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CHAPTER I

Introduction

1.1 Gamma-Ray Imaging Techniques

Gamma rays are electromagnetic radiation of high frequency. They are difficult

to detect because of their high penetrating power. However, for the same reason,

detecting gamma rays is very attractive to homeland security applications because

these high energy photons require heavy material to be shielded. Reconstructing the

distribution of gamma ray emitters has been studied for decades in many fields such

as astrophysics, nuclear medicine, and industrial scanning.

Gamma rays mainly interact with the detector materials by three different mech-

anisms: photoelectric absorption, pair production, and Compton scattering. In the

photoelectric effect, electrons are emitted from the detector material as a conse-

quence of full-energy absorption from the incident gamma ray. By measuring the

electrons created from this interaction, one can estimate the energy of the gamma

ray. In CdZnTe detectors, the photoelectric effect is most prominent when the inci-

dent photon carries an energy less than 200 keV. Based solely on this photoelectric

effect, various imaging techniques have been developed, including X-ray imaging [1],

Computed Tomography (CT) [2], Single Photon Emission Computed Tomography

(SPECT) [3; 4], Positron Emission Tomography (PET) [5; 6], coded aperture [7; 8; 9],

centroid method [10], and attenuation imaging which will be briefly discussed in sec-
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tion 5.3.

Pair production can only occur when the incident photon has an energy exceeding

twice of the rest energy of an electron (1.022 MeV). An electron-positron pair is

created in this process, and when the short-lived positron annihilates with an electron,

two annihilation photons each with an energy of 511 keV are created. Since the

directions of the annihilation photons are independent of the incident gamma ray,

this effect cannot be used in estimating the direction of the gamma-ray emitter unless

the track of the initial positron and electron can be measured.

When a gamma ray Compton scatters with the detector material, part of the en-

ergy of the gamma ray is transferred to the scattering electron which recoils and is

ejected from its atom. This recoil electron travels a short distance in the detector

before losing all of its energy and creating a cloud of electron-hole pairs along its

path. In CdZnTe detectors, Compton scattering effect is the dominant interaction

type from 300 keV to several MeV [11], which defines the energy range of a Compton

camera. The basic concept of obtaining the direction of the incident gamma ray us-

ing Compton scattering is proposed by Schönfelder et al [12]. A variety of materials

and designs have been used in the development of Compton cameras [13; 14; 15].

Du, from the University of Michigan, built a Compton camera using CdZnTe for the

first time [16]. Prior to the introduction of three-dimensional position sensitivity,

all Compton camera designs involved two layers: a scatter layer and an absorption

layer. Lehner et al demonstrated Compton imaging and achieved 4π field of view

(FOV) using a single three-dimensional position-sensitive CdZnTe detector [17]. Ef-

forts have been made to combine a Compton camera with an active coded aperture

to form a hybrid imager with an extended energy range below 300 keV [18; 19]. If the

track of the recoil electron is measured, the angular resolution can be significantly

improved [20; 21]. The details of how to utilize Compton scattering to create an

image of the source distribution is discussed throughout this thesis.
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1.2 Objective and Overview of This Work

The main objective of this work is to continue developing fast, and real-time or

semi-real-time Compton imaging algorithms for three-dimensional position-sensitive

gamma ray detectors, improve imaging efficiency, explore new imaging capabilities

with an updated detector array and readout system, and study how to apply these

imaging techniques to real world applications.

Chapter II introduces the three-dimensional position-sensitive room-temperature

gamma-ray CdZnTe detector-array system that is used throughout this thesis work.

Chapter III gives an overview of the simple back-projection algorithm and explains

a method of overlaying an optical image of the environment with the gamma-ray

image. Previously in our research laboratory, the MLEM deconvolution, for the spa-

tial as well as the combined spatial-energy domain, was developed for two-interaction

events from a single 1.5-cm × 1.5-cm × 1-cm position-sensitive room-temperature

CdZnTe detector. Because of the increased volume of individual CdZnTe detector

modules and the new array configuration, the fraction of events with three or more

interactions has increased. In order to make use of these events and improve the imag-

ing efficiency at higher energies, chapter V analytically extends the system response

to three-interaction events and further extrapolates to events with any number of

interactions. Chapter IV further increases the imaging efficiency by including charge-

sharing events in the Compton image reconstruction. Chapter VI explores using the

deconvolved spectrum to estimate the presence of an isotope, source intensity, pres-

ence of shielding, and shielding material in each direction. Chapter VII demonstrates

the capability of visualizing natural radiation background as well as imaging localized

sources in the distributed natural radiation background which contains the same iso-

tope. Chapter VIII describes two methods of compensating for the motion of sources.

Given the lateral sub-pixel position-sensing capability of the new digital ASIC, chap-

ter IX proposes an algorithm to correct the error in the reconstructed back-projection
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cone produced by the difference between the measured centroid of the recoil electron

cloud and the true Compton scattering location. Finally, chapter X summarizes the

contribution of this thesis work and suggests future work.
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CHAPTER II

Three-Dimensional Position-Sensitive

Room-Temperature CdZnTe Detector Array

The radiation detection community has long desired a replacement for high purity

germanium detectors, which provide very accurate measurements of gamma-ray en-

ergy but require liquid nitrogen cooling. Wide-band-gap semiconductor gamma-ray

detectors can operate at room temperature but the electrons and holes created by

gamma-ray interactions have significantly different mobilities. For this reason, the

signals from these detectors are dominated by electron movement and require special

single-polarity charge-sensing techniques.

For more than a decade, researchers in our laboratory at the University of Michi-

gan have been using this effect to our advantage by developing a single-polarity charge-

sensing technique, which also provides 3-D position sensitivity[22]. This capability is

unique to 3-D position-sensitive room-temperature semiconductors and enables the

4π Compton imaging capability in a single crystal.

This chapter describes how to obtain both energy and three-dimensional interac-

tion position information from a pixelated CdZnTe detector. The limitations and non-

ideal characteristics of our detector are then discussed. An array of three-dimensional

position-sensitive room-temperature CdZnTe detectors is used throughout this entire

thesis work.
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2.1 Single Polarity Charge Sensing and 3D Position Sensing

Electron-hole pairs are created in a semiconductor detector during the ionizing

process when a gamma-ray interacts with the material. An electric field is applied to

the detector so the ionized electrons and holes move toward the oppositely charged

electrodes. Since the number of electron-hole pairs is proportional to the energy

deposited from the gamma ray, the energy of the interaction can be measured.

As the electrons and holes created by a gamma-ray interaction move towards anode

and cathode of the detector, signal is induced on the electrodes. The Shockley-Ramo

theorem provides a simple way to calculate the magnitude of the induced signal due

to the motion of charge carriers [23]. Based on this theorem, one can calculate that

the change of the induced signal on a electrode i from a charge q that moves from

location x0 to x1 is

∆Q = −q[φi(x1)− φi(x0)] (2.1)

where φi(x) is the weighting potential at location x. The weighting potential is

defined as the potential, after removing all space charges, under the condition that

the electrode i is set to unit potential and all other electrodes are set to zero potential.

In a room-temperature semiconductor material, the mobility of holes is much

smaller than the mobility of electrons. Several electrode configurations[24; 25; 26;

27; 28] have been developed to overcome this hole-trapping problem. These electrode

configurations are designed to be sensitive only to the movement of electrons, hence

the name single polarity charge sensing.

Figure 2.1 shows the typical weighting potential for the collecting anode as a

function of depth in a pixelated detector [11]. Because of their relative low mobility,

holes can be considered stationary during the charge collecting time. As electrons

drift towards the collecting anode, the change of the weighting potential on anode

is slightly depth dependent while the cathode signal is proportional to the depth of
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interaction due to its planar configuration. Therefore, the ratio of the cathode signal

amplitude to the anode amplitude can determine the depth of interaction, shown in

equation (2.2). He et al. [29] proposed this cathode to anode signal ratio (C/A Ratio,

or CAR) method in 1996.
SC

SA
∝ neZ

ne
= Z (2.2)

in which, SC and SA is the induced signal due to the moving of electrons on cathode

and anode respectively, n is the number of electrons ionized by the interaction, and

Z is the depth of interaction.

Figure 2.1: The weighting potential as a function of depth for a collecting anode in
a pixelated detector.

If there is more than one interaction in the detector, more than one electron cloud

is created. The ratio of cathode signal to the summation of all anode signals is an

energy-weighted centroid of the depths of the interactions.

SC�N
i=1 SAi

∝
�N

i=1 nieZi�N
i=1 nie

=

�N
i=1 niZi�N
i=1 ni

(2.3)

where N is the number of pixels that are triggered from the interaction, SAi denotes

the signal from the ith collecting anode, ni is the number of electrons in the ith
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triggered pixel, and Zi is the depth of interaction in the ith triggered pixel.

Luckily, the individual depth of interaction for multiple-pixel events can be ob-

tained from the drift time of electrons. Because of the weighting potential, as soon as

the electrons start moving, a signal is induced on the cathode and the cathode is trig-

gered immediately. The anode will not be triggered until the electrons arrive within

one pixel pitch away [11]. Since the electrons drift at a constant velocity under a fixed

uniform electric field, the time difference between the cathode trigger and each anode

trigger is a measurement of the individual depth of interaction. Combining depth

Z with X and Y information from the collecting pixel, three-dimensional position

sensitivity is achieved.

2.2 CdZnTe Detector Array System

Unlike HPGe detectors, CdZnTe has a large band gap of 1.6 eV [30], so it can be

operated in room temperature. CdZnTe also has high atomic numbers (48, 30, 52)

and high density (6 g/cm3) so it has high stopping power for radiation. In addition,

the low average ionization energy (5 eV) per electron-hole pair enables better counting

statistics. All of these properties make CdZnTe a very attractive material for radiation

detectors.

The three-dimensional position-sensitive room-temperature CdZnTe detectors used

in this work all have dimensions of 2 cm × 2 cm × 1.5 cm. One of the two square

surfaces has a planar cathode and the other one has a pixelated anode. There are

11 × 11 pixels on the anode surface. Each pixel has a pitch of 1.72 mm. A steer-

ing grid is attached to the anode surface between pixels. The cathode is normally

biased at -2000 V to -3000 V. The steering grid is biased at a much less negative

bias compared to the cathode, typically between -30 V and -200 V, in order to steer

the electrons from the gap between pixels to a collecting pixel. The signals from

all electrodes are read out from a 128-channel analog application-specific integrated
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circuit (ASIC) manufactured by Gamma-Medica Ideas. This ASIC has a dynamic

range of 0 to 3 MeV. The design and performance of this ASIC is discussed by Zhang

et al. [31]. With this ASIC, the CdZnTe detector is capable of achieving less than

0.7% FWHM at 662 keV for single-pixel events from the entire crystal volume [32].

Another ASIC is developed at the Brookhaven National Laboratory which has lower

electronic noise, so it is capable of achieving better energy resolution [33]. There are

many considerations regarding how to calibrate the detector to achieve the best spec-

troscopic performance; the calibration processes are discussed in detail by Zhang [34]

and Kaye [35].

In order to improve the spectroscopic and imaging efficiency for high-energy

events, increase the average separation distance between interaction, hence improve

the image angular resolution, an 18-detector array was recently built in our lab [36].

All detectors trigger together and operate like a single detector. As illustrated in

figure 2.2, this detector array consists two layers of 3× 3 detectors. The gap between

neighbor detectors is 2 mm. The cathodes of both layers are facing outward. The

distance between anodes of each layer is either 5.50 cm or 4.09 cm. A similar design

with 18 smaller CdZnTe crystals was discussed by Zhang [37].

2.3 Limitations of the Detector system

There are several limitations of the detector system that may compromise the

quality of the reconstructed image.

• The peripheral pixels have slightly larger effective volume than inner pixels.

• In order to eliminate noise triggers, a software trigger threshold was set to 30

keV. Interactions with energies less than 30 keV are ignored.

• Multiple interactions can occur under the same pixel. Due to the limitation of

the analog ASIC, multiple events will be reconstructed as a single interaction
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Figure 2.2: A illustration of the 18-detector array.
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with the combined energy. For multiple-pixel events, the reconstructed depth

from drift time is determined by the interaction that is closest to the collecting

anode, so there is a systematic bias for the reconstructed depth towards the

anode side.

• Studies have shown that the electron cloud may migrate to its neighbor pixels

as it drifts toward the collecting anode pixel from its interaction location [38].

This “pixel-jumping” effect is more severe on the cathode side [35], and behaves

differently in different crystals. Furthermore, this effect slightly changes the re-

constructed axis of the back-projection cone. However, since the scatter angle

is calculated only from the energy depositions, the reconstructed scatter angle

is not affected by the pixel-jumping effect. Therefore, unlike some other imag-

ing methods (such as coded aperture), Compton image reconstruction is less

sensitive to the pixel-jumping effect for events with large interaction separation

distance relative to the pixel pitch.

• The photon which interacts at the near-anode location produces a smaller signal

that is sometimes below the trigger threshold. The thickness of this dead layer

depends on the photon energy and the software trigger threshold level. An

experiment shows that for 662 keV the thickness of the dead layer near the

anode surface is approximately 1 mm [39]. This effect has a significant impact

on the single-pixel events image reconstruction (attenuation imaging).

• By digitizing the cathode waveform, a new study [40] shows the electric field in

some detectors is not uniform under the same pixel. Instead, it is a function of

sub-pixel position. As a consequence, the reconstructed depth is also a function

of sub-pixel interaction position. This effect will create a oval-shaped image for

a point source, which will be discussed in section 3.3. This effect is impossible

to correct with the current analog ASIC.
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• The electron cloud diffuses as it drifts towards the anode. Due to the long

drifting distance, the electron cloud created at the cathode side has a higher

probability to be shared by multiple neighboring pixels.
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CHAPTER III

Compton Camera

3.1 Simple Back-Projection

As illustrated in figure 3.1, when a gamma ray with initial energy E0 Compton-

scatters in the detector material with a scatter angle of θ, part of the gamma ray’s

energy E1 is transferred to a scattering electron which recoils and is ejected from its

atom. From the conservation of energy and momentum, the Compton equation can

be derived as

E2 =
E0

1 + E0
mec2

(1− cos θ)
(3.1)

in which, E2 is the energy of the scattered photon, and mec2 is the rest mass energy

of an electron.

If the scattered photon with the remaining energy E2 interacts with the detector

again in a photoelectric interaction, the scatter angle θ can be uniquely determined

by the Compton scattering equation.

θ = cos−1

�
1− E1mec2

E0(E0 − E1)

�
(3.2)

A cone can then be reconstructed with the calculated scatter angle θ and the axis along

the line between two interaction locations, as shown in figure 3.2. The incident photon

may originate from any direction on the reconstructed cone unless the direction of
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Figure 3.1: An incident photon with energy E0 deposits energy E1 in a Compton
scattering interaction with a scatter angle θ.

Figure 3.2: A cone can be back-projected with the calculated scatter angle θ and the
axis along the line between two interaction locations.
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the recoil electron can be measured [21]. Unfortunately, the size of the electron cloud

is too small for the position resolution of our system to determine the recoil electron

direction. However, the intersection of the cones from multiple incident photons points

the source direction. This algorithm is known as simple back-projection (SBP). The

angular resolution of SBP with a single CdZnTe detector with dimensions of 2 cm ×

2 cm × 1.5 cm is about 40 degrees.

3.2 Sequence Reconstruction

Due to the limited timing resolution of our detector system, it is impossible to

perform the time-of-flight measurement of the event sequence. So for an N -pixel

event, N ! possible sequences need to be considered for the image reconstruction. The

design objective of the SBP algorithm is to be simple and fast to calculate; so only

the most likely sequence is used for each event.

For two-interaction events, we first confirm each sequence is energetically possible

by checking if any interaction has an energy above the Compton edge (the maximum

energy a photon can deposit in a Compton-scattering event). If both interactions

have energies below the Compton edge, we usually favor back scattering (by choosing

the sequence with the first interaction having a higher energy) due to the fact that a

scattered photon with higher energy would be more likely to escape from our small

detector. Another method is to select the sequence with higher probability. The

two interactions and the penetration distance between interactions are considered in

the probability calculation. These two methods demonstrate similar performance for

identifying the correct sequence [11].

For three-or-more-interaction events, we also have two options. The first one is

a similar probability-based method which accounts for all interactions and penetra-

tion distances between interactions. The second method calculates a figure of merit

(FOM) for each sequence based on the agreement between the calculated scatter an-
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gles from energy depositions using the Compton formula and the measured scatter

angles from the interaction locations. The sequence having the highest FOM is used

for reconstructing the back-projection cone for that event. A simulation study shows

that for the 18-detector-array system, the second method has a better performance

for 5-or-more pixel events [41].

3.3 The Uncertainty of the Back-Projection Cones

Due to measurement uncertainties in the reconstructed energy and position, only

a few back-projection cones pass the source direction. In order to quickly locate the

source direction using SBP with a limited number of events, a Gaussian-shaped cone

width is added to each back-projection cone. The cone width is determined by its

angular resolution measurement (ARM) which is the angle between the reconstructed

back-projection cone and the actual source direction [11]. Energy and position recon-

struction uncertainty, Doppler broadening, and coherent scattering contribute to the

ARM.

