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ABSTRACT

The 3D position-sensitive Cadmium Zinc Telluride (CZT) detector can provide

position and energy information of gamma-ray interactions, enabling imaging ca-

pability. Previous imaging methods are able to reconstruct distinguishable source

locations. However, there exists a major contradiction in imaging problem eternally:

information rate and reconstruction speed. The information rate represents how much

information can be extracted from a measurement, including resolution, variance, and

noise level. The reconstruction speed relies on the computing hardware heavily, but

can be greatly accelerated by sophisticated reconstruction algorithms.

To improve the combined performance of information rate and reconstruction

speed, several imaging algorithms were investigated. Among them, the Simple Back-

Projection (SBP) provides fastest reconstruction speed but least information due to

its biased and blurred estimation. The Filtered Back-Projection (FBP) is almost as

fast as SBP, but much more informative. However, better understanding of FBP

is required to let it work for real data without too much manual intervention, thus

the adjusted FBP and the adaptive FBP were developed in this thesis to make FBP

practical. On the contrary, the Energy-Imaging Integrated Deconvolution (EIID) is

a very informative reconstruction algorithm, but too slow to be applicable in many

time-sensitive scenarios. The convergence rate of EIID should be accelerated without

too much degradation to the information, thus the Energy Decremental Integrated

Deconvolution (EDID) was developed in this thesis. Finally 3D image reconstruction

is proposed, which provides a new dimension to interpret source distribution compared

xiv



to traditional 4π spherical image reconstruction, and is more natural for people to

understand. The image reconstruction code University of Michigan Imaging System

(UMIS) was designed and developed during the research period. The principle of

UMIS is to keep the code fast, simple, reusable, and suitable for research.

xv



CHAPTER I

Introduction

1.1 Principles of Compton Imaging

Gamma photons can be detected by interactions with matter. There are mainly

three types of interaction mechanisms: photoelectric absorption, Compton scatter-

ing, and pair production. Among them the Compton scattering can provide angular

information, which enables Compton imaging. As illustrated in Fig. 1.1, in a Comp-

ton scattering process, a photon with initial energy E0 interacts with an electron,

transfers part of its energy, and scatters by an angle θ with scattering energy E2.

The electron get deposited energy E1 and is recoiled by an angle φ.

Given the initial energy E0, the deposited energy E1 and the scattering energy

E2, the scattering angle θ can be calculated by the well-known Compton scattering

formula [1]

θ = cos−1(1− mec
2E1

E0E2

), (1.1)

where mec
2 is the rest mass energy of an electron.

If the positions and the deposited energy of interactions are known, the incident

photon direction can be constrained to the surface of a cone using the Compton

scattering formula. As shown in Fig. 1.2, imagine the cone in a 3D space, the

1



Figure 1.1: A gamma photon Compton scattered by an electron.

direction of the incident photon is constrained on the surface of the cone with some

spacial uncertainties. Using the directional information, it is possible to reconstruct

the source distribution or radiation image.

1.2 History of Compton Imaging

The detection of high-energy gamma photons is always a challenge due to the low

attenuation coefficient and complicated interactions with matter. However, people

still have interest in gamma photon detection in fields including nuclear medicine,

nuclear safety, nuclear non-proliferation, and astrophysics. Various imaging sys-

tems have been developed, such as Single Photon Emission Computed Tomogra-

phy (SPECT) [2], Positron Emission Tomography (PET) [3], Coded Aperture Imag-

ing (CAI) [4], Rotating Modulation Collimator (RMC) [5], and Compton imager [6, 7].

Compton imager is quite attractive because it uses Compton scattering mechanics in-

stead of mechanical collimators to provide angular information with high detection

efficiency. Table 1.1 walks through the history of Compton imagers, from early 1970s

2



Figure 1.2:
A gamma cone reconstructed from a double-interaction event, where the
first interaction is a Compton scattering with deposited energy E1 and
the second interaction is a photon absorption with deposited energy E2.

to recent 2010s.

Year Authors References Description

1973 Schönfelder et al. [8] The concept of Compton imaging.

1974 Todd et al. [9] The concept of Compton imaging.

1983 Singh et al. [6, 7] The first Compton camera system for

medical imaging.

1988 Kamae et al. [10] A Compton imager which replaced the

HPGe detectors in Singhs design with

many layers of Si strip detectors. The

Si strip detectors were surrounded by a

cylindrical CsI(Tl) scintillator.

3



1989 Piercey et al. [11] The first Compton telescope with

HPGe detectors for both the front and

back planes. A single HPGe detector

was used as the front detector and an

array of four HPGe detectors were used

as the back plane.

1990 Dogan et al. [12] Reconstruct the image using multiple

scattered gamma-rays based on Ka-

maes design.

1993 Martin et al. [13] A ring Compton scatter camera which

consisted of a 4× 4 array of HPGe de-

tectors and a ring array of cylindrical

NaI(Tl) scintillators.

1994 McKisson et al. [14] A Compton camera using two HPGe

detector arrays for both the front and

back planes.

1996 Phlips et al. [15] Replaced the HPGe detector arrays by

two double-sided HPGe strip detectors.

The front detector was a 25 × 25 strip

detector with 2 mm pitch, and the back

detector was a 5×5 detector with 9 mm

pitch.
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1998 LeBlanc et al. [16, 17] A prototype Compton camera system,

C-SPRINT, for nuclear medicine as a

Compton SPECT. Instead of using Si

strip detectors, C-SPRINT consisted of

3×3×0.1 cm3 Si pad detector modules

that were pixellated into 22×22 arrays.

2001 Schmid et al. [18] A Compton camera by employing a

single large volume segmented coaxial

HPGe detector. The position informa-

tion was obtained by the outer con-

tacts and digital pulse-shape analysis.

By using a single crystal to detect both

the Compton scattering and the photo-

electric absorption, the separation be-

tween the front and back planes was

eliminated, resulting in efficiency being

increased by one order of magnitude.

However, due to the large preamplifier

noise, the experiments could not locate

the source position.
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2001 Du et al. [19] Used CZT as the crystal in a Compton

camera for the first time. The CdZnTe

detectors used in Dus work measured

the 3D position information of single

gamma-ray interactions in the detector.

Since a Compton camera needs at least

two gamma-ray interactions, two 1 cm3

3D position-sensitive CdZnTe detectors

were used in Dus experiment. The

two detectors were separated by 5 cm,

which limited the intrinsic efficiency at

511 keV to be only 1.5×104. The mea-

sured angular resolution was 5.2◦ at 662

keV.

2002 Kroeger et al. [20] Employed the concept of three-

Compton telescope. The incident

gamma-ray energy can be determined

even if the gamma-ray is not fully

absorbed, if the incident gamma-ray

interacts three or more times in the

detectors.
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2002 Wulf et al. [21] Demonstrated that the depth informa-

tion of a HPGe double-sided strip de-

tector could be obtained by measuring

the timing difference between the cath-

ode and anode signals. Thus a Comp-

ton camera could be realized by using

a single HPGe double-sided strip detec-

tor.

2003 Wulf et al. [22] Designed a Compton imaging system

with two HPGe double-sided strip de-

tectors and demonstrated that the

source location could be reconstructed

by the three-Compton technique even if

gamma-rays did not deposit full energy

in the detectors.

2004 Wulf et al. [23] Built a Compton camera using three

layers of double-sided silicon strip de-

tectors. Each silicon detector had an

active volume of 57× 57× 2 mm3, and

had 64 strips on each side. The Comp-

ton camera showed an angular resolu-

tion of 3.3◦ at 662 keV.
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2004 Zhang et al. [24] Obtained the 3D position information

of multiple gamma-ray interactions in

a single detector by measuring the elec-

tron drift time with the improved de-

sign of the Application-Specific Inte-

grated Circuit (ASIC). This advance

greatly improved the gamma-ray detec-

tion efficiency because about 60% of the

photopeak events are multiple interac-

tion events at 662 keV in a 15 × 15 ×

10 mm3 detector.

2004 Lehner et al. [25] 1.86% measured intrinsic imaging effi-

ciency, and 17◦ measured angular res-

olution at 662 keV using a single 15 ×

15× 10 mm3 CZT detector.

2005 Niedermayr et al. [26] Obtained about 5◦ angular resolution

at 662 keV with a relative efficiency of

0.3% with the same design as Schmids.

2005 Burks et al. [27] A Compton telescope using a double-

sided silicon strip detector and a

double-sided germanium strip detector.

The two detectors are parallel, aligned

on their center axis and separated by 6

cm. An angular resolution of 3◦ to 4◦

was reported in the energy range from

150 keV to 3 MeV.
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2011 Zhu et al. [28] Proposed the sub-pixel position sens-

ing for Pixelated 3D Position Sensitive

CZT detectors with a digital ASIC de-

sign, achieving 230 µm sub-pixel spa-

tial resolution and less than 1% energy

resolution.

Table 1.1: The history of Compton imagers.

Different reconstruction algorithms were investigated under the concept of Comp-

ton imaging. As most of the system responses of Compton imagers are very com-

plicated in the sense of shift-variance and non-isotropic, probability-based iterative

algorithms, such as Maximum-Likelihood Expectation-Maximization (MLEM), are

widely used [29, 25, 30, 31]. Because iterative algorithms are usually computationally

intensive, researchers continue to investigate direct inverse algorithms, such as FBP.

FBP has advantages when real-time imaging is required and computational resources

are limited.

In 2000, Parra [32] applied Spherical Harmonics (SH) in Compton imaging. The

back-projection image in a 4π spherical space is transformed into SH domain, which

is a generalized frequency domain, then the deconvolution uses the SH coefficients

of an analytical Point Spread Function (PSF). In 2006, Xu et al. [33] developed a

FBP algorithm in a 4π spherical space with SH and a simulated PSF, accounting

for the effects of the scattering angle distribution due to the limited detector size.

This algorithm is designed for a single cubic CZT detector or similar systems, as-

suming the PSF changes little for different incident directions. In 2015, Haefner et

al. [34] proposed another filtering approach that embeds the 4π spherical space in a

3D Cartesian space and uses the 3D Fourier Transform (FT) and Radon transform.
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Mathematically this method is equivalent to the SH method with an analytical PSF.

1.3 Objectives of This Work

The 3D position-sensitive CZT detector can provide the position and energy in-

formation of gamma-ray interactions, enabling imaging capability. Previous imaging

methods are able to reconstruct distinguishable source locations. However, there

exists a major contradiction in imaging problem eternally: information rate and re-

construction speed. The information rate represents how much information can be

extracted from a measurement, including resolution, variance, and noise level. The

reconstruction speed relies on the computing hardware heavily, but can be greatly

accelerated by sophisticated reconstruction algorithms.

The main objective of this work is to develop imaging algorithms that improve

the combined performance of information rate and reconstruction speed. As shown

in Fig. 1.3, the ultimate goal is an ideal algorithm on the top right corner with the

most information and fastest speed, which is the dream that everyone wants to catch.

Among the realistic algorithms, SBP provides fastest reconstruction speed but least

information due to its biased and blurred estimation. The FBP is almost as fast as

SBP, but much more informative. However, better understanding of FBP is required

such that it works for real data without too much manual intervention, thus the

adjusted FBP and the adaptive FBP were developed to make FBP practical. On the

contrary, the EIID method is a very informative reconstruction algorithm, but too

slow to be applicable in many time-sensitive scenarios. It is necessary to accelerate

the convergence rate of the EIID without too much degradation to the information,

thus the EDID was proposed in this thesis. Finally 3D image reconstruction provides

a new dimension to interpret source distribution compared to traditional 2D image

reconstruction, and is more natural for human beings to understand. We use online

updating algorithm to make it faster than the conventional MLEM in 3D.
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Figure 1.3:
The performance of image reconstruction algorithms in the speed-
information space. EIID, MLEM, and SBP lie on the conventional line,
which is not necessarily straight. The thick arrow from MLEM to 3D
imaging indicates that 3D imaging has significant different input and
output compared to 2D imaging.
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1.4 Overview

Chapter 2 shows the Shockley-Ramo theorem, simply describes the characteristics

of pixelated CZT detector – the position-sensitive instrument used in this study, and

analyzes the imaging model and system model that will be focused on. Chapter

3 studies two major direct reconstruction algorithms – SBP and FBP. Also two

variations of FBP – adjusted FBP and adaptive FBP, are proposed. Chapter 4 will

discuss the MLEM algorithm, apply regularization on it, extend its usage to energy-

imaging integrated space to achieve EIID, and accelerate its convergence rate using

EDID. Chapter 5 will show the recent research in 3D image reconstruction using

moving detector system and its real-time capability. Chapter 6 will introduce the

development of UMIS, a modern image reconstruction code for radiation detection,

and its usages. Finally Chapter 7 will summarize all of the progress that has been

achieved, and come up with some open problems that is worth to solve in the future.
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CHAPTER II

From Detection to Imaging

2.1 The Shockley-Ramo Theorem

The Shockley-Ramo Theorem provides a way to calculate the induced signal on

an electrode due to the motion of charge carriers [35].

The Shockley-Ramo Theorem states that the change of the induced charge ∆QL

on an electrode L by the movement of charge q from position xi to position xf is

∆QL =

xf∫
xi

qE0dx = −q[φ0(xf )− φ0(xi)], (2.1)

where E0 is the electric field, and φ0 is the weighting potential of a unitless quantity.

The equation is under the conditions that electrode L is at unit potential, all other

electrodes are at zero potential, and all space charges are removed.

The change of the induced charge ∆QL is independent of the actual electric field

and the space charges, but only determined by the starting and stopping positions of

the charge carriers relative to the electrode L. Therefore if the weighting potential is

known, the induced charge can be calculated on any specific electrode easily, even if

the electrode configuration is complicated.
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2.2 Detector Characteristics

This work is based on large-volume 3D position-sensitive semiconductor detectors,

particularly pixelated CZT detectors. Thanks to the excellent performance of CZT

detectors developed in the University of Michigan, many of the advanced algorithms

can be implemented and tested using real data. Here the basic operation of these

detectors is described, and the performance of them is discussed. More details about

these detectors and their operation can be found in [36, 37, 38].