Energy uncertainty changes the reconstructed scatter angle of the back-projection

cone, so it contributes equally to all directions. Position uncertainty affects the cone

axis. In an example of a two-interaction event with interactions at locations (x1, y1, z1)

and (x2, y2, z2), the polar angle θ and the azimuthal angle φ of the cone axis can be

calculated as

θ = tan−1 z2 − z1�
(x2 − x1)2 + (y2 − y1)2

(3.3)

and

φ = tan−1 y2 − y1
x2 − x1

(3.4)

It can be seen that only the polar angle is affected by the depth uncertainty. We

have observed that some detectors tend to produce elongated hot spots from a point

source while other detectors produce more circular hot spots. As demonstrated in
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figure 9.7(a) the elongated hot spot usually has a larger polar FWHM than its az-

imuthal FWHM. This effect can be verified by simulating different detectors with

different depth uncertainties. Figure 3.3 shows the SBP image from events that are

generated by a simulated detector with perfect depth resolution measuring a Cs-137

point source. The SBP image from the same point source measured by a simulated

detector with a depth uncertainty of 3 mm is shown in figure 3.4. The reconstructed

hot spot from the detector with 3 mm depth uncertainty clearly has a bigger extend

in polar direction than the detector with perfect depth resolution. Therefore, an

elongated polar FWHM can be used as an indication for poor depth reconstruction.

Figure 3.3: The reconstructed image with a simulated CdZnTe detector with perfect
depth resolution.

3.4 Overlaying Radiation Images with Optical Images

The reconstructed source image is normally shown as an intensity map with axes

corresponding to polar and azimuthal angles which represent the 4π field-of-view of

the detector. In the application of searching and locating a source, it is inconvenient

and tedious to locate a source by a set of polar and azimuthal angles in the detector’s

reference frame. Therefore, it is desired to mount a camera with the detector and
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Figure 3.4: The reconstructed image with a simulated CdZnTe detector with a depth
uncertainty of 3 mm.

overlay the reconstructed radiation image with the optical image. The operator may

simply look at the combined image and say: “Sir, there is a source in the left pocket

of your pants.”

In order to prove the concept, a 0-360 Panoramic OpticTM panoramic lens was

mounted on a digital camera. The lens was placed at the same location as the center

of detector head to minimize parallax effects. The set up is shown in figure 3.5. The

field of view of this lens ranges from 0 to 360 degrees in the azimuthal direction and

37.5 to 152.5 degrees in the polar direction. Fig 3.6 shows a raw picture of our lab

which was taken with the panoramic lens. After unwrapping the picture, a panoramic

view is achieved as in figure 3.7.

In order to correctly overlay the radiation image with the optical image, a 30-

µCi Cs-137 source was placed at several locations in the field of view of the lens.

A calibration was performed to match the reconstructed hot spot with the source

location in the optical image by flipping and rotating the radiation image. Two

black bands were added to the combined images to match the 4π field of view of the

Compton camera. The calibration process is shown in figures 3.8 and 3.9.
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After performing this calibration, figure 3.10 can be achieved. The hot spot cor-

rectly overlaps with the left pocket of my pants which contains a 10-µCi Cs-137

source. Figure 3.11 shows the combined optical-radiation image from a three-source

measurement with a 30-µCi Na-22, a 10-µCi Ba-133 and a 1-µCi Co-60 source. The

radiation image from the photopeak energy windows of Ba-133, Na-22 and Co-60 are

color-coded in red, green and blue, respectively.

Figure 3.5: A panoramic lens was mounted on a digital camera via an adaptor so it
is capable of focusing on the surface of the lens.
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Figure 3.6: The panoramic picture before unwrapping.

Figure 3.7: The unwrapped panoramic picture.
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(a) A red disk Cs-137 source was placed at position 1.

(b) The radiation image was rotated to match the reconstructed hotspot with the location of the red

disk in optical image.

Figure 3.8: A red disk Cs-137 source was placed at position 1 to calibrate the radia-
tion image to match the optical image. The radiation image was created
from about 2000 events in the Cs-137 photopeak using the MLEM decon-
volution in the spatial domain.
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(a) A red disk Cs-137 source was placed at position 2.

(b) The radiation image was rotated/flipped to match the reconstructed hotspot with the location of

the red disk in optical image.

Figure 3.9: The red disk Cs-137 source was moved at position 2 to calibrate the
radiation image to match the optical image. The radiation image was
created from about 2000 events in the Cs-137 photopeak using the MLEM
deconvolution in the spatial domain.
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Figure 3.10: The combined image from a source-in-my-pocket scenario. A 10-µCi Cs-
137 source was used in this measurement. 622 events were used in the
Compton image reconstruction.

Figure 3.11: The radiation image from the photopeak energy windows of Ba-133,
Na-22 and Co-60 are color-coded in red, green and blue, respectively.
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CHAPTER IV

Improvement of Compton Imaging Efficiency by

Using Side-Neighbor Events

An electron cloud can be collected by and shared between several neighboring pix-

els. These charge-sharing events can be produced from several reasons: a large elec-

tron cloud has a size comparable to a pixel pitch; the electron cloud is located directly

below the gap between pixels; the electron cloud defuses while drifting towards the

anode; and the x-ray emission from a photoelectric interaction. The charge-sharing

effect is not desired for the Compton image reconstruction since it does not contain

any useful Compton scattering information but produces multiple-pixel events. The

charge-sharing effect can be reduced by increasing the pixel pitch of the detector.

However, increasing the pixel size will cause poorer energy resolution because it re-

duces the small pixel effect [28], and increases the leakage current collected by each

pixel. With our current detector configuration, over half of the multiple-pixel events

at 1333 keV are side-neighbor events. These events were excluded from the Compton

image reconstruction prior to the work presented in this dissertation.

Theoretically, charge-sharing interactions should be combined into a single inter-

action because they are produced from a single electron cloud. However, it is almost

impossible to differentiate charge-sharing events from side-neighbor Compton scatter-

ing events due to the limitation of the analog readout system. This chapter separates
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the simulated side-neighbor events into different categories based on the type and the

sequence of the interactions, and explores how to mine out the most side-neighbor

events that can produce a correct source image using SBP. A method is then proposed

and evaluated using experimental data.

4.1 Side-Neighbor Events from Simulated Sources

Our group has developed a program to simulate the entire response of our system,

from the generation, movement, and induction of charge to the readout process of the

current analog ASIC [42]. This simulation software can be validated for the purpose

of this study by correctly reproducing the time-amplitude-walk effect for both non-

neighbor and side-neighbor events [43].

4.1.1 662 keV

Using this software, we simulated the detector and the ASIC response from a

point source that emits 662 keV photons. The three-pixel side-neighbor events that

include a single pair of neighboring pixels from the simulation result were then divided

into six categories based on the type of interaction that produces the side-neighbor

events, as shown in table 4.1. We have three possible option for each event: use the

side-neighbor interactions in the image reconstruction without modification (assume

they are side-neighbor Compton events), combine side-neighbor interactions to one

interaction (assume they are charge-sharing events), or exclude from the image recon-

struction. Categories 1 and 4 are charge-sharing events, so the averaged depth and

summed energy in the side-neighbor pixels should be input to the imaging algorithm

as a single interaction. Categories 2 and 5 are three-interaction Compton events, so

they can be used in the image reconstruction directly. Category 3 and 6 are the events

that undergo both charge sharing and Compton scatter in the side-neighbor pixels.

In order to verify these theoretical predictions, we first combined all side-neighbor
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Table 4.1: The Definitions and the Event Fractions of Categories for Three-Pixel
Side-Neighbor Events at 662 keV

Charge sharing Compton scattering Others

1st interaction is involved in
the side-neighboring pixels

cat.1: 22.4% cat.2: 18.5% cat.3: 5.2%

1st interaction is not involved
in the side-neighboring pixels

cat.4: 16.5% cat.5: 25.7% cat.6: 11.7%

interactions in each category and performed image reconstruction with these new two-

interaction non-side-neighbor events. We then directly reconstructed images from

each category without combining side-neighbor events.

Figure 4.1 and 4.2 shows the reconstructed image using the SBP algorithm after

combining all side-neighbor interactions in each category. The averaged depth and

summed energy in the side-neighbor pixels are input to the imaging algorithm as

a single interaction. After combining side-neighbor interactions, categories 1 and 4

make a correct image as expected. In addition, categories 5 and 6 make a correct

image as well. The first interaction in categories 5 and 6 is a Compton interaction

without a signal from a side-neighbor pixel. By combining the second and the third

interactions, the cone angle remains unchanged due to the fact that the cone angle is

only dependent on the total energy and the energy deposition of the first Compton

scatter. Since the separation distance between the side-neighboring second and third

interaction is small compared to the separation distance between the first and the

second interaction locations, the cone axis has a small change in both categories 5

and 6 after combining side-neighbor interactions. As a consequence, the hot spot in

figures 4.2(b) and 4.2(c) is slightly larger than figure 4.2(a).

If all six categories are all treated as three-interaction Compton events, figures 4.3

and 4.4 can be achieved, which show that only categories 4, 5 and 6 reconstruct

a correct source image. In these three categories, the first interaction is not one

of the side-neighboring pixels, so the first interaction is a Compton scatter. For
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(a) Category 1

(b) Category 2

(c) Category 3

Figure 4.1: All side-neighbor interactions are combined into a single interaction. The
SBP image reconstruction is performed with these combined 2-interaction
events (originally 3-pixel events) from categories 1 to 3.
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(a) Category 4

(b) Category 5

(c) Category 6

Figure 4.2: All side-neighbor interactions are combined into a single interaction. The
SBP image reconstruction is performed with these combined 2-interaction
events (originally 3-pixel events) from categories 4 to 6.
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the same reason described in the last paragraph, the reconstructed cone angles are

correct in categories 4, 5 and 6. In category 2, the side-neighbor interactions are from

true Compton interactions so it can be directly used in the imaging reconstruction.

However, category 2 produces a very poor image due to large cone-axis uncertainties

which is introduced by the short separation distance between the first and the second

interaction which are in side-neighboring pixels.

To summarize, category 1 can only produce a correct image after combining side-

neighbor interactions. Categories 2 and 3 will never make a decent image and should

be excluded from the SBP reconstruction. Finally, categories 4, 5 and 6 can make a

correct image regardless if the side-neighbor interactions are combined. Figure 4.5,

4.6 and 4.7 show the distribution of the depth difference between side-neighbor in-

teractions for each category. No region can be drawn to clearly separate categories

1 from category 4, category 2 from category 5, or category 3 from category 6. It is

possible to differentiate category 2 and 3 from category 1 such that events with large

separation distances would be discarded. However, this would result in the loss of an

roughly equal number of good events from categories 5 and 6. Therefore, in order to

improve the imaging efficiency, the best strategy with the analog ASIC is to combine

all side-neighbor events since it has the highest event fraction that produces a correct

image. From table 4.1, this correctly-combined fraction for three-pixel side-neighbor

events at 662 keV is about 76.3%.

4.1.2 1333 keV

A similar analysis was performed with a simulated point source which emits 1333

keV photons. The same conclusion can be drawn that the most effective way to use

the side-neighbor events is to combine all side-neighbor interactions. From table 4.2,

about 76.5% of the combined three-pixel side-neighbor events are capable of producing

a correct image.
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(a) Category 1

(b) Category 2

(c) Category 3

Figure 4.3: The SBP image reconstruction is directly performed with three-pixel side-
neighbor from categories 1 to 3. The events are from a simulated point
source that emits 662 keV photons.
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(a) Category 4

(b) Category 5

(c) Category 6

Figure 4.4: The SBP image reconstruction is directly performed with three-pixel side-
neighbor from categories 4 to 6. The events are from a simulated point
source that emits 662 keV photons.
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(a) Category 1

(b) Category 4

Figure 4.5: The distribution of the depth difference between two side-neighbor inter-
actions at 662 keV.
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(a) Category 2

(b) Category 5

Figure 4.6: The distribution of the depth difference between two side-neighbor inter-
actions at 662 keV.
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(a) Category 3

(b) Category 6

Figure 4.7: The distribution of the depth difference between two side-neighbor inter-
actions at 662 keV.
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All of these conclusions still hold for side-neighbor events with more than three

triggered pixels as long as two or more unique interaction locations can be identified.

Table 4.2: The Definitions and the Event Fractions of Categories for Three-Pixel
Side-Neighbor Events at 1333 keV

Charge sharing Compton scattering Others

1st interaction is involved in
the side-neighboring pixels

cat.1: 44.8% cat.2: 14.1% cat.3: 9.4%

1st interaction is not involved
in the side-neighboring pixles

cat.4: 10.0% cat.5: 13.5% cat.6: 8.2%

4.2 Performance Verification with Measurements

A 10-µCi Cs-137 and a 1-µCi Co-60 point source is measured separately. Figure 4.9

shows the SBP image only using 25023 side-neighbor two-, three- and four-interaction

events in the energy window from 600 keV to 720 keV from the Cs-137 measurement

after combining the neighboring interactions. Figure 4.9 has a similar image quality

compared to figure 4.8 which uses 55252 two-, three- and four-interaction non-side-

neighbor events from the same measurement in the same energy window.

Figure 4.11 shows the SBP image only using 3996 side-neighbor two-, three- and

four-interaction events in energy window from 1250 keV to 1400 keV from the Co-60

measurement. Figure 4.11 has a similar image quality compared to figure 4.10 which

uses 2491 two-, three- and four-interaction non-side-neighbor events from the same

measurement in the same energy window.

Thus, by combining all side-neighbor interactions, the imaging efficiency at 662

keV and 1333 keV is improved by about 45% and 160% respectively with no degra-

dation of the image quality.

To use these side-neighbor events in probabilistic methods such as the MLEM

algorithm which will be discussed in chapter V, both side-neighbor Compton scat-
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ter and charge sharing possibilities must be considered and weighted based on their

probabilities.

Figure 4.8: A SBP image with a Cs-137 source using 55252 two-, three- and four-
interaction non-side-neighbor events. An energy window of 600 keV to
720 keV is used.

Figure 4.9: A SBP image using 25023 two-, three- and four-interaction side-neighbor
events from the same measurement as figure 4.8. An energy window of
600 keV to 720 keV is used.
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Figure 4.10: A SBP image with a Co-60 source using 2491 two-, three- and four-
interaction non-side-neighbor events. An energy window of 1250 keV to
1400 keV is used.

Figure 4.11: A SBP image using 3996 two-, three- and four-interaction side-neighbor
events from the same measurement as figure 4.10. An energy window of
1250 keV to 1400 keV is used.
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CHAPTER V

Maximum-Likelihood Deconvolution in the Spatial

and Spatial-Energy Domain for Events with Any

Number of Interactions

5.1 Maximum-Likelihood Expectation-Maximization Algorithm

The image reconstruction can be described as estimating the source distribution

for which the set of measured events is most probable.

f = argmax
f≥0

p(g; f) (5.1)

in which, f is the source distribution in the image space we are trying to estimate

and g = {g1, g2, ..., gI} is the possible measurements. gi is the number of occurrence

for a measurement i.

The imaging system can be simplified to be represented by a linear model be-

tween the measurement and the source distribution. Assume the image space can be

discretized into J pixels, the expected number of counts in each measurement bin is

ḡ[I×1] = t[I×J ]f[J×1] (5.2)
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in which, t is the system response matrix.

In this work, the measurements attributes are interaction energies and positions

of every measured event, gi = { �E,�r}, and the image space parameters are defined

as directional 2D image pixels, or combined direction and source-energy bins in the

energy-imaging integrated deconvolution (EIID) method which will be discussed in

following sections in this chapter. Other ways one might describe the attributes of

the measurement could be the amplitude of each pulse from the preamplifier and the

timing signals, and the image space could be defined in three dimensions or isotope

bins [44].

This type of parameter estimation problem is well-studied in the medical imaging

field [45]. The widely-used maximum-likelihood (ML) method solves this problem

from a statistical point of view. The ML solution produces less noise than other ways

of directly solving this problem [46; 47; 5].

Since the number of photons emitted from each pixel is a Poisson random vari-

able and the recorded attributes are assumed to be conditionally independent, the

logarithmic likelihood can be derived as [11]

L(f) =
I�

i=1

�
−

J�

j=1

tijfj + gi ln
J�

j=1

tijfj − ln(gi!)

�
(5.3)

where tij is the probability of recording an event i given that it is from a photon in

the direction j, and fj is the source intensity in the direction j that we are trying to

estimate.

Expectation maximization (EM) is a popular iterative algorithm that can be used

to maximize the logarithmic likelihood in equation (5.3) [48; 49; 50]. The MLEM

iterative solution for this photon-emission imaging problem is [11; 44]

fn+1
j =

fn
j

sj

I�

i=1

gitij�
k tikf

n
k

(5.4)
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where fn
j is the estimated intensity in the direction j at the nth iteration, and sj =

�I
i=1 tij is the sensitivity factor which is the probability that a gamma ray emitted

from j is detected as any event i.