2.2.1 Hardware

CZT is a semiconductor material with a bandgap of about 1.6 eV [39]. The

bandgap of CZT is larger than that of HPGe detectors, which implies that in CZT

the energy required to excite electrons to the conduction band is greater compared

to HPGe. So the probability of thermal excitation in CZT is much lower, allowing

CZT systems to operate at room temperature.

The energy deposition in the CZT detector excites a number of electrons into the

conduction band approximately proportional to the deposited energy, omitting the

randomness. If a strong electric field is applied in the crystal, the excited electrons

and the positively charged holes will drift and induce signals on the anode and cathode

electrodes. It is possible to recover the position and energy information of this energy

deposition interaction from the signals.

The CZT crystals used in recent detectors are cuboids of 20 × 20 × 15 mm3.

The square side is covered with a planar cathode electrode, and the opposite side is

attached to an array of 11 × 11 anode electrodes. The anode electrodes form pixels

with a pixel pitch of 1.72 mm. To improve charge collection, many detectors have

a negatively biased grid electrode between the anode electrodes. Each of the 123

electrodes in one crystal is read out through a single ASIC [40].

A detector system may contain multiple crystals to form a detector array. Fig.
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Figure 2.1: Polaris-II: The 18-crystal CZT detector system.

2.1 shows the diagram of Polaris-II, a CZT detector system containing two layers of

3× 3 crystals [41]. There are also smaller array with only one crystal [42], and larger

array with as many as 64 crystals named Polaris-J, manufactured by H3D, Inc. The

modular design is an advantage of CZT detectors, making them adaptive to different

measurement scenarios.

2.2.2 Performance

The performance and imaging capability of CZT detectors have improved steadily

over the past decades. Around 1% Full Width at Half Maximum (FWHM) energy

resolution at 662 keV was consistently demonstrated using 20×20×15 mm3 pixelated

CZT detectors at University of Michigan. Recently less than 0.5% FWHM energy

resolution at 662 keV was achieved [43]. Although there are more requirements on

energy resolution from spectroscopy, it is basically sufficient for imaging.
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However, for imaging purposes the spatial resolution is more critical than the

energy resolution. The conventional analog readout ASIC system provides X/Y axis

spatial resolution no better than the pixel pitch 1.72 mm, which is much worse than

the 0.5 mm Z axis depth resolution. To improve the X/Y axis spatial resolution

and make the spatial resolution more isotropic, Zhu [28] proposed sub-pixel position

sensing technique, achieved through algorithms that compare the amount of transient

charge induced on pixels that neighbor a charge-collecting pixel. Measurements of

the charge induced on the non-collecting pixels are made through analysis of digitized

preamplifier pulse waveforms using optimized digital signal processing algorithms.

The sub-pixel resolution could reach as small as 300 µm at 662 keV, enabling much

better angular resolution and imaging capability [43].

2.2.3 Limitations

In our model, the CZT crystal is abstracted as a cuboid with uniform attenuation

coefficient and energy resolution. The X/Y axis spatial resolution is given by the sub-

pixel resolution, and the Z axis spatial resolution is given by the depth resolution. Any

interaction is defined as a tuple of deposited energy, spatial coordinates, and time,

converted from the original waveforms. However, the internal limitations of CZT

detectors bring model mismatch, potentially adding noise or artifacts to reconstructed

images.

2.3 Imaging Model

It is necessary to define the imaging model before solving any imaging problems.

Generally speaking, an image is a collection of parameters. However, it is usually

impossible to get images directly in most detecting setups. Thus an image must

be reconstructed from measurements or observations. The continuous noiseless re-

lationship between the image f and the expected observation ḡ can be abstracted
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as

ḡ(y) =

∫
x

T (x,y)f(x)dx, (2.2)

where x is the image position vector, y is the observation position vector, and T is

the system response function. If the image is divided into J bins and the observation

is classified as I event types, a discrete representation of this relationship is

ḡ[i] =
J∑
j=1

t[i, j]f [j], i = 1, 2, ..., I, (2.3)

where f [j] is the value of the j-th image pixel, ḡ[i] is the expected observation of the

i-th event type, and t[i, j] is the probability that a photon from the j-th image pixel

is observed as the i-th event type. Another way to represent the imaging model is

the matrix-form

ḡ = Tf , (2.4)

where f is the length-J image vector with elements fj = f [j], ḡ is the length-I

expected observation vector with elements ḡi = ḡ[i], and T is the I×J system matrix

with elements tij = t[i, j]. That is



ḡ1

ḡ2

...

ḡI


=



t11 t12 . . . t1J

t21 t22 . . . t2J
...

...
. . .

...

tI1 tI2 . . . tIJ


·



f1

f2

...

fJ


. (2.5)

2.3.1 Source Distribution and Imaging Space

The source distribution in a general continuous imaging space X is the expected

density of photons emitted as a function of position x during the measurement time

f(x) = lim
a(x)→0

N̄(x)

a(x)
, (2.6)
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where x ∈ X , a(x) is an convex area containing position x, and N̄(x) is the expected

number of photons emitted from area a(x).

In real computation, it is convenient to use a discrete or pixelated imaging space.

Denote K = {1, 2, ..., K} as the indices of pixels. The sampled density is

f [k] = f(xk), (2.7)

where k ∈ K, and xk is the center of the k-th pixel. It is quite common to write the

discrete density as vector form f .

Another option is to use the average density

f ′[k] =
1

|ak|

∫
x∈ak

f(x)dx, (2.8)

where k ∈ K, and ak is the area of the k-th pixel. If the pixel size is sufficiently small,

the density within the pixel is almost invariant, and the sampled density is equivalent

to the average density.

In some cases the total intensity h[k] within a pixel is wanted,

h[k] =

∫
x∈ak

f(x)dx = |ak|f ′[k] ≈ |ak|f [k], (2.9)

where k ∈ K, and f ′[k] and f [k] are defined in Eq. 2.8 and Eq. 2.7 respectively.

In different imaging scenarios, different imaging spaces are needed. With far-

field assumption, a 2D spherical space is usually preferred because the detector size

is negligible compared to the distance between detector and source; with near-field

assumption, a 2D Cartesian space is usually preferred because the detector size should

be considered in the system model. If the parallax of the detector is sufficient, the

source distribution can be reconstructed in a 3D Cartesian space. It is also sometimes

useful to reconstruct images in a energy-imaging integrated space, if both full-energy
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Figure 2.2:
Left: An instance of the continuous space. Middle: A theoretical Comp-
ton ring in a continuous space, which is similar to a delta function. Right:
A blurred Compton ring in a continuous space, which is commonly used
in real reconstructions.

deposition and partial-energy deposition are considered in the system model.

2.3.1.1 2D Spherical Space

When the detector size is significantly smaller than the distance between detector

and source, far-field assumption is valid. In this scenario, the detector size is assumed

infinitely small. Hence the continuous imaging space is a 4π spherical space Ω sur-

rounding the detector, and the source distribution is a function of incident direction

ω ∈ Ω. It is more convenient to use polar and azimuthal angles to represent incident

direction

f(ω) = f(θ, φ), (2.10)

where θ ∈ [0, π] is the polar angle, and φ ∈ [0, 2π] is the azimuthal angle, as shown

in Fig. 2.2.