In our detector-array system, there are 18 detectors, and 121 pixels per detector. If

15 depth bins and 500 energy bins are used, there are (121×15×500×18)2 ≈ 2.7×1014

different possible measurement combinations for a two-interaction event. Practically,

in order to get a solution in a reasonable time, we generally use up to ten thousand

events for each image reconstruction. Therefore, our g matrix is extremely sparse.

Instead of storing the number of occurrence in the bin of all possible measurements,

we store our events in list-mode [51; 48; 46; 52]. In this way, g becomes a list of

measured events and the term gi in equation (5.4) can be replaced by 1. So the

list-mode MLEM iterative solution is

fn+1
j =

fn
j

sj

I�

i=1

tij�
k tikf

n
k

(5.5)

where I becomes the number of measured events.

Due to the limitation of the timing resolution of our system, it is challenging to

observe the sequence of the interactions in an event. Several algorithms have been

developed to determine the interaction sequence with the maximum probability based

on the interaction positions and energies [17; 53; 54]. However, the accurate system

model should include all possible sequences. In this work, we consider all energetically

possible sequences. Each sequence is weighted based on its probability. The image

sharpens when more number of EM iterations are performed; however, the statistical

noise increases as well. Usually, more iterations are performed than necessary so that

the user can select the optimal iteration by eye where the best image resolution is

achieved at an acceptable noise level.
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5.2 System Response Function for Three-interaction Events

in a Detector-Array System

In order to use the EM method, system matrix t needs to be obtained. The

number of possible measurements is too large to be simulated and stored. In this

work, the system matrix element for each measured event is analytically modeled.

The system response function tij is defined as the probability that a photon with

a certain incident energy E0 from a certain spatial direction (image pixel), defined as

j, creates event i, a series of energy depositions, in the detector array. The detector-

array system introduces uncertainty in recorded interaction position and deposited

energy due to noise. Then each measurement is binned into a small volume ∆Vi

around measurement i due to the digitization from ADC and pixelation of the detector

system. Therefore, the system response function can be achieved in three steps:

1) The probability density function for a perfect detector-array system can be

derived as f (̃i; j), where ĩ is the real event created by a detected photon from

energy and direction j.

2) Assuming the measurement uncertainty from the noise follows a Gaussian dis-

tribution, f (̂i|̃i) can be derived, where î is the response of the detector-array

system due to the uncertainty from the real event ĩ.

3) The probability is then integrated over the bin volume ∆Vi to achieve the system

response function.

In other words, the system response function can be calculated by [55; 56]:

tij =

�

∆Vi

dî

�
f (̂i|̃i)f (̃i; j) dĩ (5.6)
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Figure 5.1 shows the typical scenario of a three-interaction event. If the distance

between the source and the detector array is much larger than the size of the detec-

tor array, a single stationary detector-array system cannot estimate the true three-

dimensional source position, only the direction of the incident photon. Therefore the

sources can be assumed to be located on the surface of an image sphere with a radius

R, where R is much greater than the dimension of the detector array. A photon with

energy E0 originating from j can be denoted as (E0, r0), where r0 is the position of

the incident photon on the image sphere. The photon travels distance d1 (entering

distance) in the detector material before the first Compton-scatter interaction at lo-

cation r1 with energy deposition E1, which can be described as (E1, r1). The scattered

photon travels distance d2 in the detector material before the second Compton scatter

(E2, r2). The scattered photon, after the second Compton scatter, travels distance

d3 in the detector material, then has the third interaction (E3, r3). For the partial

energy deposition case, the escaping photon travels distance d4 (escaping distance) in

the detector material before leaving the detector. The measurement of î and ĩ can be

described as (Ê1, r̂1, Ê2, r̂2, Ê3, r̂3) and (Ẽ1, r̃1, Ẽ2, r̃2, Ẽ3, r̃3), respectively. Similarly,

a measured four-interaction event i can be described as (E1, r1, E2, r2, E3, r3, E4, r4).

In a four-interaction case, d1 and d5 describe the entering distance and the escaping

distance, while d2, d3, and d4 describe the photon travel distance in material between

the first and the second interaction, the second and the third interaction, and the

third and the fourth interaction, respectively.
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Image sphere

j(E0, r0)

(E1, r1)

(E2, r2)

(E3, r3)

d1
d2

d3

d4

Detector-array system

Figure 5.1: A three-interaction event i(E1, r1, E2, r2, E3, r3) is created by a photon
from energy and direction j(E0, r0) in the image sphere.

5.2.1 Probability Calculation for Three-Interaction Events

Using the chain rule,

f (̃i|j) = f(Ẽ1, r̃1, Ẽ2, r̃2, Ẽ3, r̃3, D
c
1, D

c
2, D3;E0, r0)

= f(Ẽ3, D3|Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D
c
1, D

c
2;E0, r0)

· f(r̃3|Ẽ1, r̃1, Ẽ2, r̃2, D
c
1, D

c
2;E0, r0)

· f(Ẽ2, D
c
2|Ẽ1, r̃1, r̃2, D

c
1;E0, r0)

· f(Ẽ1, r̃1, r̃2, D
c
1;E0, r0) (5.7)

where Dc
1 represents that the first interaction is a Compton scatter, Dc

2 represents

that the second interaction is a Compton scatter, and D3 represents that the third

interaction is the last recorded interaction in this event.

The probability that the second interaction is a Compton event with energy de-
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position of Ẽ2 given that the interaction is at location r̃2 is

f(Ẽ2, D
c
2|Ẽ1, r̃1, r̃2, D

c
1;E0, r0)

=f(Ẽ2|Ẽ1, r̃1, r̃2, D
c
1, D

c
2;E0, r0)f(D

c
2|Ẽ1, r̃1, r̃2, D

c
1;E0, r0)

(5.8)

For computational simplicity, we neglect f(Dc
2|Ẽ1, r̃1, r̃2, Dc

1;E0, r0) for now. Future

work is needed to study how to practically compute this term.

f(Ẽ2, D
c
2|Ẽ1, r̃1, r̃2, D

c
1;E0, r0)

≈f(Ẽ2|Ẽ1, r̃1, r̃2, D
c
1, D

c
2;E0, r0)

=
1

σt(E0 − Ẽ1)

dσc(E0 − Ẽ1)

dΩ

�����
Ẽ2

dΩ

dẼ2

=
N

µE0−Ẽ1

dσc(E0 − Ẽ1)

dΩ

�����
Ẽ2

dΩ

dẼ2

(5.9)

in which N is the number of nuclei per unit volume, σt(E) is the total cross section

at energy E, and dσc(E)
dΩ

��
E� is the differential scattering cross section per solid angle

defined by the Klein-Nishina formula for a photon with energy E depositing energy

E � in the Compton scatter.

Define λ̃1 = r̃1−r0
|r̃1−r0| , λ̃2 = r̃2−r̃1

|r̃2−r̃1| and λ̃3 = r̃3−r̃2
|r̃3−r̃2| , which are the directions of the

incident and the scattered photon. θr1 is the angle between λ̃1 and λ̃2. θe1 is the angle

determined by the Compton scattering formula:

cos θe1 = 1 +
mec2

E0
− mec2

E0 − Ẽ1

(5.10)

θr2 is the angle between λ̃2 and λ̃3, and θe2 is calculated from the Compton scattering
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formula

cos θe2 = 1 +
mec2

E0 − Ẽ1

− mec2

E0 − Ẽ1 − Ẽ2

(5.11)

The solid angle of a cone with an apex angle of 2θe2 is

Ω = 2π(1− cos θe2) = 2π(− mec2

E0 − Ẽ1

+
mec2

E0 − Ẽ1 − Ẽ2

) (5.12)

where mec2 is the rest energy of an electron. So,

dΩ

dẼ2

=
2πmec2

(E0 − Ẽ1 − Ẽ2)2
(5.13)

The probability that the third interaction is at location r̃3 given the first and

second Compton scattering locations and energy depositions is

f(r̃3|Ẽ1, r̃1, Ẽ2, r̃2, D
c
1, D

c
2;E0, r0)

= f(λ̃3, d3|Ẽ1, r̃1, Ẽ2, r̃2, D
c
1, D

c
2;E0, r0)

= f(λ̃3|d3, Ẽ1, r̃1, Ẽ2, r̃2, D
c
1, D

c
2;E0, r0)f(d3|Ẽ1, r̃1, Ẽ2, r̃2, D

c
1, D

c
2;E0, r0)

=
δ(θr2 − θe2)

2πd23 sin θe2
· µE0−Ẽ1−Ẽ2

e−µE0−Ẽ1−Ẽ2
d3 (5.14)

where µE is the linear attenuation coefficient at energy E for the material, and r̃3 is

a function of λ̃3 and d3.

f(Ẽ1, r̃1, r̃2, D
c
1;E0, r0) = f(Ẽ1, r̃1, r̃2|Dc

1;E0, r0)f(D
c
1;E0, r0) (5.15)

We neglect term f(Dc
1;E0, r0) for calculation efficiency. According to Xu [55], given

that the initial photon is from location r0 and has an energy of E0, the probability

that the first interaction deposits energy Ẽ1 at r̃1 and the second interaction happens
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at r̃2 is:

f(Ẽ1, r̃1, r̃2, D
c
1;E0, r0) ≈ f(Ẽ1, r̃1, r̃2|Dc

1;E0, r0)

≈ 1

4πR2
e−µE0d1N

dσc(E0)

dΩ

�����
Ẽ1

2πmec2

(E0 − Ẽ1)2
µE0−Ẽ1

e−µE0−Ẽ1
d2 δ(θr1 − θe1)

2πd22 sin θe1
(5.16)

where 1
4πR2 is the geometric attenuation to reach r̃1.

Combining equations (5.9), (5.13), (5.14), and (5.16), we have the probability

that the initial photon (E0, r0) has the first Compton interaction (Ẽ1, r̃1), the second

Compton interaction (Ẽ2, r̃2) and the third interaction at location r̃3 in the detector-

array system.

f(Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D
c
1, D

c
2;E0, r0)

=f(r̃3|Ẽ1, r̃1, Ẽ2, r̃2, D
c
1, D

c
2;E0, r0)f(Ẽ2, D

c
2|Ẽ1, r̃1, r̃2, D

c
1;E0, r0)

· f(Ẽ1, r̃1, r̃2, D
c
1;E0, r0)

=
1

4πR2
N2e−µE0d1−µE0−Ẽ1

d2−µE0−Ẽ1−Ẽ2
d3 dσc(E0)

dΩ

�����
Ẽ1

dσc(E0 − Ẽ1)

dΩ

�����
Ẽ2

· 2πmec2

(E0 − Ẽ1)2
2πmec2

(E0 − Ẽ1 − Ẽ2)2
δ(θr1 − θe1)δ(θr2 − θe2)

2πd22 sin θe12πd
2
3 sin θe2

µE0−Ẽ1−Ẽ2
(5.17)

For a three-interaction event, the third interaction can be a photoelectric inter-

action or a Compton interaction. Let D3 = Dp
3 ∪ Dc

3, where Dp
3 represents that the

third interaction is a photoelectric interaction, and Dc
3 represents that the scattered

photon after the second interaction Compton scatters the third time then escapes

from the detector array. Note Dc
3 ∩Dp

3 = ∅.

If the third interaction is a photoelectric interaction, E0 ≈ E1+E2+E3. The prob-

ability for the photoelectric interaction depositing energy Ẽ3 given that the photon
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interacts at location r̃3 is

f(Ẽ3, D
p
3|Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D

c
1, D

c
2;E0, r0)

= f(Ẽ3|Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D
c
1, D

c
2, D

p
3;E0, r0)f(D

p
3|Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D

c
1, D

c
2;E0, r0)

≈ f(Ẽ3|Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D
c
1, D

c
2, D

p
3;E0, r0)

=
σp(Ẽ3)δ(E0 − Ẽ1 − Ẽ2 − Ẽ3)

σt(Ẽ3)

=
Nσp(Ẽ3)δ(E0 − Ẽ1 − Ẽ2 − Ẽ3)

µE0−Ẽ1−Ẽ2

(5.18)

where σp(Ẽ3) is the photoelectric cross section at energy Ẽ3. For computational

efficiency, we neglect f(Dp
3|Ẽ1, r̃1, Ẽ2, r̃2, r̃3, Dc

1, D
c
2;E0, r0). If the third interaction is

a Compton scatter, instead, E0 > E1 + E2 + E3. The probability that the scattered

photon after the second interaction deposits part of its energy Ẽ3 in the third Compton

interaction and the scatter photon travels distance d4 in the detector material before

escaping from the detector-array system is

f(Ẽ3, D
c
3|Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D

c
1, D

c
2;E0, r0)

= f(Ẽ3|Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D
c
1, D

c
2, D

c
3;E0, r0)f(D

c
3|Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D

c
1, D

c
2;E0, r0)

≈ f(Ẽ3|Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D
c
1, D

c
2, D

c
3;E0, r0)

=
N

µE0−Ẽ1−Ẽ2

dσc(E0 − Ẽ1 − Ẽ2)

dΩ

�����
Ẽ3

· 2πmec2

(E0 − Ẽ1 − Ẽ2 − Ẽ3)2
e−µE0−Ẽ1−Ẽ2−Ẽ3

d4 (5.19)

For computational efficiency, we neglect f(Dc
3|Ẽ1, r̃1, Ẽ2, r̃2, r̃3, Dc

1, D
c
2;E0, r0). By

combining equation (5.7), (5.17), (5.18) and (5.19) above, two equations are possible.
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1. Three-interaction full-energy-deposition events

ff (̃i|j) =f(Ẽ1, r̃1, Ẽ2, r̃2, Ẽ3, r̃3, D
c
1, D

c
2, D

p
3;E0, r0)

=f(Ẽ3, D
p
3|Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D

c
1, D

c
2;E0, r0)f(Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D

c
1, D

c
2;E0, r0)

=
Nσp(Ẽ3)δ(E0 − Ẽ1 − Ẽ2 − Ẽ3)

µE0−Ẽ1−Ẽ2

f(Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D
c
1, D

c
2;E0, r0)

(5.20)

2. Three-interaction partial-energy-deposition events

fp(̃i|j) =f(Ẽ1, r̃1, Ẽ2, r̃2, Ẽ3, r̃3, D
c
1, D

c
2, D

c
3;E0, r0)

=f(Ẽ3, D
c
3|Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D

c
1, D

c
2;E0, r0)f(Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D

c
1, D

c
2;E0, r0)

=
N

µE0−Ẽ1−Ẽ2

dσc(E0 − Ẽ1 − Ẽ2)

dΩ

�����
Ẽ3

2πmec2

(E0 − Ẽ1 − Ẽ2 − Ẽ3)2
e−µE0−Ẽ1−Ẽ2−Ẽ3

d4

· f(Ẽ1, r̃1, Ẽ2, r̃2, r̃3, D
c
1, D

c
2;E0, r0) (5.21)

In equation (5.20) and (5.21), f(Ẽ1, r̃1, Ẽ2, r̃2, r̃3, Dc
1, D

c
2;E0, r0) is defined in equa-

tion (5.17).

5.2.2 Considering the Measurement Uncertainties

The measurement uncertainties will be considered in the following integration.

f (̂i; j) =

�
f (̂i|̃i)f (̃i; j) dĩ

=

�
f(Ê1, r̂1, Ê2, r̂2, Ê3, r̂3|Ẽ1, r̃1, Ẽ2, r̃2, Ẽ3, r̃3)

· f(Ẽ1, r̃1, Ẽ2, r̃2, Ẽ3, r̃3, D
c
1, D

c
2, D3;E0, r0) dV (5.22)

where dV is defined by differential elements in Ẽ1, r̃1, Ẽ2, r̃2, Ẽ3 and r̃3.