The discrete imaging space K = {1, 2, ..., K} is the indices of pixels, where the

k-th pixel has solid angle ak. If the grid is orthogonal,

f [k] = f [i, j] = f(θi, φj), (2.11)
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Figure 2.3:
Left: An instance of a discrete space. Middle: The area of each pixel.
Right: The intensity sensitivity for an isotropic detector in a discrete
space.

where k ∈ K, i and j are the indices of the pixel in polar direction and azimuthal

direction, as shown in Fig. 2.3.

The total intensity within a pixel is defined as

h[k] =

∫
ak

f(ω)dω ≈ |ak|f [k], (2.12)

where ak is the solid angle of the k-th pixel. If the grid is orthogonal and the pixel

area is very small, the solid angle can be approximately calculated as

h[i, j] ≈ f(θi, φj) sin θ∆θ∆φ = f [i, j] sin θ∆θ∆φ. (2.13)

Although orthogonal sampling grid is convenient, its sampling density near the

poles is higher than that near the equator. However, in many cases the sampling

points are required to be as uniform as possible on the sphere, such that all of the

pixels have almost the same area. As shown in Fig. 2.4, the grid is not necessary

to be orthogonal, but can be arbitrarily selected and the sampling points are quasi-

uniformly distributed on the sphere, providing almost the same pixel area.
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Figure 2.4:
Left: Regular sampling, where poles have denser and smaller pixels than
the equator. Right: Quasi-uniform sampling, where the pixel areas are
approximately the same everywhere.
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2.3.1.2 2D Cartesian Space

If the source is close to the detector and the distance between detector and source

is comparable with the detector size, far-field assumption is invalid. Instead near-field

assumption should be used in this scenario.

Define the source plane as a 2D plane P , then the source distribution is a function

of the location on the plane

f = f(x) = f(x, y), (2.14)

where x is the source location vector defined in the plane P , x and y are dimensions

of the plane P .

The discrete imaging space K = {1, 2, ..., K} is the indices of pixels, where the

k-th pixel has 2D area ak. If the grid is orthogonal,

f [k] = f [i, j] = f(xi, yj), (2.15)

where k ∈ K, i and j are the indices of the pixel in x and y dimension.

The total intensity within a pixel is defined as

h[k] =

∫
ak

f(x)dx ≈ |ak|f [k], (2.16)

where ak is the 2D area of the k-th pixel. If the grid is orthogonal,

h[i, j] ≈ f(xi, xj)∆x∆y = f [i, j]∆x∆y. (2.17)

2.3.1.3 3D Cartesian Space

Similar to the computed tomography, if there is sufficient parallax from detectors,

the source distribution can be reconstructed in a 3D Cartesian space. Possible meth-

ods to provide parallax include using multiple detectors, moving the detector, and
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Figure 2.5: A 3D Cartesian space with a source at the center.

putting the detector very close to the source. A typical 3D Cartesian space is shown

in Fig. 2.5.

Define the 3D Cartesian space as P , then the source distribution is a function of

the location in the space

f = f(x) = f(x, y, z), (2.18)

where x is the source location vector defined in the plane P , x , y and z are dimensions

of the space P .

The discrete imaging space K = {1, 2, ..., K} is the indices of voxels, where the

k-th pixel has 3D volume vk. If the grid is orthogonal,

f [k] = f [i1, i2, i3] = f(xi1 , yi2 , zi3), (2.19)
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where k ∈ K, i1, i2 and i3 are the indices of the voxel in x, y, and z dimension.

The total intensity within a voxel is defined as

h[k] =

∫
vk

f(x)dx ≈ |vk|f [k], (2.20)

where vk is the 3D volume of the k-th voxel. The approximation is valid if f(x) does

not change too much within vk, which is usually true if |vk| is very small. If the grid

is orthogonal,

h[j1, j2, j3] ≈ f(xj1 , yj2 , zj3)∆x∆y∆z = f [j1, j2, j3]∆x∆y∆z. (2.21)

2.3.1.4 Energy-Imaging Integrated Space

In previous image spaces, there is no energy dimension. However, sometimes

the reconstruction must consider both full-energy deposition and partial-energy de-

position to extract most information from photon interactions. In this scenario an

energy-imaging integrated space should be used, where the energy domain and the

imaging domain are naturally orthogonal.

Define the energy domain as E and the imaging domain as S. The continuous

integrated domain is

E × S, (2.22)

and the source distribution is

f = f(e,x), (2.23)

where e ∈ E is the incident photon energy scalar, and x ∈ S is the source location

vector.

If the energy domain is discretized as energy bins J = 1, 2, ..., J and the imaging

domain is discretized as imaging bins K = 1, 2, ..., K, the discrete integrated domain
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Figure 2.6:
An energy-imaging integrated space with three point sources. Red curve
shows the total spectrum.

is

J ×K, (2.24)

and the source distribution as

f [j, k] = f(ej,xk), (2.25)

where j ∈ J , and k ∈ K.

With the energy-imaging integrated space, one can combine the spectral informa-

tion and the spacial information of a photon, and do reconstruction generally. It is

common to show the integrated space as a 3D space with the energy as the third

dimension. As shown in Fig. 2.6, three point sources are distributed in the energy-

imaging integrated space, where the imaging domain is a 4π spherical space. The

green, pink, and blue dotted lines traversing the energy domain traces the spatial

location of Co-60, Cs-137 and Ba-133, respectively. The slices in different energy bins

show different spacial distributions.
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2.3.2 Bin-Mode and List-Mode Observation Data

Using 3D position-sensitive detectors, the event reconstruction method generates

the observation for each event from observed detector electrode signals. Each observed

event is a collection of photon-mass interactions, where each interaction contains

information such as 3D position and deposited energy. The observation g in the

continuous event space Y is defined as

g = g(y), (2.26)

where y ∈ Y is the event vector. The observation indicates the frequency of event

type y. If the event space is discretized as I = {1, 2, .., I},

g = g[i], (2.27)

where i ∈ I is the index of event. The vector form of the discrete observations is g.

Since the measurement time is limited, it is possible that only a fraction of event

types are detected. If the number of detected events is much larger than the number

of possible event types, bin-mode observation data is preferred; if the the number of

detected events is much smaller than the number of possible event types, list-mode

observation data is preferred.

2.3.2.1 Bin-Mode Observation Data

Theoretically the observation data is represented as a vector g, which is called

bin-mode data. Each element g[i] indicates the frequency of the i-th event type. This

form is useful in mathematical derivations and when the number of detected events

is much larger than the number of possible event types.
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2.3.2.2 List-Mode Observation Data

List-mode data is also known as sparse data. If the number of events is much

smaller than the number of possible event types, it is not efficient or even not possible

to record the frequency of all event types. Instead, individual events are usually

recorded as a list and sorted by time. The event types not appearing in the list have

frequency 0.

2.3.3 Statistics

To estimate the image parameters, statistics of the measurement must be consid-

ered because the number of photons detected is limited. From counting statistics it

is known that the number of photons emitted from the j-th pixel and recorded as

the i-th event type is a Poisson random variable. Since the photons emitted from

different pixels are mutually independent, the total number of photons recorded as

the i-th event is also a Poisson random variable.