All measurements of the energy and the position are assumed to follow Gaussian
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distributions. Given the true interaction energy deposition and position Ẽ, x̃, ỹ, z̃

from an ideal detector-array system, the distribution of the probability of observing

interaction Ê, x̂, ŷ, ẑ is

fE(Ê|Ẽ) =
1�
2πσ2

E

e
− (Ê−Ẽ)2

2σ2
E (5.23)

fE(x̂|x̃) =
1�
2πσ2

x

e
− (x̂−x̃)2

2σ2
x (5.24)

fE(ŷ|ỹ) =
1�
2πσ2

y

e
− (ŷ−ỹ)2

2σ2
y (5.25)

fE(ẑ|z̃) =
1�
2πσ2

z

e
− (ẑ−z̃)2

2σ2
z (5.26)

So, f(Ê1, r̂1, Ê2, r̂2, Ê3, r̂3|Ẽ1, r̃1, Ẽ2, r̃2, Ẽ3, r̃3) is a joint Gaussian distribution, and

�
f(Ê1, r̂1, Ê2, r̂2, Ê3, r̂3|Ẽ1, r̃1, Ẽ2, r̃2, Ẽ3, r̃3) dV = 1 (5.27)

In our system, the position uncertainty from pixelation contributes much more

angular error than energy measurement uncertainty, so we assume θe is constant

in this calculation. If the measurement uncertainty in energy and position is fine

enough, f(Ẽ1, r̃1, Ẽ2, r̃2, Ẽ3, r̃3, Dc
1, D

c
2, D3;E0, r0) varies little within the scale of the

uncertainty. It can be considered as a constant, and (Ẽ1, r̃1, Ẽ2, r̃2, Ẽ3, r̃3) can be

replaced by (Ê1, r̂1, Ê2, r̂2, Ê3, r̂3). This approximation is valid for the partial-energy-

deposition case. However, in the full-energy deposition case, the delta function

δ(E0− Ẽ1− Ẽ2− Ẽ3) in equation (5.20) will not vary slowly and has to be calculated

separately.
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1. Three-interaction full-energy-deposition events

ff (̂i; j) ≈ f(Ê1, r̂1, Ê2, r̂2, r̂3, D
c
1, D

c
2, D

p
3;E0, r0)

Nσp(Ê3)

µE0−Ê1−Ê2

·
���

δ(E0 − Ẽ1 − Ẽ2 − Ẽ3)
1

√
2π

3
σE1σE2σE3

· e
− (Ê1−Ẽ1)

2

2σ2
E1

− (Ê2−Ẽ2)
2

2σ2
E2

− (Ê3−Ẽ3)
2

2σ2
E3 dẼ1 dẼ2 dẼ3

=f(Ê1, r̂1, Ê2, r̂2, r̂3;E0, r0)
Nσp(Ê3)

µE0−Ê1−Ê2

· 1�
2π(σ2

E1
+ σ2

E2
+ σ2

E3
)
e
− (E0−Ê1−Ê2−Ê3)

2

2(σ2
E1

+σ2
E2

+σ2
E3

) (5.28)

2. Three-interaction partial-energy-deposition events

fp(̂i; j) ≈ f(Ê1, r̂1, Ê2, r̂2, r̂3, D
c
1, D

c
2, D

c
3;E0, r0)

N

µE0−Ê1−Ê2

· dσc(E0 − Ê1 − Ê2)

dΩ

�����
Ê3

2πmec2

(E0 − Ê1 − Ê2 − Ê3)2

· e−µE0−Ê1−Ê2−Ê3
d4 (5.29)

5.2.3 Considering the Bin Volume

The probability density function needs to be integrated over the bin volume due

to the energy binning and voxelation of the detector volume.

tij =

�

∆Vi

f (̂i; j) dî

=

�

∆Vi

f(Ê1, r̂1, Ê2, r̂2, Ê3, r̂3, D
c
1, D

c
2, D3;E0, r0) dî (5.30)

where dî = dÊ1 dr̂1 dÊ2 dr̂2 dÊ3 dr̂3. ∆Vi is the bin volume around measurement i.

If the binning volume is small enough that the non-delta function terms change
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slightly in the bin volume, they can be approximated to be constants and moved out

of the integral, and (Ê1, r̂1, Ê2, r̂2, Ê3, r̂3) can be replaced by (E1, r1, E2, r2, E3, r3),

the binned and discretized event coordinates.

1. Three-interaction full-energy-deposition events

tij ≈
N3

4πR2

1

2πd22 sin θe1 · 2πd23 sin θe2

· e−µE0d1
dσc(E0)

dΩ

�����
E1

2πmec2

(E0 − E1)2

· e−µE0−E1d2
dσc(E0 − E1)

dΩ

�����
E2

2πmec2

(E0 − E1 − E2)2

· e−µE0−E1−E2d3
σp(E3)�

2π(σ2
E1

+ σ2
E2

+ σ2
E3
)

· e
− (E0−E1−E2−E3)

2

2(σ2
E1

+σ2
E2

+σ2
E3

)

�

∆Vi

δ(θr1 − θe1)δ(θr2 − θe2) dî (5.31)

2. Three-interaction partial-energy-deposition events

tij ≈
N3

4πR2

1

2πd22 sin θe1 · 2πd23 sin θe2

· e−µE0d1
dσc(E0)

dΩ

�����
E1

2πmec2

(E0 − E1)2

· e−µE0−E1d2
dσc(E0 − E1)

dΩ

�����
E2

2πmec2

(E0 − E1 − E2)2

· e−µE0−E1−E2d3
dσc(E0 − E1 − E2)

dΩ

�����
E3

2πmec2

(E0 − E1 − E2 − E3)2

· e−µE0−E1−E2−E3d4 ·
�

∆Vi

δ(θr1 − θe1)δ(θr2 − θe2) dî (5.32)

Both cases have the term
�
∆Vi

δ(θr1 − θe1)δ(θr2 − θe2) dî. In our detector-array

system, the anode of each detector module is divided into 11 × 11 pixels with pixel
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d2

d3

r3

r1

r2

S2

S3

R0

R0

R0

z3
z2

z1

S1

Figure 5.2: The binning volumes in the measurement space are approximated by three
spheres in calculating the system response function.

dy

y

S2

x

Figure 5.3: An illustration of the surface S2 within ∆V2 that satisfies θe1 = θr1 for a
point in ∆V1. y crosses the origin of S2 and is parallel with d2. x is a line
within S2 that is perpendicular to both d2 and y.
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pitch of 1.72 mm. The x-y position of the interaction is determined by the anode pixel

that collects the electrons. The interaction depth is found by the electron drift time

and the cathode-to-anode signal ratio. The depth uncertainty due to digitization is

about 0.5 mm. Therefore the bin volume in our system is a rectangular parallelepiped.

In order to simplify the calculation, the bin volume for each event is approximated

as a sphere with the same volume with a radius of R0, as shown in figure 5.2. S1 is a

surface within ∆V1, parallel to d2, and containing the first interaction location. S2 is

a curved surface inside of ∆V2 that satisfies θe1 = θr1 . S3 is a curved surface within

∆V3 that satisfies θe2 = θr2 . When d3 � R0, S3 can be approximated by a plane and

dz3 = d3 · dθr2 . Similarly, S2 can be approximated by a plane and dz2 = d2 · dθr1 ,

when d2 � R0. z1, z2 and z3 are perpendicular to S1, S2 and S3, respectively. r0 is

on the back-projection cone defined by E0, E1, r1 and r2. The directions not on the

back-projection cone will be approximated by a Gaussian function with its standard

deviation equal to the angular uncertainty. So,

�

∆Vi

δ(θr1 − θe1)δ(θr2 − θe2) dî

=∆E1∆E2∆E3

�

∆V1

dr̂1

�

∆V2

dr̂2δ(θr1 − θe1)

�

∆V3

dr̂3δ(θr2 − θe2)

=∆E1∆E2∆E3

�

∆V1

dr̂1

�

∆V2

dr̂2δ(θr1 − θe1)

R0�

−R0

dz3

�

S3

dr̂3δ(θr2 − θe2)

=∆E1∆E2∆E3d3

�

∆V1

dr̂1

�

∆V2

dr̂2δ(θr1 − θe1)S3

=∆E1∆E2∆E3d3

�

∆V1

dr̂1

R0�

−R0

dz2

�

S2

dr̂2δ(θr1 − θe1)S3

=∆E1∆E2∆E3d2d3

�

∆V1

S2S3 dr̂1 (5.33)

For each z1 (S1 moves along z1), there is a different surface S2 that satisfies θe1 = θr1 .

53



For each line x with a width dy in S2, shown in figure 5.3, there will be a different S3

which satisfies θe2 = θr2 . From geometry, for a specific z1 and y, we can calculate that

the area of S3 is π(R2
0 − (z1 cos θe2 + y sin θe2)

2) and x = 2
�
R2

0 − z21 − y2. Therefore,

�

∆Vi

δ(θr1 − θe1)δ(θr2 − θe2) dî

=∆E1∆E2∆E3d2d3

R0�

−R0

dz1π(R
2
0 − z21)

√
R2

0−z21�

−
√

R2
0−z21

dy2
�

R2
0 − z21 − y2

·π(R2 − (z1 cos θe2 + y sin θe2)
2)

=∆E1∆E2∆E3d2d3π
3R7

0

92 + 4 cos(2θe2)

105
(5.34)

5.2.4 System Response Function for Three-Interaction Events

Combining (5.31), (5.32) with (5.34), the two cases are

1. Three-interaction full-energy-deposition events

tij =
92 + 4 cos (2θe2)

105

∆E1∆E2∆E3N3R7
0

16R2 · d2 sin θe1 · d3 sin θe2

· e−µE0d1
dσc(E0)

dΩ

�����
E1

2πmec2

(E0 − E1)2

· e−µE0−E1d2
dσc(E0 − E1)

dΩ

�����
E2

2πmec2

(E0 − E1 − E2)2

· e−µE0−E1−E2d3
σp(E3)�

2π(σ2
E1

+ σ2
E2

+ σ2
E3
)
e
− (E0−E1−E2−E3)

2

2(σ2
E1

+σ2
E2

+σ2
E3

) (5.35)
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2. Three-interaction partial-energy-deposition events

tij =
92 + 4 cos (2θe2)

105

∆E1∆E2∆E3N3R7
0

16R2 · d2 sin θe1 · d3 sin θe2

· e−µE0d1
dσc(E0)

dΩ

�����
E1

2πmec2

(E0 − E1)2

· e−µE0−E1d2
dσc(E0 − E1)

dΩ

�����
E2

2πmec2

(E0 − E1 − E2)2

· e−µE0−E1−E2d3
dσc(E0 − E1 − E2)

dΩ

�����
E3

2πmec2

(E0 − E1 − E2 − E3)2

· e−µE0−E1−E2−E3d4 (5.36)

The definitions of the variables can be found in Table 5.1.

5.2.5 Simplified System Response Function of Three-Interaction Events

for Combining with Other Events

The iterative list-mode MLEM algorithm is performed using equation (5.5)

fn+1
j =

fn
j

sj

I�

i=1

tij�
k tikf

n
k

(5.37)

where fn
j is the estimated intensity in the direction and energy j at the nth iteration.

The sensitivity sj is the detection probability of a gamma ray emitted from j. I is the

total number of events used in the reconstruction. tij is the system response function

for event i from a detected photon j. For a particular event, tij appears in both the

numerator and the denominator of equation (5.37), so the constant terms for this

event will cancel. For a certain event in a specific system, ∆E1, ∆E2, ∆E3, N , R0, R

are constant so can be canceled. d2, d3, sin θe1 and sin θe2 cannot be canceled because

they are not the same for different sequences of one event.
92+4 cos (2θe2 )

105 introduces

only very small variation in the reconstructed image and can be considered constant
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Table 5.1: Definitions of Variables
Variables Definitions

E0 incident photon energy

E1, E2, E3 measured energy depositions

d1 photon entering distance through detector material

d2, d3 photon in-material travel distance between the first and the second,
the second and the third interaction

d4 escaping distance though detector material in partial-energy depo-
sition case

µE linear attenuation coefficient at energy E for the detector material

σp(E), σc(E) photoelectric and Compton-scatter cross sections at energy E
dσc(E)
dΩ

��
E� Klein-Nishina differential scattering cross section for a photon with

energy E depositing energy E � in a Compton scatter

θe1 , θe2 the first and second scattering angles determined using deposited
energies and the Compton-scatter formula for the interaction indi-
cated in the subscript

σE uncertainty in recorded energy

N number of nuclei per unit volume

R0 radius of the sphere with the same volume as the pixelation and
the depth uncertainty volume

mec2 rest mass energy of an electron

and ignored [57; 58].

The simplified system response functions that can be used for deconvolving a

single image with all possible sequences of a particular three-interaction event and

events with other numbers of interaction are:

56



1. Three-interaction full-energy-deposition events

tij =

�
e−µE0d1

dσc(E0)

dΩ

�����
E1

1

(E0 − E1)2

�

·
�
e−µE0−E1d2

1

d2 sin θe1

dσc(E0 − E1)

dΩ

�����
E2

1

(E0 − E1 − E2)2

�

·
�
e−µE0−E1−E2d3

1

d3 sin θe2
· σp(E3)�

2π(σ2
E1

+ σ2
E2

+ σ2
E3
)
e
− (E0−E1−E2−E3)

2

2(σ2
E1

+σ2
E2

+σ2
E3

)

�
(5.38)

2. Three-interaction partial-energy-deposition events

tij =

�
e−µE0d1

dσc(E0)

dΩ

�����
E1

1

(E0 − E1)2

�

·
�
e−µE0−E1d2

1

d2 sin θe1

dσc(E0 − E1)

dΩ

�����
E2

1

(E0 − E1 − E2)2

�

·
�
e−µE0−E1−E2d3

1

d3 sin θe2

dσc(E0 − E1 − E2)

dΩ

�����
E3

2πmec2

(E0 − E1 − E2 − E3)2

�

· e−µE0−E1−E2−E3d4 (5.39)

The simplified equations (5.38) and (5.39) are written in a modular way following

the interaction sequence. The first square bracket in both equations represents the

process of a photon entering the detector-array system and interacting by Compton

scattering. The second square bracket in both equations represents the process that

the scattered photon penetrates the detector material towards the second interaction

location and Compton scatters the second time. The third square bracket in the

full-energy deposition case, equation (5.38), represents the process that the scattered

photon penetrates the detector material towards the third interaction location and

deposits all its energy. The third square bracket in the partial-energy deposition

case, equation (5.39), represents the process that the scattered photon penetrates the

detector material towards the third interaction location, Compton scatters the third
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time, and the last line in equation (5.39) represents the probability that the scattered

photon escapes from the detector array.

5.3 System Response Function for Events with Any Number

of Interactions

The system response functions for events with any number of interactions can

be extrapolated by changing and adding probability modules which represent the

additional physics of penetrations and interactions to equations (5.38) and (5.39) .

1. n-interaction full-energy-deposition events

tij =
1

d2 sin θe1 · d3 sin θe2 · · · · · dn sin θen−1

· e−µE0d1
dσc(E0)

dΩ

�����
E1

1

(E0 − E1)2

· e−µE0−E1d2
dσc(E0 − E1)

dΩ

�����
E2

1

(E0 − E1 − E2)2

· · ·

· e−µE0−E1−···−En−2dn−1
dσc(E0 − E1 − · · · − En−2)

dΩ

�����
En−1

1

(E0 − E1 − · · · − En−1)2

· e−µE0−E1−E2−···−En−1dn
σp(En)�

2π(σ2
E1

+ σ2
E2

+ σ2
E3

+ · · ·+ σ2
En
)

· e
− (E0−E1−E2−E3−···−En)2

2(σ2
E1

+σ2
E2

+σ2
E3

+···+σ2
En

) (5.40)
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2. n-interaction partial-energy-deposition events

tij =
1

d2 sin θe1 · d3 sin θe2 · · · · · dn sin θen−1

· e−µE0d1
dσc(E0)

dΩ

�����
E1

1

(E0 − E1)2

· e−µE0−E1d2
dσc(E0 − E1)

dΩ

�����
E2

1

(E0 − E1 − E2)2

· · ·

· e−µE0−E1−···−En−2dn−1
dσc(E0 − E1 − · · · − En−2)

dΩ

�����
En−1

1

(E0 − E1 − · · · − En−1)2

· e−µE0−E1−E2−···−En−1dn
dσc(E0 − E1 − E2 − · · · − En−1)

dΩ

�����
En

· 2πmec2

(E0 − E1 − E2 − · · · − En)2

· e−µE0−E1−E2−···−Endn+1 (5.41)

Particularly, for single-interaction events, the system response functions are:

1. Single-interaction full-energy-deposition events

tij = e−µE0d1
σp(E1)�
2πσ2

E1

e
− (E0−E1)

2

2σ2
E1 (5.42)

2. Single-interaction partial-energy-deposition events

tij = e−µE0d1
σc(E0)

dΩ

�����
E1

2πmec2

(E0 − E1)2
e−µE0−E1d2 (5.43)

Equations (5.42) and (5.43) can also be derived without using the approximation of

a spherical pixelation-binning volume.
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In order to perform the maximum-likelihood deconvolution for single-interaction

events (attenuation imaging), the attenuation distance d1 and d2 have to be calcu-

lated for every direction for every event. This calculation is very computationally

intensive. Compared to multiple-interaction events, single-interaction events provide

poorer angular resolution in the reconstructed image due to less concentrated direc-

tional information. The source can be located at any direction for a single-interaction

event, but it can only be located on a small set of Compton cones for a multiple-

interaction event. The image from single-interaction events solely depends on the

penetration distance of the photon; hence, it is largely influenced by the geometry

and nonuniform detector response.

5.4 Discussion

There are several factors that are not included in the system model and may affect

the reconstructed image.

• 11×11 electrodes are attached to the anode surface of the detector. The pe-

ripheral pixels have slightly larger effective volume than inner pixels.

• In order to eliminate noise triggers, a software trigger threshold was set to 30

keV. Interactions with energies less than 30 keV are ignored. Due to the small

scatter angle produced by small energy depositions, ignoring interactions with

energy less than 30 keV has little impact on 2D directional image reconstruction.