The discrete linear imaging model without noise is

ḡ[i] =
J∑
j=1

t[i, j]f [j], (2.28)

where f [j] is the value of the j-th image pixel, ḡ[i] is the expected observation of the

i-th event type, and t[i, j] is the probability that a photon from the j-th image pixel

is observed as the i-th event type. There is also a matrix form

ḡ = Tf , (2.29)

where f is the length-J image vector with elements fj = f [j], ḡ is the length-I

expected observation vector with elements ḡi = ḡ[i], and T is the I×J system matrix

with elements tij = t[i, j].

27



From Poisson statistics there is

g[i] ∼ Poisson(λ = ḡ[i]), (2.30)

and the probability to observe g[i] given image f is

P(g[i]|f) =
ḡ[i]g[i]e−ḡ[i]

g[i]!
. (2.31)

Assume g[1], g[2], ..., g[I] are mutually independent random variables, which is true

for most detector systems when deadtime is negligible, the probability to observe g

given image f is

P(g|f) =
I∏
i=1

P(g[i]|f) =
I∏
i=1

ḡ[i]g[i]e−ḡ[i]

g[i]!
, (2.32)

which is also called likelihood function.

Because the likelihood function is positive definite, the logarithmic likelihood func-

tion of g given image f can be calculated as

L(g|f) = lnP(g|f)

=
I∑
i=1

(
− ḡ[i] + g[i] ln ḡ[i]− ln g[i]!

)

=
I∑
i=1

(
−

J∑
j=1

t[i, j]f [j] + g[i] ln
J∑
j=1

t[i, j]f [j]− ln g[i]!

)
,

(2.33)

and one can get the maximum-likelihood estimation of g by maximizing the logarith-

mic likelihood function, which will be discussed in Chapter 4.

With a large number of counts, the Poisson statistics can be approximated by the

Gaussian statistics,

g[i] ∼ Gaussian(µ = ḡ[i], σ2 = ḡ[i]), (2.34)
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and the probability density to observe g[i] given image f is

p(g[i]|f) =
1√

2πḡ[i]
e−

(x−ḡ[i])2
2ḡ[i] . (2.35)

Further analysis and applications of the Gaussian approximation will be in Chapter

3.

2.4 System Model

To build the system matrix, the physics and detector geometry have been ana-

lyzed, and a system model has been generated. Usually the electronic setup is ig-

nored, and the detector output is treated as a set of interaction energies and locations

with uncertainty. Xu [42] and Wahl [41] described the system model by complicated

equations. Here another view of the problem is proposed, building the probability

distribution from shallow to deep.

2.4.1 Ideal Point Detector

At first an ideal point detector is assumed. An ideal point detector has perfect

spatial and energy resolution for interactions, and infinity small size such that the

attenuation is ignored. For a full-energy deposition event with two interactions, de-

note the first interaction as (x1, E1), the second interaction as (x2, E2). Only the

Compton scattering process for this event need to be considered. In a 4π spherical

space,

f(ω) =


δ, if ω ∈ W ,

0, otherwise,

(2.36)

where ω is the solid angle, and W is defined as

W =

{
ω :

ω(x1 − x2)

|ω||x1 − x2|
= 1− mec

2E1

E0E2

}
(2.37)
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which means that any ω ∈ W satisfies Compton scattering formula. To keep the total

conditional probability as 1,

∫
ω∈4π

f(ω)dω =

∫
ω∈W

δdω = 1, (2.38)

which defines δ like a delta function.

2.4.2 Uncertainties and Gaussian Blur

However, a real detector has spatial uncertainty and energy uncertainty, which in-

creases the complexity of the system model. The spatial uncertainty is not isotropic,

because the uncertainty parallel to the anode plane is decided by the pixel or the

sub-pixel resolution, and the uncertainty perpendicular to the anode plane is decided

by the depth resolution. The energy uncertainty is a function of deposited energy,

which has an influence of the scattering angle calculation. Other uncertainties in-

clude Doppler broadening and coherent scattering. The accurate modeling of these

uncertainties could be very computationally intensive and unpractical.

Instead, a simplified way to approximate the uncertainties is adding a Gaussian

blurring kernel to the Compton ring. Define the standard deviation of the blur as σ

σ = σ(x1, E1,x2, E2, ...), (2.39)

which is a function of interactions. People usually fit the function empirically. The

PSF for a Gaussian blurring kernel is

b(x, σ) = Ce−
x2

2σ2 , (2.40)

where C is the normalization factor such that the blurred image has a total intensity

of 1.
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Figure 2.7:
A Compton ring with Gaussian radius blur. y1 and y2 indicate the shortest
distances between the two points and the ring.

2.4.2.1 Gaussian Radius Blur

In practice the Gaussian blurring kernel is calculated using a Gaussian radius blur.

For any point x in the image, the distance y(x) to the ring is defined as the shortest

distance to any points on the ring, as shown in Fig. 2.7. The blurred ring is

f(x) = Ce
− y(x)2

2σ2
r , (2.41)

where C is the normalization factor, and σr is the standard deviation of the radius

blur. It can be proved that if the radius of the ring is much greater than σ, the

Gaussian radius blur approximates a Gaussian blurring kernel.

2.4.3 Geometry and Attenuation

A real detector has finite geometry and attenuation, affecting the probability of

incident direction. According to Beer-Lambert law, the probability that a photon

with energy E pierces a material with thickness x is

p = e−µ(E)x, (2.42)
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where µ(E) is the attenuation coefficient of the material under photon energy E. If

there are multiple materials on the path of the photon, the probability becomes

p =
∏
n

e−µn(E)xn , (2.43)

where n is the index of the material, µn(E) is the attenuation coefficient of the

material n under photon energy E, and xn is the total length of the material n on

the path of the photon.

It is possible to include the attenuation information in the probability and model

the system more accurately. However, this requires huge amount of computing re-

sources to do ray-tracing, and make the system model too complicated to apply several

fast algorithms. In Compton imaging, most information comes from the Compton

rings, and adding attenuation can not significant affect the reconstruction results.

2.4.4 Sequencing

Since a Compton event has multiple interactions, it is critical to recover the se-

quence of interactions, otherwise the Compton ring is not properly back-projected.

However, the time delay between interactions is on the order of picoseconds due to

the small size of current CZT detectors and the ultra fast photon speed, so there

could be ambiguities of the sequence of interactions.

In most probability-based reconstruction algorithms, such as MLEM, any pos-

sible sequences are considered in the system model, and the rings are weighted by

the probability. In some direct reconstruction algorithms, such as SBP and FBP,

sequencing error is allowed and considered in the PSF, so sequencing is done before

image reconstruction. One can refer to [44, 25, 33, 41] for the existing sequencing

methods. But for high energy sequencing, there are still many problems to solve.
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CHAPTER III

Direct Reconstruction Algorithms

Since measured data from a detector does not directly represent the image, it

is necessary to apply reconstruction algorithms. This chapter will discuss two di-

rect reconstruction algorithms: Simple Back-Projection (SBP) and Filtered Back-

Projection (FBP). These two algorithms have close-form solutions and can be applied

on an event-by-event basis. However, there are problems in these two algorithms and

significant improvement is required to make them practical 1.