• Multiple interactions can occur under the same pixel. Due to the limitation of

the analog ASIC, multiple events will be reconstructed as a single interaction

with the combined energy. For multiple-pixel events, the reconstructed depth

from drift time is determined by the interaction that is closest to the collecting

anode, so there is a systematic bias for the reconstructed depth towards the

anode side.
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• Studies have shown that the electron cloud may migrate to its neighbor pixels

as it drifts toward the collecting anode pixel from its interaction location [38].

This pixel-jumping effect is more severe on the cathode side [35], and behaves

differently in different crystals. This pixel-jumping effect changes the recon-

structed axis of the Compton cone slightly. Compton image reconstruction is

less sensitive to the pixel-jumping effect than some other imaging methods (such

as coded aperture). More study is needed to map the pixel-jumping probability

for each pixel experimentally for each detector, if this effect were to be included

in the system model.

• Photons which interact close to the anode produce a smaller signal that is

sometimes below the trigger threshold. The thickness of this dead layer depends

on the photon energy and the software trigger threshold level. An experiment

shows for 662 keV the thickness of the dead layer near the anode surface is

around 1 mm [39]. This effect has a huge impact on the image reconstruction

for single-interaction events. Future study is needed to include this effect in the

sensitivity factor.

• By digitizing the cathode waveform, a new study [40] shows the electric field is a

function of sub-pixel interaction position for some detectors. As a consequence,

the depth resolution is also a function of sub-pixel interaction position. This

effect is impossible to correct or model with the current analog ASIC.

5.5 Sensitivity Calculation

If we calculate the sensitivity image directly

sj =
�

i

tij (5.44)
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the tij for all possible interaction combinations needs to be computed for each direc-

tion and energy. If the x, y, z location and the energy are separated into 11, 11, 15

and 500 bins, respectively, in a 18 detector system, there are more than 1.6 × 107,

2.6 × 1014, 4.3 × 1021 and 7.1 × 1028 different events we need to consider for single-,

two-, three and four-interaction events for each direction and energy, respectively.

This direct calculation would take years to compute. Another way to acquire the

sensitivity image is to directly measure or simulate the detection probability for each

direction and energy. One can simulate or measure sources for all energy and di-

rectional bins then calculate the fraction of detected photons to the total photon

emission from the source for each source energy and direction. Direct measurement is

preferable since it can include some of the model miss matches such as the dead layer

near the anode surface. However, it is nearly impossible to measure the detection

probability for 500 energy bins and impractical to measure 18× 18 source directions

individually. Measuring a handful of energy lines for several unique directions and

interpolating the detection probability for other directional and energy bins may be

a practical solution.

Xu [11; 59; 60] proposed a way to compute the sensitivity by performing Monte

Carlo simulation with just one source. A large sampling of the detector response for

a source that is uniformly distributed over all energies of interest and all directions is

simulated. Then the MLEM deconvolution method in combined energy and spatial

domain is applied to the recorded events from this simulation. The first iteration of

MLEM solution f 1 is the sensitivity image. This method is deduced from the fact

that if we start with the true source distribution (a uniform image in energy and space

in this case), the next MLEM iteration should converge toward the MLEM solution.

With enough statistic, the MLEM solution and the true source distribution are very

close to each other. So it is reasonable to assume f 0 ≈ f 1. In other words, if the true

source image is the start image, the result image after the first iteration of MLEM
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Figure 5.4: The sensitivity image for a 18-detector array in the energy range of 200
keV to 250 keV.

divided by the sensitivity factor should be the very close to the start image which is

the true source distribution. From equation (5.5)

f 1
j =

f 0
j

sj

I�

i=1

tij�
k tikf

0
k

(5.45)

ŝj ≈
I�

i=1

tij�
k tikf

0
k

(5.46)

Figure 5.4 shows the sensitivity image in the source energy range of 200 keV to

250 keV for a 18-detector array system. As expected, the dominant factor of the

detection probability for a low energy photon is the area of the cross section, while

the depth is more important for the high energy photon detection probability as

shown in figure 5.5. Figure 5.5 is the sensitivity image in the energy range of 1600

keV to 1650 keV for the same 18-detector array.
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Figure 5.5: The sensitivity image for a 18-detector array in the energy range of 1600
keV to 1650 keV.

5.6 Performance

The angular resolution of an imaging system can be indirectly measured from the

FWHM of the image of a point source. However, the definition of the angular resolu-

tion is the minimal angular distance between two sources that can be differentiated

in the reconstructed image. The angular resolution varies for different detector ge-

ometries. For a single large CdZnTe detector (2 cm × 2 cm × 1.5 cm), the simplified

MLEM spatial-only deconvolution has an angular resolution of less than 10 degrees.

In this chapter, a measurement of three different radioactive sources is used to

examine the imaging performance of the system response functions derived in this

section. In addition, multiple repetitions of an experiment with a single source are

performed to find the statistical uncertainty in these maximum-likelihood deconvolu-

tion results. Due to the reasons described in the previous section, single-interaction

events are not used in the reconstructions. In this section, two-, three- and four-

interaction events are used in the deconvolutions.

For each experiment two algorithms are performed. First, deconvolution is done in

a combined spatial and energy space using the full system model considering both full-
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energy- and partial-energy-depositions; second, a simplified spatial-only deconvolu-

tion only using the full-energy case is also performed. For this spatial-only maximum-

likelihood deconvolution, energy windows around the photopeaks are used to select

the full-energy-deposition events that match the photopeak-only system model. No

sensitivity image is used in this simplified deconvolution method since reconstructed

intensities will be skewed anyway due to the Compton continuum from higher ener-

gies.

The detector array consisted of four 2 cm × 2 cm × 1.5 cm CdZnTe detectors.

Since this array was designed for testing purposes, the detectors used had relatively

poor spectroscopic performance and uniformity compared to other detectors we have

tested. The full width at half maximum (FWHM) energy resolution at 662 keV was

1.07% for single-pixel events from the whole array.

5.6.1 Maximum-Likelihood Expectation-Maximization Image Reconstruc-

tion Using Multiple-Interaction Events

A measurement was performed with three sources in three different directions: a

14-µCi Cs-137 source 30 cm away from the center of the detector array, a 24-µCi

Na-22 source 46 cm away from the center of the detector array and a 2-µCi Co-60 9

cm away from the center of the detector array, as shown in figure 5.6.

First, maximum-likelihood spatial deconvolutions were performed in energy win-

dows for each of the three sources: 460 keV to 560 keV for Na-22, 600 keV to 700 keV

for Cs-137 and 1100 keV to 1200 keV for Co-60. In the energy window from 1100 keV

to 1200 keV, there were 9405 single-interaction events, 35331 two-interaction events,

28402 three-interaction events, and 12044 four-interaction events. Therefore, includ-

ing three- and four-interaction events with the two-interaction events increased imag-

ing efficiency by 110%. Figure 5.7 shows the superposition of the maximum-likelihood

spatial-only deconvolution image from each energy window with a panoramic picture
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of the laboratory. The image was reconstructed with a 180 × 180 rectangular mesh,

and the expectation-maximization algorithm was performed with 25 iterations. The

reconstructed image from each energy window is shown in a different color. The

hotspots in the image are located in the correct source directions.

In another reconstruction, figure 5.8 shows the angular FWHM from each of the

image hotspots by using spatial-only deconvolution method with two-, three-, and

four-interaction events individually and combined. Figure 5.8 is from the first iter-

ation of the deconvolution, starting with a uniform image, using 500 events in each

reconstruction. The first iteration of the deconvolution is similar to the SBP image

where the blur is introduced by the position and energy resolution of the detector-

array system. In figure 5.8, the width of the hotspot decreases as the number of

interactions increases due to less interaction-sequence ambiguity [53]. Compared

to the Cs-137 measurement, the angular FWHM from combined two-, three-, and

four-interaction events from a Co-60 source is closer to the FWHM from only four-

interaction events, due to the fact that four-interaction events are more common in

higher-energy events. These relative widths persist through iterations.

Figure 5.9 is a three-dimensional view of the results from the maximum-likelihood

deconvolution in a combined spatial and energy domain using both the full- and

partial-energy-deposition model. The reconstruction was performed with two-, three-

, and four-interaction events in an energy range of 0 MeV to 2 MeV. The 4π spatial

domain was divided into a 64 × 64 mesh and the energy domain was divided into 500

energy bins. The sensitivity image used in this deconvolution was calculated from

a Monte-Carlo simulation [55]. The three axes are the dimensions of energy, polar

angle and azimuthal angle. The intensity in each image voxel is the estimated incident

intensity of photons from each incident direction and energy. In the reconstructed

image, the hot regions are located in the energy range of 660 keV to 664 keV in the Cs-

137 direction, 508 keV to 512 keV and 1272 keV to 1276 keV in the Na-22 direction,
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Figure 5.6: A diagram of the source arrangement for a measurement with Cs-137,
Na-22 and Co-60 sources.

and 1172 keV to 1176 keV and 1332 keV to 1336 keV in the Co-60 direction. From

this three-dimensional view, it can be seen that the results from this deconvolution

algorithm using both the full- and the partial-energy deposition model give the source

direction at the peak energies as well as the incident spectrum for each direction. As

in the simplified deconvolution case, a larger fraction of the events were used in the

reconstruction by including three- and four-interaction events in the deconvolution;

the deconvolved spectra preserve the same Compton-continuum-free property as only

using two-interaction events.

5.6.2 Statistical Uncertainty of the Deconvolution

Figure 5.10 shows the average reconstructed image using the maximum-likelihood

deconvolution in the spatial domain with 1000 two-, three-, and four-interaction pho-

topeak events from a measurement with a 30-µCi Cs-137 source after 20 iterations.

Figure 5.10(a) shows the full reconstructed image. It is clear that the point source

can be found in the detector array’s cathode direction at the top of the image. This

experiment was repeated 20 times. After 20 iterations, the total image value within

15 degrees of the cathode direction is on average more than 870 counts. Since the
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Figure 5.7: The spatial deconvolved image from a simultaneous measurement with Cs-
137, Na-22, and Co-60 sources, overlaid on an optical panoramic image.
The images for energy windows around the primary emission lines of Cs-
137, Na-22, and Co-60 are shown in red, green, and blue, respectively.
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Figure 5.8: The comparison of the spatial FWHM in the first iteration of MLEM
reconstruction with 500 two-interaction, three-interaction, and four-
interaction events individually and 500 combined two-, three-, and four-
interaction events from a Cs-137 and a Co-60 source. For the Cs-137
source, the reconstructed events were selected with total energy between
620 keV and 680 keV. For the Co-60 source, the reconstructed events were
selected with total energy between 1140 keV and 1350 keV.
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Figure 5.9: Reconstructed energy-image using maximum-likelihood deconvolution in
a combined spatial and energy domain with the three-source measurement
in figure 6.1.

maximum-likelihood expectation-maximization algorithm conserves the total number

of counts, more than 87% of the 1000 reconstructed events were located around the

correct direction after 20 iterations. Figure 5.10(b) shows the percentage mean and

the standard deviation of the image value in each pixel around the source direction.

The same method was used to find the uncertainty when deconvolving in both

energy and spatial domains with the full system model. A single 30-µCi Cs-137

source was measured, and 1000 two-, three-, and four-interaction events were used in

the reconstruction. The image was divided into a 18 × 18 mesh, and each energy bin

was 4 keV wide. This experiment was performed 20 times. Figure 5.11 shows the

mean deconvolved spectrum in the source direction and the standard deviation from

repetitions. The centroid of the peak is 662.4 keV ± 0.9 keV.
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(a)

(b)

Figure 5.10: (a) The reconstructed image from 1000 photopeak events from a Cs-137
source placed almost in the cathode direction of the detector array. (b)
A detail of the hot region (polar angle of 78 degrees to 90 degrees and
azimuthal angle of 40 degrees to 88 degrees). The mean and the standard
deviation of the number of counts for each pixel after 20 iteration is
shown in each pixel as a percentage of the total image value.
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Figure 5.11: The mean and the standard deviation of each energy bin in the de-
convolved spectrum for the source direction by using the maximum-
likelihood deconvolution in a combined spatial and energy domain with
25 iterations for 1000 two-, three, and four-interaction events. 20 repe-
titions are used to calculate the mean and standard deviation.

71



CHAPTER VI

Applications of the Energy-Imaging Integrated

Deconvolution Algorithm for Source

Characterization

6.1 EIID with A Three-Source Measurement

We use the same measurement described in section 5.6.1. The measurement was

performed with three sources, a 14-µCi Cs-137 at 30 cm away, a 24-µCi Na-22 at 46 cm

away, and a 2-µCi Co-60 at 9 cm away from the center of the detector array, in three

different directions, as shown in figure 6.1. Figure 6.2 is the result from the MLEM

deconvolution in the combined energy and directional image domain, also known as

the energy-imaging integrated deconvolution (EIID) algorithm. The three axes are the

deconvolution dimensions of energy, and polar and azimuthal angles, and the intensity

of the image voxel is the estimate of the spectral intensity of photons from each

direction striking the detector. As expected from this algorithm, this deconvolved

spectrum reflects the theoretical branching ratio emitted from each source, as shown

in figure 6.3. The ratio of the peak areas at 511 keV and 1274 keV in the Na-22

direction is almost 1.99, shown in the red bar. It is very close to the ratio of the

theoretical emission probabilities of 2, shown as the dotted line in figure 6.3(a). For

the Co-60 direction, the ratio of peak areas at 1173 keV and 1333 keV is about 0.99,
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which is also very close to the theoretical ratio of 1.0. The green bars show the ratio

of peak areas from the raw spectrum over all directions, which is very different from

the theoretical branching ratio.

Figure 6.1: A diagram of the source arrangement for a measurement with Cs-137,
Na-22 and Co-60 sources.

6.2 Estimation of the Source Intensity

From these incident spectra we can estimate the source intensity. The absolute

magnitude of the deconvolved spectrum was calibrated by measuring a Cs-137 source.

After applying EIID, the calibration factor can be calculated using the source activity,

measurement time, emission probability, solid angle, and dead-time factor compared

to the total area of the deconvolved spectrum.

calibration factor =
number of emitted photon

deconvolved spectrum area
(6.1)

With this single calibration factor we can turn this spectrum into the number of emit-

ted photons at a certain distance. If the isotope is known, the activity of the source

can be estimated. The measurement with Cs-137, Na-22 and Co-60 was performed 50

times to get the statistical uncertainty of the estimated source intensity. Figure 6.4

shows the estimation of the number of photons emitted from the sources for the known
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Figure 6.2: Reconstructed energy-image using the EIID algorithm with the three-
source measurement in figure 6.1.

(a) Na-22 direction (b) Co-60 direction

Figure 6.3: Comparison of the peak areas ratio for the two emission lines of the given
source using the raw (green bar) and the deconvolved spectra (red bar)
with the ratio of the emission probabilities of the source (dashed line).
The deconvolved spectra were selected from the source directions
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distance. With a simulated sensitivity image to correct for both energy and spatial

efficiency variation, the estimated source intensity, shown in red, is within 10% of the

true intensity, which is shown as the dotted line. As expected the estimated source

intensity is closer to the true intensity when applying the efficiency correction. The

statistical uncertainty of the source intensity estimates ranges from 1% to 5%.

Figure 6.4: Estimates of the number of emitted photons from each source from the
EIID spectrum in the direction of each source.

It is difficult to theoretically predict the uncertainty of the estimated source in-

tensity from a single EIID result. In order to study the statistical error of the EIID

deconvolved spectrum in a certain direction, a Cs-137 source was measured multiple

times at 30-cm away from the center of the detector array on the cathode direc-

tion. 1000 events were used for each EIID reconstruction. The statistical uncertainty

in the deconvolved full-energy peak area is just below 10%, as shown in figure 6.5.

Multiple repetitions of a simulation were also performed using Geant4 [61] with the

same source and detector geometry in order to see the effect of reducing the model

mismatch when experimental effects, such as shielding from the detector housing,
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pixel-jumping, weighting potential anode dead layer and non-Gaussian peak shape,

are removed. The uncertainty was reduced to 5.5%, so a large portion of the statistical

uncertainty seems to be due to model mismatch. By changing the source from 30-cm

away to far-field in the simulation, the uncertainty reduced to about 4%. So, a small

portion of the statistical uncertainty is due to the near-field effect. By increasing the

number of events in each reconstruction to 2× 104 and still using the far-field simu-

lation, the uncertainty further dropped to around 1%. Therefore, counting statistics

seem to be a limiting factor on statistical precision even after 1000 collected events.

Figure 6.5: Statistical uncertainty of the EIID spectrum area using different types of
data and different number of events.

6.3 Directional Isotope Identification

Isotopes can also be identified with the EIID spectrum in the source direction

using the fact that an unshielded source will have peak area proportional to the

theoretical branching ratios. A method [62] is proposed to calculate a figure of merit

(FOM) that each isotope is present, defined as the ratio of the peak area to the
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emission probability that is associated with the peak energy. For example, in order

to calculate the FOM for Na-22 in a certain direction, we measure the spectrum area

of the 511 keV and 1274 keV first, and then divide the peak area by the associated

emission probabilities, which is 2 for 511 keV and 1 for 1274 keV. Now we have two

FOM values from two energy lines of Na-22. The smaller FOM will be selected for this

isotope in order to prevent amplifying the noise due to small emission probabilities

or incorrectly identifying due to the presence of just a subset of the expected peaks.

For the same reason, this method was only applied for the energy lines that have an

emission probability above 1%. The FOM values for other isotopes can be achieved

by following the same procedure. After going through every source in a library of 20

sources, the results in figure 6.6 show Co-60, Na-22 and Cs-137 have the largest figure

of merit for the Co-60, Na-22 and Cs-137 source directions, respectively. The FOM

value of K-40 in the Na-22 direction is caused by amplifying the noise by dividing

the emission probability of 10.7% around 1462 keV. The figure 6.7 is a histogram of

50 repetitions of this experiment. The x-axis is the FOM for each direction, and the

y-axis shows the frequency of each FOM value. This histogram shows that in this

experiment, the correct isotopes for each direction can easily be identified. However,

the disadvantage of this method is that it does not use all peaks to form the FOM

value, so more statistical noise is present.

In order to use all peaks to determine the presence of isotopes in each direction,

another method is developed by summing all spectrum areas that are associated with

the peak energies of an isotope. Since the deconvolved spectrum is the directional

incoming spectrum, the summation of the peak areas in the deconvolved spectrum is

a FOM that represents an estimate of the number of photons that strike the detec-

tor surface from an isotope in each direction. The same data from the three-source

measurement is used to evaluate this algorithm. Figure 6.8 is the result from this

peak-area-summation method in the Na-22 source direction. Using this new result,
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(a) Cs-137 direction

(b) Na-22 direction

(c) Co-60 direction

Figure 6.6: The FOM of each source in the library for each source direction.
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Figure 6.7: Histograms of 50 isotope identification experiments from the three-source
measurement. The top, middle and the bottom figures are from the spec-
tra in the Cs-137, Na-22 and Co-60 directions, respectively. The x-axis is
the FOM value and the y-axis is the frequency of each FOM value.
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the FOM values of the wrong sources are less pronounced compared to the previous

result shown in figure 6.6(b). The FOM of K-40 in figure 6.6(b) is created from am-

plifying the noise around its photopeak energy at 1462 keV more than 9 times after

dividing its emission probability of 10.7%. This noise is only summed once and is not

amplified by small branching ratios in the peak-area-summation method. However,

due to the non-negativity property of the MLEM estimator, all statistical noise in

the deconvolved spectrum has a positive value. Therefore, this peak-area-summation

method is inherently biased toward isotopes with more photopeaks since more statis-

tical noise and background counts contribute to the FOM. In order to suppress the

background level, the mean amplitude of all energy bin in the deconvolved spectrum

is subtracted from each energy bin of the deconvolved spectrum. In this way, the

correct isotope always has the largest FOM value. After 50 repetitions of this ex-

periment, the histogram of the FOM values of each source in each source direction,

shown in figure 6.9, has a bigger gap between the correct and incorrect sources than

the previous result in figure 6.7.

Figure 6.8: The FOM in Na-22 source direction by using the peak-area-summation
method with the deconvolved spectrum from the three-source measure-
ment.

When it is possible that more than one source is present in the direction of interest,

this method is performed to initially identify the isotope with the largest FOM. The

identification method is then repeated after removing the peaks from identified sources

until no peak in the deconvolved spectrum is greater than three standard deviations of
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Figure 6.9: Histograms of 50 isotope identification experiments from the three-source
measurement. The top, middle and the bottom figures are from the spec-
tra in the Cs-137, Na-22 and Co-60 directions, respectively. The x-axis is
the FOM value and the y-axis is the frequency of each FOM value. This
figure is created using the peak-area-summation method with the same
data used in figure 6.7.
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the spectrum. When multiple isotopes contribute to a peak region, one of the isotopes

with unique photopeaks is identified. The peak areas of this identified isotope are

calculated from the area of its biggest unique photopeak and the relative emission

probabilities at each photopeak energies. The calculated peak areas are than removed

from the deconvolved spectrum. Figure 6.10 can be achieved by using this method

with the deconvolved spectrum in all directions from the three-source measurement.

Figure 6.10: The FOM of identified isotopes in all directions by using the peak-area-
summation method with the deconvolved spectrum from the three-source
measurement.

Traditional isotope identification methods using the raw measured spectrum may

have better performance due to the fact that a significant number of single-interaction

events in the raw spectrum can not be used in the EIID algorithm (in a practical

timely fashion). However, the isotope identification methods presented in this section

provide a unique direction-dependent result.

A probability-based directional isotope identification method, isotope-imaging in-

tegrated deconvolution (IIID), is described by Wahl [44]. IIID essentially uses the

same method and system model as EIID, but it uses a set of isotope bins instead of

evenly distributed energy bins as basis functions. The IIID algorithm performs better

in the scenario of multiple isotopes that share the same photopeak in the spectrum

since it can estimate the most probable contribution from each possible isotope based

on the emission probabilities. The flip side of this advantage is, compared to the

methods presented in this chapter, the results from the IIID are more dependent on

the agreement between the measurement and the model. In addition, when back-
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ground from the environment is present in the measurement, EIID deconvolves the

background events into a large number of energy bins, instead of forcing them into a

handful of isotope bins. Therefore, the isotope identification methods from the EIID

spectrum have less background noise for each isotope.

6.4 Image Shielded Sources

As illustrated in figure 6.11, if a gamma-ray source is shielded, some photons from

the source will be scattered in the shielding material before reaching the detector,

while other photons will reach the detector without any interaction in the shield. The

scattered photon will often carry lower energy than the initial photon from the source.

Therefore, the image from a shielded source should appear more blurred around the

true source location at lower energies compared to that from an unshielded source.

If the photons only scattered once in the shield by Compton scattering, photons

scattered to lower energies correspond to greater scattering angles, so the image at

lower energies should have a wider diffuse source region. Photons scattered more than

once in the shield will result in a more blurred image. [63]

A single 2-cm× 2-cm× 1.5-cm three-dimensional position-sensitive room-temperature

CdZnTe detector was used in an experiment. A 30-µCi Cs-137 source was placed near

the detector. Figure 6.12 shows the reconstructed image using the MLEM deconvo-

lution in combined energy and spatial domain. A point-like hotspot is clearly shown

in the reconstructed image at 662 keV. By placing a 3.7-cm thick steel block between

the source and the detector, the image in figure 6.13 is produced using the same

deconvolution algorithm. A diffuse image from the scattered photons can be seen at

energies less than 662 keV. The area of the high-intensity region increases for im-

age slices at lower energies, which agrees with the theoretical expectation from the

Compton scatter formula. This bowl-shaped smear is also shown in figure 6.14 for a

1-µCi Co-60 source shielded with 2.7 cm of lead.
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Another experiment was performed by measuring a 30-µCi Eu-152 source behind

1.8 cm of steel on one side of the detector and a 10-µCi Cs-137 source without any

shielding on the opposite side of the detector. Figure 6.15 shows the reconstructed

image where a point-like hotspot appears at the Cs-137 direction, while the smear

from the scattered photons can be easily identified in the Eu-152 direction at energies

lower than the photopeaks. The deconvolved (incident) spectrum at the Eu-152 source

direction with and without the 1.8-cm steel shield is shown in figure 6.16. The low-

energy peaks are significantly smaller compared to the others, which agrees with the

fact that the attenuation coefficient in the shield increases for lower energy photons.

Figure 6.11: A block of shielding material exists between a source and a detector.

6.5 Estimation of the Shielding Material

A direct way to estimate the shielding material is by trying to detect the char-

acteristic X-ray peaks in the recorded spectrum. For example, figure 6.17 shows

the recorded spectrum from the measurement that created figure 6.14 in section 6.4.

The characteristic X-ray from lead can be seen clearly around 80 keV. However, the

characteristic peak can only be detected if its energy is above the software trigger
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Figure 6.12: The reconstructed image using the EIID algorithm with 5 iterations for
21879 two-interaction events from a Cs-137 source with no shielding.
Two axes of this plot show the angular positions around the detector
and the last shows the incident energy of the photons. The color is
proportional to the intensity.

Figure 6.13: The reconstructed image using the EIID algorithm with 5 iterations for
21879 two-interaction events from a Cs-137 source behind 3.7 cm of steel
shielding. Two axes of this plot show the angular positions around the
detector and the last shows the incident energy of the photons. The
color is proportional to the intensity.
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Figure 6.14: The reconstructed image using the EIID algorithm with 5 iterations for
28120 two-interaction events from a Co-60 source shielded by a 2.7cm-
thick lead block. Two axes of this plot show the angular positions around
the detector and the last shows the incident energy of the photons. The
color is proportional to the intensity.

threshold (30 keV) of our detector system. Therefore, the characteristic X-ray from

steel, which has an energy around 7 keV, cannot be detected.

As shown in figure 6.16, the change in peak area depends on the gamma-ray energy.

The changes of the peak areas in the deconvolved spectrum at different energies can

be used to estimate the material’s atomic number and thickness. [62] The attenuation

of two emission energies from a single source can be described by equations of the

form

I �1 = I1e
−µ1x (6.2)

I �2 = I2e
−µ2x (6.3)

where I1 and I2 are the initial intensities, I �1 and I �2 are the attenuated intensities, µ1

and µ2 are the attenuation coefficients at those energies, and x is the thickness of the

shielding.
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Figure 6.15: The reconstructed image using the EIID algorithm with 10 iterations
for 457285 two-interaction events from a Eu-152 source behind 1.8 cm
of steel shielding and a Cs-137 source without any shielding. Two axes
of this plot show the angular positions around the detector and the last
shows the incident energy of the photons. The color is proportional to
the intensity.

Figure 6.16: The deconvolved spectrum in the Eu-152 source direction with and with-
out 1.8 cm of steel shielding. The EIID algorithm was used to deconvolve
the incident spectrum.
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Figure 6.17: The raw energy spectrum recorded by the detector from a Co-60 source
behind 2.7 cm of lead shielding.

Assume the atomic number z and the thickness x are constants. The difference

between the log of the ratio of attenuated intensities and the log of the ratio of initial

intensities should have a linear relationship with the difference of the attenuation

coefficients, as

ln(
I �1
I �2
)− ln(

I1
I2
) = x(µ2 − µ1) (6.4)

Therefore the z number can be determined by the attenuation coefficients that give

the best linear fit. Then the thickness of the shielding x can be calculated based on

the slope of the line.

A 30-µCi Eu-152 source was used in this experiment. The results reported from

this algorithm are shown in table 6.1. Figure 6.18 shows the reported best linear

fit for the data from 1.9 cm of steel. Although the algorithm cannot estimate the

z number exactly, it can detect if the shielding material has a high atomic number,

which is useful for many applications.

Table 6.1: The Results of the Estimated Atomic Numbers and the Thickness of
Shielding Materials

Shielding z Thickness (cm) Estimated z Estimated thickness (cm)

26 (steel) 1.9 27 1.5

50 (tin) 1.0 64 3.2

82 (lead) 1.0 80 1.1

88



Figure 6.18: The best linear fit between ln( I
�
1
I�2
)− ln( I1I2 ) and µ2 −µ1 for the data from

1.9 cm of steel. The estimated atomic number from the best linear fit
is 27. The thickness of the shielding is estimated to be 1.5 cm from the
slope of the linear fit.
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CHAPTER VII

Visualizing Natural Radiation Background

Humans have evolved in the presence of a natural radiation background. The

radio-isotopes K-40, Th-232, and U-238 are responsible for the majority of natural

radioactivity and human radiation dose. Radon, a decay product of U-238, is the

second leading cause of lung cancer behind smoking [64]. Alpha-particles are the most

biologically dangerous emissions from natural radioactive decay, but are difficult to

detect and image due to a very short range. However, all the natural decay chains have

unique gamma-ray emission signatures that are easy to identify with spectroscopy.

Non-imaging spectrometers have been used in a series of static measurements to

survey the natural gamma-ray background of an extended area [65].

7.1 Image Extended Sources

In order to show our imaging techniques are capable of reconstructing radiation

distributions with a large spatial extent, a Monte Carlo simulation is performed using

Geant 4 to model the detector response of a uniform part-spherical area source which

emits 662 keV gamma rays. The uniform extended source covers a polar angle of

-30 degrees to 30 degrees and an azimuthal angle of 150 degrees to 210 degrees.

Figure 7.1 and figure 7.2 shows the reconstructed image by using the SBP method

and the MLEM deconvolution in the spatial domain with 29 iterations, respectively.
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The SBP image shows the correct source area with the highest intensity while having

a high level background around the source area due to the build up of the incorrect

portion of the Compton cones. The MLEM image has correct clear edges but is

not uniform. The four corners are hotter than the middle. In order to prove that

the non-uniformity of the reconstructed image is due to the sensitivity variation, the

location of the extended source was moved 45 azimuthal degrees in the simulation.

The new source covers polar angles of -30 degrees to 30 degrees and azimuthal angles

of 195 degrees to 255 degrees. Figure 7.3 is the MLEM solution after 29 iterations.

The hottest region is at an azimuthal angle of 225 degree which corresponds to the

corner of the detector that has the largest cross section. This sensitivity variation

can be included in the sensitivity factor for this particular energy [44]. However,

if there is another source has a energy line higher than 662 keV that exists in the

measurement, the sensitivity factor will be determined by the relative intensity of the

two sources due to the fact that the simplified spatial-only MLEM deconvolution can

not deconvolve the Compton continuum back to the photopeaks. Therefore, without

the prior knowledge of the source energy, no single sensitivity image can be selected.

Figure 7.1: The reconstruction of a 60 degrees (polar) by 60 degrees (azimuthal)
spherical source by using SBP reconstruction. Only photopeak events are
used in this reconstruction.
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Figure 7.2: The reconstruction of a 60 degrees (polar) by 60 degrees (azimuthal)
spherical source using MLEM deconvolution in spatial domain with 29
iterations. Only photopeak events are used in this reconstruction.

Figure 7.3: The reconstruction of a 60 degrees (polar) by 60 degrees (azimuthal)
spherical source using MLEM deconvolution in spatial domain with 29
iterations. Compare to figure 7.2, the source was shifted 45 degrees in the
azimuthal direction. Only photopeak events are used in this reconstruc-
tion.

Two sources with different activities were simulated using Geant 4. Both sources

cover polar angles of -30 degrees to 30 degrees. The stronger source covers azimuthal

angles of 60 degrees to 120 degrees while the weaker source covers azimuthal angles
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of 240 degrees to 300 degrees. The stronger one is twice as active as the weaker one.

In the reconstructed images, shown as figure 7.4 and figure 7.5, the intensity ratio

between the two sources were close to 2 to 1.

Figure 7.4: The SBP reconstruction of two extended sources. The ratio of activity of
the left source to the right source is 2. Only photopeak events are used
in this reconstruction.

Figure 7.5: The reconstruction of two extended sources using MLEM deconvolution
in spatial domain with 29 iterations. he ratio of activity of the left source
to the right source is 2. Only photopeak events are used in this recon-
struction.
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7.2 Image the Natural Radiation Background

Xu [11] successfully reconstructed the natural radiation background using the SBP

algorithm. However, there was a Cs-137 source present behind the nearest concrete

wall. So the reconstructed image around 609 keV can be explained by the scattered

photons in the concrete wall from the Cs-137 source in the next room.

In the new experiments, all experimental radioactive sources in the laboratory were

heavily shielded to avoid contamination of the background. Two different natural

background scenarios were imaged in our research laboratory to demonstrate the

imaging capability of our system. First, we imaged a small room to show the contrast

between large windows and concrete walls. Then, we imaged a room with concrete

walls on all sides, but with shielding around the detector in certain directions, in order

to create a known background scenario. A single CdZnTe detector with dimensions

of 2 cm × 2 cm × 1.5 cm was used.

The geometry of the small lab used for the first experiment is shown in Figure 7.71.

The natural background was measured for one day. A conventional gamma-ray spec-

trometer would only be able to provide the energy distribution of the background

environment, as shown in Figure 7.6. However, our system measures the intensity

of the background radiation emissions in all directions. Figure 7.8 shows the recon-

structed image using a SBP algorithm. Comparing figure 7.8 to figure 7.7, the most

intense region of the reconstructed image is correlated with the closest concrete wall,

centered at an azimuthal angle of 270 degrees. The least intense region of the re-

constructed image is correlated with the window region, centered at an azimuthal

direction of 180 degrees. The image regions associated with the partial window di-

rection at 0 degrees and the distant wall at 90 degrees are of moderate intensity. All

these observations agree with expectation: more gamma rays reach the detector when

the source of natural background emission is in close proximity.

1
Image from Feng Zhang, University of Michigan, Ann Arbor.
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Figure 7.6: Energy spectrum of the natural radiation background.