3.1 Simple Back-Projection

Among all reconstruction algorithms, SBP may be the simplest, yet still widely

used in research and industry due to its speed and robustness.

3.1.1 Imaging Model

The general discrete imaging model without noise in matrix-form is

ḡ = Tf , (3.1)

1This chapter is based in part on [54].
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where f is the length-J image vector, ḡ is the length-I expected observation vector,

and T is the I × J system matrix with each row corresponding to a back-projected

Compton cone. Based on this model, given actual observation vector g, the SBP

solution is

f̂SBP = T ′g, (3.2)

where T ′ is the conjugate transpose of T . The expectation using this estimation is

f̄SBP = T ′ḡ = T ′Tf = Bf , (3.3)

where B , T ′T is defined as the J × J point spread matrix. Since T ′T is rarely an

identity matrix, f̄SBP provides a biased estimation of the original image. Typically it

is a very blurred version.

The SBP is mostly used in a 4π spherical space or a 2D plane space, and generates

reasonable 2D images. Although in principle SBP can be used in a 3D space, the

SBP images in 3D are usually too blurry to provide valid information. Thus, more

advanced algorithms such as MLEM are required in 3D spaces.

3.1.2 Analysis of SBP

The SBP in a 4π spherical space is analyzed as an example. The SBP equation

3.2 can be rewritten as

f̂SBP = T ′g =
I∑
i=1

giT
′
i:, (3.4)

where gi is the i-th element of the observation vector g indicating the number of

observed events of type i, and Ti: is the i-th row of the system matrix T .

The i-th row of the system matrix is the conditional probability distribution given

the event type i. In Compton imaging with ideal point detectors of infinitely small

size, the rows of system matrix are just Compton rings. So the SBP can be viewed

as the sum of Compton rings for all the observed events, as shown in Fig. 3.1. As
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Figure 3.1:
SBP can be viewed as the accumulation of Compton rings, inducing a
hotspot for each point source.

more and more Compton rings are accumulated, a hotspot will present if the original

image is a point source.

Theoretically the number of Compton rings is infinite, and the Point Spread Func-

tion (PSF) in SBP comes with ideal point detectors. The isotropic PSF is defined as

hE(cosω) which is related to the incident photon energy E. hE(cosω) is decided by

the scattering angle distribution DE(θ),

DE(θ) = K(E, θ) sin θ, (3.5)

where K(E, θ) is the Klein-Nishina formula [45]. Fig. 3.2 shows some theoretical

DE(θ) with different energies.

The density of the Compton ring is defined as ξE(θ). As shown in Fig. 3.3,

assuming there is a point source ~Ω at the zenith of the sphere, the expected SBP

image is just the PSF. Let’s pick a sampling point at ~Ω′, and define the angle between

~Ω and ~Ω′ as ω. All sampling points with angle ω build a sampling ring. Then the
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Figure 3.2:
Theoretical DE(θ) for different energies. High energy photons have a
smaller probability of large angle scatter than low energy photons.

Figure 3.3:
The geometry between a sampling (blue) ring and a scattering (red) ring
with the point source at the zenith of the sphere.
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PSF can be calculated with the equation

hE(cosω)dω · 2π sinω =

2π∫
0

dφ

π∫
0

dθ · 2DE(θ)ξE(θ)dα, (3.6)

where the left side means the PSF at angle ω times the width of the blue ring dω

times the length of the blue ring 2π sinω; the right side means the red Compton

ring with scattering angle θ intersects the blue ring twice and each intersection point

contribute DE(θ)ξE(θ)dα to the blue ring, and the integral is done over all possible θ

and φ.

The black triangle indicates the relationship among α, ω, and θ

cosα = 1− 2 sin2 0.5ω

sin2 θ
, (3.7)

which leads to

dα

dω
=

cos 0.5ω√
cos2 0.5ω − cos2 θ

. (3.8)

So there is

hE(cosω) =
1

sin 0.5ω

π−0.5ω∫
0.5ω

DE(θ)ξE(θ)√
cos2 0.5ω − cos2 θ

dθ, (3.9)

where the range of the integral is limited to [0.5ω, π − 0.5ω] because the scattering

ring must intersect with the sampling ring.

The density ξE(θ) should normalize the Compton ring such that the total intensity

is 1. However, since SBP is already a biased estimation, arbitrary density values

are allowed to enhance the image. There are several logical choices for ξE(θ) (but

unlimited to them).

1. ξE(θ) = 1
sin θ

: This is the standard choice assuming each Compton ring carries

same information.

2. ξE(θ) = 1: This is a widely used choice assuming each pixel on the Compton
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ring carries same information.

3. ξE(θ) = sin θ
DE(θ)

: This choice makes the scattering angle distribution equivalent

to a sin function, such that an analytical PSF is available:

hE(cosω) =
1

sin 0.5ω

π−0.5ω∫
0.5ω

sin θ√
cos2 0.5ω − cos2 θ

dθ

=
π

sin 0.5ω
.

(3.10)

Since sin 0.5ω = 0.5|~Ω− ~Ω′|,

hE(cosω) =
2π

|~Ω− ~Ω′|
= 2π

∞∑
l=0

Pl(cosω), (3.11)

where Pl(cosω) is the Legendre polynomial, and the PSF becomes a Newtonian po-

tential.

In practice, the number of Compton rings is finite, and the Compton rings have

limited width or Gaussian blur, so the shape of the PSF is like a peak with random

noise, as shown in Fig. 3.4.

3.2 Filtered Back-Projection

SBP suffers from poor resolution. If Gaussian additive noise is assumed in the

observation domain, which is approximately true if the number of events is large, then

FBP can be used to deconvolve the PSF and improve the resolution of reconstructed

images.

3.2.1 Imaging Model

Assume Gaussian additive noise on the SBP image,

f̂SBP = T ′g = T ′ḡ + r = T ′Tf + r = Bf + r, (3.12)
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Figure 3.4:
Left: SBP image of a point source shown as a heat map. Right: Same
SBP image shown as a height map.
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where r ∼ N (r̄,K) is the Gaussian noise vector with mean r̄ and covariance matrix

K. To simply the analysis, assume r̄ = 0 and K = σ2I, which means that r is white

Gaussian noise.

The maximum likelihood estimation of this simplified statistical model is the least

squares estimation [46]

f̂LS = B+f̂SBP = B+T ′g, (3.13)

where B+ is the pseudo-inverse of the point spread matrix B. If B is invertible,

B+ = B−1 and the expectation of this estimation is

f̄LS = B−1T ′ḡ = B−1T ′Tf = B−1Bf = f , (3.14)

indicating that f̂LS is an unbiased estimation of the original image.