Figure 7.7: The configuration of the lab and the detector.
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Figure 7.8: A reconstructed image of distribution of Bi-214 in the concrete wall by
using SBP with 4774 events in energy window of 600-630 keV.

The detector was rotated 90 degrees, as illustrated in figure 7.92, in order to

eliminate the possibility that the reconstructed image was influenced by a systematic

bias. The SBP image generated from the rotated detector orientation is shown in

figure 7.10. As expected, the features of the image have been rotated 90 degrees

when comparing figure 7.8 to figure 7.10. Figure 7.11 and figure 7.12 show the result

of overlaying an optical panoramic picture of the laboratory with the Compton image

before and after the detector rotation, respectively. A camera with a panoramic lens

was placed at the same location of the detector and rotated with the detector. In

both figure 7.11 and figure 7.12, the distribution of the image intensity agrees with

the proximity to the natural radiation source in each direction, such as a concrete

wall.

The background images in our lab provide anecdotal evidence of the correlation

between background sources and image intensity. More gamma-rays are observed in

the direction of the concrete wall than in the direction of the window, and the image

rotates with the detector. However, this experiment does not provide a rigorous

comparison between a reconstructed image and a well defined background emission

2
Image from Feng Zhang, University of Michigan, Ann Arbor.
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Figure 7.9: The configuration of the lab and the detector after 90 degrees rotation.

Figure 7.10: A reconstructed image of the distribution of Bi-214 in the concrete wall
after rotating the detector 90 degrees by using SBP with 8219 events in
energy window of 600-630 keV.

97



Figure 7.11: The result of overlaying Compton image with optical panoramic image
before detector rotation.

Figure 7.12: The result of overlaying Compton image with optical panoramic image
after 90 degrees of detector rotation.
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scenario. The difficulty lies in creating a known background distribution when our

detector system is the only device capable of creating such detailed images of the

natural background. In order to overcome this difficulty, the detector was placed

inside a lead tunnel with two openings equidistant from two concrete walls.

The use of 5-cm thick lead walls around the detector absorbs the vast majority

of the natural radiation background. Therefore, the gamma-ray intensity should

be at least an order of magnitude larger in the directions of the openings of the

tunnel. Furthermore, the high intensity regions of the image can be predicted from

the position of the detector within the lead tunnel. A change in detector position

should correlate to a predictable shift in the reconstructed image.

The presence of the lead shielding eliminated most of the background events, re-

quiring a very long measurement time of three days. In this experiment, two similar

CdZnTe detectors were placed in different positions inside the lead tunnel. Figure 7.13

shows the reconstructed images from both detectors as well as the directions asso-

ciated with cave openings for each detector. The reconstructed images are in good

agreement with the cave openings, indicating the proper reconstruction of this known

background scenario.

The recorded data from both experiments are then reconstructed by the MLEM

deconvolution in the combined spatial and energy domain. Figure 7.14 shows the

reconstructed image from the lead tunnel experiment. The two openings can be seen

clearly. Every background energy line has a higher intensity in the concrete wall

direction than the window direction in the deconvolved incoming spectra shown in

Figure 7.15. Figure 7.16 shows the deconvolved spectrum in the lead direction which

is near the statistical noise level while the opening has a much stronger radiation level

from the concrete wall.
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(a) Reconstructed image from detector 1. 55110 events are used in the SBP recon-

struction.

(b) Reconstructed image from detector 2. 53056 events are used in the SBP recon-

struction.

Figure 7.13: The reconstructed image of the natural radiation distribution in the
concrete through two openings of a lead tunnel by using SBP for two
side-by-side detectors with events in the energy window of 300-2000 keV.
The blue lines indicate the openings of the lead tunnel.
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Figure 7.14: The result image from MLEM deconvolution in combined energy and
spatial domain. Two tunnel openings can be seen clearly.

Figure 7.15: The deconvolved spectrum of a 50-degree half-angle region in the wall
and window direction. The y axis is the figure of merit of the source
intensity.
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Figure 7.16: The deconvolved spectrum of a 30-degree half-angle region in one of the
openings of the lead tunnel and the cathode direction which is blocked
by 5 cm of lead. The y axis is the figure of merit of the source intensity.

7.3 Image a Bottle of K-Salt

Lite Salt is a trademarked salt alternative that has a lighter or smaller sodium

content than regular salt. It contains a blend of regular salt and potassium chloride,

according to Morton Salt [66; 67]. Lite Salt is sometimes used by people who want less

sodium intake. K-40 produces 1462-keV gamma rays with an emission probability

around 10%. We once used several bottles of Lite Salt to check the calibration of

our detector when no check source was available. K-40 exists in both Lite Salt and

concrete, so without the prior knowledge of the background level, a spectrometer can

not determine if there is concentrated K-40 sources in a room.

A bottle of Morton Lite SaltTM which contains 311 gram of mixed salt was placed

near the anode side of an array of two large CdZnTe detectors. The source was mea-

sured for about 8 hours due to extremely low activity of the salt and the background.
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Around 33% of the recorded 1462 keV photons are from the salt. Figure 7.17 shows

the raw recorded spectrum.

Figure 7.17: The raw recorded spectrum from the K-salt and the natural radiation
background. Note the 1462 keV photopeak from K-40 is smaller than
609 keV photopeak from Bi-214.

After the MLEM deconvolution in combined spatial and energy domain, figure 7.18

can be achieved. A concentrated hotspot in the anode direction is located in the

energy bin from 1460 keV to 1464 keV in the deconvolved image. This localized image

indicates the presence of a concentrated source instead of the distributed natural

background. The deconvolved spectrum in the cathode direction, shown as figure 7.19,

shows that the 1462 keV photopeak has the same level of radiation compared to other

background energy lines. Figure 7.20 shows that the deconvolved incident spectrum in

the K-salt direction has a 1462 keV energy line dominating over all other background

energy lines.

An interesting note of this experiment is that there is a faint yellow dot in 660 keV

to 664 keV energy bin in the deconvolved image (figure 7.18). We followed the direc-

tion shown in the image. A Cs-137 source was found behind a concrete wall in the

next room.
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Figure 7.18: The deconvolved image from the K-salt measurement using MLEM
method.

Figure 7.19: The deconvolved incoming spectrum in the direction which does not have
the bottle of K-salt.

104



Figure 7.20: The deconvolved incoming spectrum in the direction of K-salt.
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CHAPTER VIII

Imaging Sources with Known Motion

Radiation sources are not always stationary relative to the detector. For example,

for homeland security applications, it is desired to image or detect sources in a moving

vehicle [9; 68] or with a pedestrian. Multiple sources with different motion may

present at the same time. Without motion compensation, the moving source will

create a blurred image with a shape from the track of the motion. Figure 8.3 shows a

reconstructed SBP image from a moving point source without motion compensation.

The details of this experiment will be discussed in the following sections. If we

have knowledge of the target motion as a function of time from an optical tracking

system [69; 70; 71] and the time-stamp of each recorded event, source motion can

be compensated. A similar problem has been studied for compensating respiratory

motion in PET image reconstruction [72; 73; 74].

This work focuses on two ways of compensating the known motion of the tracked

targets. The first is to rotate the entire image reference frame that follows the location

of the target, so the target stays stationary in the image reference frame. The second

is accumulating the reconstructed image intensity at the target direction for each

time stamp in a separate target image bin. Both methods can be applied to SBP and

MLEM reconstructions.
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8.1 Experimental Setup

An 18-detector array was used in this experiment. Sources with known motion

as a function of time are required for the presented algorithms. Figure 8.1 shows a

picture of the apparatus that rotated a source around the detector array. A computer

controlled actuator was mounted at the top of a table and was set to rotate the L-

shaped arm with a constant angular velocity. A source was attached to the bottom of

the L-shaped aluminum arm, where is in the plane of the detector array. The center

of the detector array was placed directly under the pivot point of the actuator. In this

experimental setup, the source can revolve around the center of the detector array

360 degrees.

Figure 8.1: The experimental setup.

Two sources were measured separately. A 30-µCi Cs-137 source was measured

while revolving around the detector 360 degrees counterclockwise. A 30-µCi Na-22

source was measured while revolving around the detector 360 degrees clockwise. The
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two recorded event data sets were mixed together to create a scenario with two sources

with different motion. This mixed data set is used to demonstrate different motion

compensation methods throughout this chapter.

Figure 8.2: The illustration of a Cs-137 source and a Na-22 source rotating 360 degrees
around the 18-detector array in different directions.[75]

8.2 Reference Frame Rotation Method

The reason of reconstructing a blurred uncompensated image, shown as figure 8.3,

is that the source moves relative to the detector, illustrated in figure 8.41. The most

straightforward method to compensate the relative source motion is to rotate the

image reference frame so the tracked target always keeps stationary relative to the

detector as illustrated in figure 8.52.

1
Image from Jason Jaworski, University of Michigan, Ann Arbor.

2
Image from Jason Jaworski, University of Michigan, Ann Arbor.
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Since the two sources in this experiment have different motion, it is impossible to

keep both sources stationary at the same time. So separate reconstructions have to

be performed to follow each source. As a consequence, the reconstruction time varies

linearly with the number of targets. Figure 8.6 and figure 8.7 can be reconstructed

using the SBP method when the reference frame is rotated to follow the motion of

the Cs-137 source and the Na-22 source, respectively. Point-like images are clearly

shown when the source is tracked to be stationary in the image reference frame with

less than 600 events. As expected, when the image reference frame follows the motion

of the Cs-137 source, the Na-22 photopeak events make a blurred image due to the

fact that the Na-22 is not stationary relative to the detecter array, and vice versa.

Figure 8.3: The SBP reconstructed image of a moving Cs-137 source in the Cs-137
photopeak energy window.

This reference frame rotation method can also be applied to the MLEM recon-

struction. Instead of shifting the reconstructed Compton cone, the probability matrix

shifts according to the direction of the target at the time of each event. From the
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Figure 8.4: Illustration of Compton cones from a moving source at different time.

Figure 8.5: Illustration of Compton cones shifted according to the direction of the
source at different times.
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(a) Events in Cs-137 photopeak

(b) Events in Na-22 photopeaks

Figure 8.6: The reconstructed image using SBP method with a rotated reference
frame that follow the motion of the Cs-137 source.
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(a) Events in Cs-137 photopeak

(b) Events in Na-22 photopeaks

Figure 8.7: The reconstructed image using the SBP method with a rotated reference
frame that follows the motion of the Na-22 source.
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detector’s point of view, the target direction changes as a function of time. Since the

sensitivity factor varies at different directions in our system, we need to include the

change of the sensitivity factor in the list-mode EM solution (5.5). The new iterative

list-mode EM solution

fn+1
j = fn

j

I�

i=1

tij
sij

�
k tikf

n
k

(8.1)

has a sensitivity term sij which is determined by the direction of the target at the

time of event i.

Figure 8.8 and figure 8.9 show the results from MLEM deconvolution in spatial-

only domain with 10 iterations with and without motion compensation, respectively,

for events in the photopeak of the Cs-137 source. A nice sharp image was recon-

structed by using the reference frame rotation method.

Figure 8.8: The reconstructed image using MLEM deconvolution in the spatial do-
main with 10 iterations without motion compensation.

Besides only capable of compensating one target motion at a time, another un-
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Figure 8.9: The reconstructed image using MLEM deconvolution in the spatial do-
main with 10 iterations with reference frame rotation motion compensa-
tion method.
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avoidable problem of this reference frame rotation method is that the Compton cones

produced by background events are rotated with the target as well. So the image

from the stationary background is smeared when compensating the motion of a mov-

ing target.

8.3 Reconstruction with Additional Target Bins

In order to preserve the stationary background image while tracking a moving

target, a series of target bins are created. One can “copy” the fraction of the recon-

structed Compton cone according to the current location of each target and prede-

fined target size, and then add the cone fraction to the corresponding target bin. This

method is illustrated as figure 8.103. The size of the target is a constant, and needs

to be defined before the reconstruction. For the SBP algorithm, this method is much

faster than the reference frame rotation method since summation is much faster to

compute than rotating an image. The reconstructed image in the target bin can then

be put back into the backdrop image following the current location of the source, so

the radiation image can be overlaid with the image from the optical camera.

By adding the extra bins for targets to the image space, the MLEM reconstruction

method described in chapter V becomes the MLEM deconvolution in the combined en-

ergy and direction-target domain, or energy-target integrated deconvolution (ETID).

Figure 8.11 shows the structure of the new system matrix with the added row for

each target. Similar to the MLEM deconvolution in the combined energy and spatial

domain, ETID is capable of providing the source distribution in both backdrop and

targets for each energy as well as the deconvolved incident spectrum, which is free of

Compton continuum, in each target bin and every direction in the backdrop image.

The theory, experimental results and analysis is described in detail by Jaworski et

al. [76; 77].

3
Image from Jason Jaworski, University of Michigan, Ann Arbor.
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Figure 8.10: Illustration of motion compensation by adding the cone fraction to the
target bin based on the direction and physical size of the target.

Compared to SBP with motion compensation which is capable of indicating the

source direction with a mere 50 counts, ETID is more suited for situations where there

are a sufficient amount of counts to achieve a statistically relevant source distribution

estimation.

Figure 8.11: Rows are added for targets in the system matrix.
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CHAPTER IX

Image Reconstruction with Sub-Pixel Position

Resolution Events from a Digital ASIC

Several limitations of the analog system are listed in chapter 2.3. To overcome

these limitations and to improve the lateral position resolution, and consequently the

image angular resolution, a new digital ASIC was designed in a collaboration with

Gamma-Medica Ideas. Instead of only reading out the amplitude of the peakhold

signal after the shaping circuitry, the new digital readout system directly samples

the waveform of the preamplifier signal. By analyzing the digitized waveform signals,

event classification [78] and sub-pixel position sensing [79; 80] can be achieved.

This chapter first introduces the digital system and sub-pixel position sensing

algorithm. A method is then proposed to correct the shift of cone axes due to the

deviation between the centroid of the electron cloud and the true interaction location.

To evaluate this new method SBP reconstructions are performed with simulated data

and experimental data.

9.1 The Digital ASIC and Sub-Pixel Position Sensing

The digital ASIC samples the preamplifier signal at a rate of 80 MHz. It can also

be operated at lower sampling rates of 40 MHz, 20 MHz and 10 MHz, which is useful
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for detector materials that have longer charge collection time. The performance of

this ASIC is discussed in detail by Zhu [81]. One example of the advantages of this

digital ASIC is that it can reconstruct multiple interactions which occur under the

same pixel. Figure 9.11 shows a comparison between shaped pixel waveforms from

the analog ASIC and the sampled waveforms from the digital ASIC for the case of

two interactions under the same pixel. Since the traditional analog system can only

readout the maximum amplitude of the shaped signal, interactions under the same

pixel will be output as a single interaction with the total energy, shown as the cyan

curve in figure 9.1. With the digital ASIC, two rises shown as the green curve in

figure 9.1, corresponding to the collection of two electron clouds, can be see in the

sampled waveform from the collecting pixel. They can be used to reconstruct the

energy and position of each interaction.

Figure 9.1: The comparison between shaped signal from the analog system and the
sampled wave form from digital system for a event with two interactions
under the same pixel.

Transient signals are induced on the neighbor pixels when electrons drift towards

1
Image from Hao Yang, University of Michigan, Ann Arbor.
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the collecting anode pixel. The amplitude of the transient signals on the neighbor

pixels is sensitive to the lateral interaction location. It can be used to estimate the

sub-pixel centroid position of an electron cloud. This so-called opposing-neighbor

ratio method [80] is described as

Px =
Sx1 − Sx2

Sx1 + Sx2
(9.1)

Py =
Sy1 − Sy2

Sy1 + Sy2
(9.2)

in which Px and Py are the estimated sub-pixel centroid positions of an electron cloud

in x and y directions, respectively, Sx1 and Sx2 are the induced signal amplitudes

on the two neighbor pixels in x direction, and Sy1 and Sy2 are the induced signal

amplitudes on the two neighbor pixels in y direction. Experiments have shown that

the lateral sub-pixel position resolution for 662 keV in a 2-cm × 2-cm × 1.5-cm

CdZnTe detector is about 300 µm FWHM [80].

Since the sub-pixel position resolution is inversely proportional to the energy de-

position E [81], and the sub-pixel position uncertainty is about 0.3 mm FWHM at

662 keV, we can estimate the sub-pixel position resolution p(E) at energy E as

p(E) ≈ 662keV

E
× 0.3mm (9.3)

If the estimated position uncertainty p(E) is larger than half of the pixel pitch, the

reconstructed location is set to the center of the pixel. If the reconstructed sub-pixel

interaction position is on the outside of the collecting pixel, the interaction location

is set to the closest edge of the collecting pixel from the reconstructed position.
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9.2 Back Projection with Sub-Pixel Data

9.2.1 Including the Recoil Electron in Back-Projection Cone Calculation

When a gamma ray Compton scatters with the detector material, part of the

gamma ray’s energy is transferred to a scattering electron which recoils and is ejected

from its atom. This recoil electron travels a short distance in the detector before losing

all of its energy and creating a cloud of ionizing electron-hole pairs along its path. The

reconstructed interaction position is a measurement of the centroid of the ionizing

electron cloud as opposed to the the actual Compton scattering location which is

at the starting point of the recoil electron track. Figure 9.22 shows the simulation

result of the average distance between the true Compton scattering location and the

centroid of the electron cloud. When the energy deposition from Compton scattering

is less than 2 MeV the distance between the centroid of the electron cloud and the

true interaction location is much smaller than the lateral position uncertainty of a

pixelated data set, which is limited by the pixel size of 1.72 mm. Therefore, the

difference between the true and the measured Compton interation locations can be

ignored when reconstructing source image with the pixelated data. With the digital

ASIC the lateral sub-pixel position resolution is comparable to the size of the electron

cloud, so the difference between the true and the measured Compton interaction

locations need to be considered in the image reconstruction.

Figure 9.3 shows a gamma ray, γ, has forward scattered in the detector at location

(x1, y1, z1) with a scatter angle θ < π/2. The scattered photon, γ�, lost all of its energy

in a photoelectric interaction at location (x2, y2, z2). The recoil electron, e−, from the

Compton scatter has an angle of φ < π/2 relative to the incident angle of the gamma

ray γ. The measured location of the Compton scattering is determined by the centroid

of the recoil electron cloud at a location (x�
1, y

�
1, z

�
1). Therefore, the measured location

2
Image from Yuefeng Zhu, University of Michigan, Ann Arbor.
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Figure 9.2: The distance between the centroid of the recoil electron cloud and the
true interaction location as a function of energy deposition of the Comp-
ton scattering. The electron cloud is simulated with Geant 4 simulation
software.
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(x�
1, y

�
1, z

�
1) is systematically biased by an angle φ and a distance l. By using the

measured interaction locations, the blue cone can be reconstructed. This cone does

not pass the incident direction because the cone axis was biased by angle δ. Due to

the conservation of the momentum, the recoil electron has to be in the same plane

with the incident direction of γ and the scattered direction of γ�, and on the opposite

side of the incident direction of γ from γ�. In order for the back-project cone to pass

through the incident gamma ray direction, the scatter angle needs to be increased by

δ, as illustrated by the red cone in figure 9.3.

Figure 9.3: The scatter angle needs to be increased by angle δ in the forward-scatter
case so the back-project cone passes the incident direction.

When a gamma ray backward scatters in the detector, both the photon scattering

angle, θ, and the recoil electron angle, φ, are obtuse angles. Figure 9.4 shows a

illustration of this backward-scatter scenario. θ� and φ� are the supplementary angles

of θ and φ, respectively. It can be seen in figure 9.4 that in order to make the blue
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back-projection cone passes through the source direction, the half angle, θ�, has to be

increased by the bias angle of the cone axis, δ. As a consequence, the back-projection

cone angle θ needs to be decreased by δ.

Figure 9.4: The scatter angle needs to be decreased by angle δ in the back-scatter
case so the back-project cone passes the incident direction.

Now we need to solve angle δ in the triangle illustrated in figure 9.5. In this figure,

α is the acute angle between the incident photon direction and the scattered photon

direction, and β is the acute angle between the incident photon direction and the

recoil electron direction. So for the forward scatter case, α = θ and β = φ, and for

the backward scatter case, α = π−θ and β = π−φ. From the conservation of energy

and momentum, and the energy-momentum relation for a photon and an electron,

we have

Eγ +mec
2 = Ee + Eγ� (9.4)

Pγ = Pe +Pγ� (9.5)

Eγ = |Pγ|c (9.6)
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Eγ� = |Pγ� |c (9.7)

E2
e = m2

ec
4 + |Pe|2c2 (9.8)

where Eγ and Pγ are the energy and the momentum of the photon before Compton

scattering, Eγ� and Pγ� are the energy and the momentum of the scattered photon,

Ee and Pe are the energy and the momentum of the recoil electron, mec2 is the rest

mass energy of an electron, and c is the speed of light. By combining equations (9.4),

(9.5), (9.6), (9.7), (9.8), the acute angle between the recoil electron and the incident

photon direction, β, can be derived as

β = sin−1

�
Eγ� sinα�
E2

e −m2
ec

4

�
= sin−1

�
E2 sinα�
E2

1 + 2mec2

�
(9.9)

From the law of sines, we have

d

sin(α + β)
=

l

sin δ
(9.10)

in which, l is a function of energy E1 as shown in figure 9.2, and d is the separation

distance between two measured interaction locations. δ has two solutions from equa-

tion (9.10): one below π/2, one above π/2. However, for events with an energy lower

than 2 MeV, l is on the order of magnitude of 100 µm, and the average separation

distance between the measured interactions, d, is about several millimeter. Therefore,

d > l and δ is the acute angle solution from equation (9.10).

9.2.2 Compton Cone Width

Due to the imperfect detector response and measurement uncertainty, only a small

portion of the back-projection cones pass the source direction. In the real world

application, in order to make the limited number of reconstructed cones intersect

with each other, a Gaussian-shaped cone width determined based on the angular
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Figure 9.5: The triangle with vertices of true Compton interaction location
(x1, y1, z1), measured second interaction location (x2, y2, z2) and measured
centroid of the electron cloud (x�

1, y
�
1, z

�
1).

uncertainty of each event is added to each back-projection cone. By propagating

errors for equation (3.3) and (3.4), the cone axis uncertainties in the φ and θ directions

from the interaction position uncertainties can be achieved as

σ2
φ =

p21 + p22
(x2 − x1)2 + (y2 − y1)2

(9.11)

σ2
θ =

(z2 − z1)2(p21 + p22) + 2[(x2 − x1)2 + (y2 − y1)2](σz)2

[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]2
(9.12)

in which, p1 and p2 are the sub-pixel position uncertainties of two interactions and

σz is the depth uncertainty.

When one measures and compares the angular resolution between different algo-

rithms, adding an artificial cone width will over-estimate the angular uncertainty. In

the following section, a Gaussian shape cone width with a standard deviation of 0.005

radian was assigned to all back-projection cones.
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9.3 Performance

9.3.1 Simulation

Geant 4 was used to simulate the electron cloud. The cloud data was then pro-

cessed to produce the pixelated data and the sub-pixel position resolution data. All

three images in figure 9.6 were reconstructed using the SBP algorithm from a sim-

ulated 1460 keV point source. Figure 9.6(a) was reconstructed using the pixelated

data. Figure 9.6(b) was reconstructed using the sub-pixel resolution data without

performing the recoil electron correction. Figure 9.6(c) was reconstructed using the

sub-pixel resolution data with the recoil electron correction. By using the sub-pixel

resolution data, the angular resolution was improved by 6.9 degrees in the polar di-

rection and 7.8 degrees in the azimuthal direction compared to the image from the

pixelated data. By performing the recoil electron correction, the angular resolution

was further improved by 3.6 degrees and 1.4 degrees in the polar and azimuthal

direction, respectively.

In figure 9.6(a), two curved vertical lines can be seen on the left and right edges

of the hot spot. This is produced from binning interactions into 121 pixels. In the

pixelated data, all interactions under the same pixel have the same lateral position

as the centroid of the collecting pixel. When sub-pixel resolution data is used, the

lateral locations of interactions become much more continuous. As a consequence,

this ”pixel binning artifact” is eliminated in figure 9.6(b) and 9.6(c). This artifact

was never observed before because it was blurred by the added cone width. This

effect is consistent with the measurement which will be described in section 9.3.2.

9.3.2 Measurement

A 1-µCi Co-60 source was measured at about 14 cm away from the detector. Three

images in figure 9.7 were reconstructed by using the SBP algorithm. Figure 9.7(a)
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(a) Pixelated data. The polar and azimuthal angular resolution is 31.7 degrees and

23.6 degrees, respectively.

(b) Sub-pixel data without recoil electron correction. The polar and azimuthal an-

gular resolution is 24.8 degrees and 15.8 degrees, respectively.

(c) Sub-pixel data with recoil electron correction. The polar and azimuthal angular

resolution is 21.2 degrees and 14.4 degrees, respectively.

Figure 9.6: The SBP image from a set of pixelated data produced by a simulated
1462 keV source. The energy windows is from 1400 keV to 1500 keV.
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was reconstructed using the pixelated data. Figure 9.7(b) was reconstructed us-

ing the sub-pixel resolution data without performing the recoil electron correction.

Figure 9.7(c) was reconstructed using the sub-pixel resolution data with the recoil

electron correction. By using the sub-pixel resolution data, the angular resolution

was improved by 3.6 degrees in the polar direction and 6.5 degrees in the azimuthal

direction compared to the image from the pixelated data. By performing the recoil

electron correction, the angular resolution was further improved by 3.9 degrees and

1.3 degrees in the polar and azimuthal direction, respectively. This result is consistent

with the simulation.
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(a) Pixelated data. The polar and azimuthal angular resolution is 37.5 degrees and

23.1 degrees, respectively.

(b) Sub-pixel data without recoil electron correction. The polar and azimuthal an-

gular resolution is 33.9 degrees and 16.6 degrees, respectively.

(c) Sub-pixel data with recoil electron correction. The polar and azimuthal angular

resolution is 30.0 degrees and 15.3 degrees, respectively.

Figure 9.7: The SBP image from a measurement of a Co-60 source. The energy
window is from 1150 keV to 1400 keV.
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CHAPTER X

Summary and Suggestions for Future Work

10.1 Summary

Three-dimensional position-sensitive CdZnTe gamma ray detectors are capable of

achieving excellent energy resolution (less than 0.7% FWHM for single-pixel events

at 662 keV from the entire crystal volume of 6 cm3) at room temperature. With

this versatile detector technology, many types of imaging techniques and applications

become possible. In some applications where real world directions are desired, an

overlaid optical-radiation image can be achieved with some calibrations.

The system response function for three-dimensional position-sensitive gamma-ray

detectors has been established as a function of both energy and direction; therefore,

the deconvolved result shows the spatial distribution for each incident energy as well

as the incident spectrum for each direction. This energy-imaging integrated decon-

volution (EIID) algorithm was developed in our research group for two-interaction

events from a single 1.5-cm × 1.5-cm × 1-cm position-sensitive-room-temperature

CdZnTe detector. Because of the increased volume of individual CdZnTe detector

modules and the new array configuration, the fraction of events with three or more

interactions has increased. In order to make use of these events and improve imaging

efficiency at higher energies, the analytical derivation of the system response function

was extended to three-interaction events and further extrapolated to events with any
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number of interactions. By including events with any number of interactions in the

maximum-likelihood expectation-maximization deconvolution in the spatial as well

as the combined spatial-energy domain, all events can be used in the reconstruction.

In addition, these derivations are applied to an array system. The experimental re-

sults demonstrated that by using the newly derived system response functions, the

deconvolved image from two-, three- and four-interaction events located the source

direction, and that the deconvolved spectra were free of Compton continuum. By in-

cluding three- and four-interaction events in the reconstruction, the imaging efficiency

was more than doubled for a Co-60 source, and the angular FWHM was improved

as well. This algorithm is not limited to CdZnTe detectors; it can be applied to any

gamma-ray detector system that has the capability of providing the 3D interaction

location and energy deposition for each interaction.

Prior analysis only considered non-charge-sharing two-interaction events in the

Compton image reconstruction. With the correct depth reconstruction, many charge-

sharing interactions can be classified as a single interaction and used for Compton

image reconstruction. The three-pixel side-neighbor photopeak events from a sim-

ulation were divided into six categories based on interaction type. Analysis of this

simulation shows that the most effective strategy is to treat all side-neighbor events as

charge-sharing events and to combine all side-neighbor interactions into a single inter-

action. By including these side-neighbor events in the Compton image reconstruction,

we can still correctly reconstruct the source distribution using experimental data and

improve the imaging efficiency by about 45% and 160% for 662 keV and 1333 keV

incident photons, respectively. About 76% of these combined events reconstruct to

rings that pass the source direction.

Prior to this thesis work, the EIID imaging efficiency for a Co-60 measurement was

about 5% of the raw events. By extending the system response function to events

with any number of interactions and including side-neighbor events in the image
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reconstruction, the EIID imaging efficiency has been increased to about 42% if only

events with two or more interactions are used. If we include the single-interaction

events in the reconstruction, almost 100% of the measured raw events can be used.

Since the EIID spectrum corrects for detector efficiency and includes raw events in

the Compton continuum, the deconvolved incident spectrum of the source direction

has the correct branching ratio. The accurate branching ratios allow for ease of isotope

identification. Moreover, the source intensity can be estimated from the deconvolved

spectrum after a single calibration. If the distance of the source is known and is

combined with the identified isotope information, the activity of the source can be

estimated. From the deconvolved image, the presence of shielding can be detected.

The shielding can be further characterized as high-z or low-z material by comparing

the peak areas in the deconvolved spectrum with the theoretical branching ratios.

We demonstrated that our detector and imaging algorithm are capable of recon-

structing an extended area source. The distribution of the natural radiation back-

ground from the concrete wall in our laboratory was obtained using Compton imaging

techniques with a single 2-cm × 2-cm × 1.5-cm CdZnTe detector when all laboratory

sources were heavily shielded. The measurement time needed to obtain the distri-

bution of the natural radiation background would be significant reduced if the new

18-detector array system was used. The ability to accurately visualize the natural

background is verified by reconstructing a well defined background distribution using

a lead tunnel. Moreover, a source sharing an energy line with the distributed back-

ground can be differentiated by observing a localized hot spot in the reconstructed

image.

Source motion can cause blurry image reconstruction. In order to compensate for

the known motion of a source, two methods are proposed. The first method rotates

the imaging reference frame to track the movement of the source in order to keep the

source stationary in the imaging reference frame. The second method is to expand
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the imaging space with additional target bins. The fraction of the back-projection

cone passing a target direction is then accumulated in the associated target bin. Both

methods can be applied to SBP or MLEM deconvolution.

The new digital ASIC is capable of providing lateral sub-pixel interaction posi-

tions. For 662 keV the lateral sub-pixel position resolution is about 300 µm FWHM,

which is on the same order of magnitude of the recoil electron cloud size. A geometry

analysis suggests that in order to compensate image uncertainty introduced by the

difference between the true Compton scattering location and the measured centroid of

the recoil electron cloud, the back-projection cone angle needs to be increased in the

forward-scattering case and decreased in the backward-scattering case. The change

of the cone angle is also calculated from geometry information combined with conser-

vation of energy and momentum. By using this method, appreciable improvement in

the image angular resolution was shown with both simulated and experimental data.

10.2 Future Work

In the current implementation the image space is divided into a rectangular mesh.

This is not the most computationally efficient mesh since the regions near poles of

the imaging sphere (polar angles of 0 degrees and 180 degrees) are over-sampled.

We might want to switch to image bins that have equal solid angle to reduce the

computational load. In addition, the imaging mesh is a simple set of sampling points

and if the mesh is coarse (i.e. few sample points), some cones may not be accurately

represented or may not be reconstructed at all. This problem could be overcome by

calculating the fraction of the cone that passes each pixel.

Pair production can occur when the incident photon has an energy exceeding twice

of the rest energy of an electron. Two annihilation photons each with an energy of 511

keV are created in this process. Photons that undergo pair-production do not contain

useful Compton scattering information and, therefore, should be excluded from the
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Compton image. Because of limitations of the analog system, pair-production events

are difficult to classify. Therefore, it would be useful to include the probability of pair

production in the MLEM system model. Ideally, if pair production was included in

the system model, the escape peaks would be correctly deconvolved in the incident

spectrum.

In order to reconstruct the correct source distribution from single-pixel events and

compensate for various model mismatches, a sensitivity image needs to be directly

measured. It is nearly impossible to measure the detection probability in each direc-

tional and energy bin. But measuring a handful of energy lines for several unique

directions and interpolating the detection probability for other directional and energy

bins may be a practical solution.

To achieve a deconvolved image in a reasonable time, we neglected f(Dc
1|r̃1;E0, r0),

f(Dc
2|Ẽ1, r̃1, r̃2, Dc

1;E0, r0), f(D
p
3|Ẽ1, r̃1, Ẽ2, r̃2, r̃3, Dc

1, D
c
2;E0, r0), and f(Dc

3|Ẽ1, r̃1, Ẽ2,

r̃2, r̃3, Dc
1, D

c
2;E0, r0) in the system response function derivation in chapter V. These

approximations are equivalent to assuming a uniform sensitivity image in system

matrix calculation. As a result, the system matrix is weighted by the sensitivity image.

Future work is needed to study how to pre-calculate these detection probabilities or

compute these probabilities on the fly.

The scenarios of reconstructing a moving source and reconstructing a stationary

source with a moving detector are equivalent in math. However, the three-dimensional

source distribution can be mapped by the movement of a single detector. With

the large number of the possible three-dimensional image bins, a dynamic binning

algorithm needs to be developed so that the size of the image bins is adaptive to the

reconstructed source intensity in that region. In addition, combining moving detector

and moving source algorithms, the distributed detector sensor network concept can

be realized.
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