Since B is a invertible symmetric matrix, using the spectral theorem, the eigen-

vector decomposition [47] is

B = Q′ΓQ, (3.15)

where the eigenvalues of B are on the diagonal of Γ and orthonormal eigenvectors

of B are in the rows of Q. The diagonal of Γ is also the frequency response, or

spectrum, of the point spread matrix B. Applying B−1 is equivalent to do filtering

in frequency domain, hence this method is named as FBP. So

f̂FBP = f̂LS = B−1T ′g = Q′Γ−1QT ′g. (3.16)

If the PSF is shift-invariant, the Fourier transform can be used in a 2D plane

imaging space, and the SH can be used in a 4π spherical imaging space. Denote the

number of Compton events as N , and the number of image pixels as J . Using the Fast

Fourier Transform (FFT) or the fast Spherical Harmonics Transform (SHT), Q and Q′

multiplications have O(J1.5) time complexity. As Γ is diagonal, the multiplication of
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Γ−1 has O(J) time complexity. The multiplication of T ′, which is the back-projection

step, has O(NJ) time complexity. Since usually N � J , the computation totally

has O(NJ) time complexity, which is as fast as the SBP. Because f̂FBP is a linear

transformation of g, it is also additive and can be done on an event-by-event basis.

3.2.2 Spherical Harmonics

In a 4π spherical imaging space, eigenvector decomposition using Discrete Spher-

ical Harmonics Transform (DSHT) matrix is a natural choice. Suppose the image is

f , then its j-th element

fj = f(ωj) = f(θj, φj). (3.17)

The DSHT matrix is exactly J × J matrix Q. The elements qkj of Q are defined

as

qkj , cjykj, k, j = 1, 2, ..., J, (3.18)

where cj is the weight of the sampling point fj, and ykj is defined as

ykj , Y m∗
l (θj, φj), (3.19)

which are the complex conjugates of the SH functions, l ∈ [0, L], m ∈ [−l, l], and

k = l2 + l +m+ 1 such that there is a bijection between k and the degree-order pair

(l,m). Ideally the maximum spherical harmonics degree L should satisfy (L+1)2 = K.

The complex conjugates of the SH function are

Y m∗
l (θj, φj) =

√
2l + 1

4π

(l −m)!

(l +m)!
· Pm

l (cos θj)e
−imφj , (3.20)

where Pm
l (cos θj) are the associated Legendre polynomials. There exist several fast

methods[48, 49, 50, 51, 52] to compute the DSHT and the inverse DSHT.
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3.2.3 Filter Design

Rewrite the Gaussian additive noise model in matrix form

f̂SBP = s = Bf + r, (3.21)

to function form

s = f ~ b+ r, (3.22)

where ~ means circular convolution, s is the SBP image, f is the true image, b is the

PSF, and r is zero-mean uncorrelated Gaussian noise, or white Gaussian noise, with

variance σ2. Assume Wide-Sense Stationary (WSS) and jointly WSS between h and

f such that the Wiener filter can be applied [53].

The FBP estimation to this model is

f̂ = s~ h (3.23)

where f̂ is the estimation, and h is the deconvolution filter. Now define some image-

frequency pairs 

f [j]←→ F (λ)

b[j]←→ B(λ)

s[j]←→ S(λ)

h[j]←→ H(λ)

f̂ [j]←→ F̂ (λ)

, (3.24)

where λ is frequency. Obviously

F̂ (λ) = S(λ)H(λ), (3.25)
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and the optimum Wiener filter is

H(λ) =
B∗(λ)

|B(λ)|2 +R(λ)
, R(λ) ,

Pr(λ)

Pf (λ)
, (3.26)

where Pr and Pf are the power spectrum of r and f respectively, and R is the penalty

parameter in frequency domain.

For Compton imaging in a 4π spherical space, the PSF can be simplified as

B(λ) = N(λ)G(λ), (3.27)

where N(λ) is the spherical harmonics kernel of Newtonian potential, G(λ) is the

spherical harmonics kernel of Gaussian blur, and

N(λ) =
4π

2λ+ 1
, (3.28)

G(λ)←→ g(cosω) =
1√

2πσ2
e−

ω2

2σ2 . (3.29)

where λ is the spherical harmonics degree, ω is the angle to the center of the PSF,

and σ is the standard deviation of the Gaussian blur. One can use empirical PSF

calibrated from real measurements.

3.2.4 Reconstructions Using Simulated Data

Fig. 3.5 shows a simulation where four Cs-137 point sources were placed on

the cathode side of the detector. The SBP image is too blurry to tell the point

sources apart, but the FBP image with much better angular resolution is able to

tell the boundary between sources. Compared to the SH coefficients of FBP, the SH

coefficients of SBP are dominated by low-frequency components, hence the blurred

image. The inverse filter is designed as a Wiener filter, where the medium-frequency

region is amplified to improve resolution, and the high-frequency region is suppressed
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Figure 3.5:
SBP and FBP of four Cs-137 point sources separated by 10 degrees, with
their SH coefficients and the photopeak spectrum used for imaging. The
ghost on the opposite direction of the sources is because of wrong se-
quenced events.

to denoise.

Fig. 3.6 compares the reconstructions of a single source with different statistics.

From left to right the reconstructions use 103, 104, and 105 events. It is obvious that

the SBP image with fewer events is noisier. The SH coefficients of SBP are dominated

by the low-frequency components, which is indicated by the blurry images.

If the same inverse filter is used independently of measurement statistics, as shown

in the second and third rows of Fig. 3.6, the FBP image with 103 events has many

artifacts, and its SH coefficients have much stronger high-frequency noise compared

to the SH coefficients of FBP with 105 events. The SH coefficients of FBP with 105

events show relatively clear shape in the high-frequency region. To suppress high-

frequency noise, a low-pass filter is applied to the inverse filter, which is equivalent to
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a Wiener filter. The low-pass filter slightly blurs the FBP images but greatly reduces

noises, as shown in the fourth and fifth rows of Fig. 3.6.

3.3 Adjusted FBP

Currently 3D position sensitive detectors provide advantages for Compton imag-

ing, because a single monolithic detector serves as both the scattering and absorbing

detector for photons from any incident direction simultaneously, providing higher

detection efficiency and intrinsically better 4π imaging capability than traditional

dual-plane Compton imagers. In addition the digital readout technique of recent

systems allows sub-pixel position resolution and higher energy resolution, improving

the accuracy of reconstructed images [28]. However, with the improvement of angu-

lar resolution, the influence of detector geometry on the PSF becomes considerable,

especially in a detector array with a non-uniform spatial arrangement and when the

number of events is sufficient.

As shown in Fig. 3.7, a 2 × 2 detector prototype array [43] has different system

responses for different incident photon directions. For a source located on the y-axis,

the scattering direction distribution is approximately axisymmetric about the incident

direction. Contrastingly, for a source located on the x-axis with the same scattering

angle, the photons scattered in the x-z plane have a higher probability of interacting

with detectors than the photons scattered in the x-y plane, because the z-dimension of

the array is thicker and provides more attenuation than the y-dimension. Therefore,

the PSF is anisotropic and varies with incident photon direction. If a fixed PSF is

used for FBP, the reconstructed images will have obvious bias because the measured

PSF will never match the PSF used in the inverse filter. Fig. 3.8 shows the SBP

images of a Cs-137 point source at the side of the 2 × 2 detector array with both

simulated data and real data. It is clear that the PSF is anisotropic.

An intuitive solution would build a PSF for each incident photon direction. How-
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Figure 3.6:
Left to right: reconstructions using 103, 104, and 105 events. First row:
SBP images. Second row: FBP images without the low-pass filter, where
a zoomed-in hotspot is at the top right corner. Third row: SH coefficients
without the low-pass filter. Fourth row: FBP images with the low-pass
filter, where a zoomed-in hotspot is at the top right corner. Fifth row:
SH coefficients with the low-pass filter.
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Figure 3.7: Non-isotropic detector array using a 2× 2 Orion prototype.

ever, this would require too much computation and precludes the use of frequency

spectrum based analysis. A method based on events grouping and system matrix

decomposition, which separates the detector effects from the generalized PSF, was

developed. With this method the geometric non-uniformity of detectors is considered

and the use of frequency spectrum based analysis is preserved. Disregarding noise

and discretization effects, an unbiased estimation can be achieved by FBP with a

fast spherical harmonics transform. In contrast, references [32] and [34] did not fo-

cus on the detector effects but provided algorithms for filtering, and reference [33]

incorporated the detector responses into the PSF.

To solve the problem of geometry non-uniformity, the adjusted FBP algorithm [54]

was proposed that groups Compton events having the same type of Compton ring

using a system matrix decomposition strategy. The algorithm produces more isotropic

resolution than standard FBP, and preserves the capability to use frequency spectrum
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Figure 3.8:
Top: SBP of a simulated Cs-137 point source at the side of the detec-
tor. Bottom: SBP of a measured Cs-137 point source at the side of the
detector. Note the clear anisotropy.
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based analysis. This algorithm has been applied to data from a 3D position-sensitive

detector array with 4 crystals and a digital readout system.

3.3.1 Conditional Probability Chains

To derive an unbiased and computationally efficient FBP estimator, it is critical

to analyze how the system matrix is generated. To simplify probability calculations,

assume the incident photon energy equals the total energy deposited in the detector,

and the source is monoenergetic in energy space. Split the probability elements {tij}

of system matrix T into conditional probability chains:

tij = P(I1
i | Dj) · P(Ci | I1

i , Dj) · P(E1
i | Ci, I1

i , Dj) · P(I2
i | E1

i , Ci, I
1
i , Dj), (3.30)

where the symbols are defined in Table 3.1.

Symbol Definition

Dj photon from direction j

I1
i first interaction position of event bin i

Ci scattering direction of event bin i

E1
i first deposited energy of event bin i

I2
i second interaction position of event bin i

Table 3.1: Symbols used in the probability chains.

3.3.2 Grouped Compton Events

Define {Sk} as the subsets of all Compton event bins, k = 1, 2, ..., K, where K is

the number of all possible Compton rings with binned parameters. Compton events

in the same subset have the same Compton ring, which means they share the same

incident energy bin, the same scattering angle bin, and the same lever arm direction
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bin. Under the far-field assumption, the back-projected rings of these Compton events

in the 4π spherical space are the same, but the interaction positions and the distances

between two interactions can be different.

Because the initial photon direction will not affect the probability of the second

interaction once the first interaction has been determined,

P(I2
i | E1

i , Ci, I
1
i , Dj) ≡ P(I2

i | E1
i , Ci, I

1
i ), (3.31)

Define

ηi , P(I2
i | E1

i , Ci, I
1
i ). (3.32)

In general, ηi is the probability that the scattered photon is absorbed at the second

interaction position, which can be calculated from the exponential attenuation process

in the detector.

For any i in set Sk, as these events have the same Compton ring, denote

ψkj , P(E1
i | Ci, I1

i , Dj), (3.33)

in which

P(E1
i | Ci, I1

i , Dj) =


1, if the Compton formula is satisfied;

0, otherwise.

(3.34)

It is possible to add uncertainties to blur the Compton ring, but binary form is used

here for simplicity.

For any i in set Sk, as the initial energy and the lever arm direction are determined

by the subset Sk, the Compton scattering cross section is a constant across the back-

projected ring, so define

σk(j) , P(Ci | I1
i , Dj), (3.35)
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Figure 3.9: Compton ring.

σk(j)ψkj =


σk, if the Compton formula is satisfied;

0, otherwise.

(3.36)

As shown in Fig. 3.9, for each event in one subset, the incident energy and the

lever arm direction of the Compton ring have been determined. By the Klein–Nishina

formula [45], it is known that the Compton scattering cross section is a function of

incident angles, which is axisymmetric around the lever arm. In the image, darker

shading represents a greater cross section, compared to a lighter shading. Given the

Compton ring of this subset, the Compton scattering cross section on that ring is a

constant value.

Since the incident photons usually have energy exceeding 500 keV for Compton

scattering events, they have an approximately uniform probability distribution of

interaction positions in the detector

P(I1
i | Dj) ≈ αj, (3.37)
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which is valid for the detector geometry and type being considered here, and is further

analyzed in [54].

Consequently ∀i ∈ Sk the conditional probability chains can be written as

tij = αjσkψkjηi. (3.38)

To group the probabilities by Sk, denote:

ukj ,
∑
i∈Sk

tij, vk , σk
∑
i∈Sk

ηi, (3.39)

and from (3.38) and (3.39),

ukj = αjψkj · σk
∑
i∈Sk

ηi = αjψkjvk = vkψkjαj. (3.40)

3.3.3 System Matrix Decomposition

After grouping Compton events by the subsets {Sk}, define a new aggregate mea-

surement vector h, having elements {hk} of h defined as

hk ,
∑
i∈Sk

gi, k = 1, 2, ..., K. (3.41)

The system model for the new observation vector is

h̄ = U · f (3.42)

where h̄ is the expectation of h, and U is the new K×J system matrix with elements

{ukj}. Using equation (3.40), the system matrix U is decomposed as

U = V ΨA, (3.43)
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where Ψ is a K × J matrix with elements {ψkj}, A is a J × J diagonal matrix with

elements {αj}, and V is a K × K diagonal matrix with elements {vk}. A can be

viewed as the correction of sensitivity, and V can be viewed as the correction of

Compton scattering direction probability. Now the system model becomes:

h̄ = V ΨAf . (3.44)

Note that the observation vector h still obeys a Poisson distribution with a mean

vector h̄. Once the system model is available, different reconstruction algorithms can

be applied such as SBP, FBP and MLEM. To show the benefits of the decomposed

system matrix, Ψ′ and V are used to do the back-projection:

Ψ′ΨAf = Ψ′V −1h̄, (3.45)

from which a adjusted SBP estimator is derived as

f̂ASBP = Ψ′V −1h. (3.46)

Define the generalized point spread matrix B̃ as

B̃ , Ψ′Ψ (3.47)

where the jth column is the PSF of the jth pixel. This PSF is the sum of all possible

Compton rings intersecting with the incident direction, so B̃ is rotationally invariant

and diagonalizable with the DSHT matrix

B̃ = Q′ΓQ (3.48)
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in which Γ is a diagonal matrix. Finally the model becomes

f = A−1Q′Γ−1QΨ′V −1h̄, (3.49)

and the adjusted FBP estimator is

f̂AFBP = A−1Q′Γ−1QΨ′V −1h, (3.50)

where h represents the grouped observation, V −1 represents the weighting for Comp-

ton rings, Ψ′ represents SBP process, Q represents SHT, Γ−1 represents the inverse

filter, Q′ represents the inverse SHT, and A−1 represents the correction of sensitivity.

As a comparison, the standard FBP estimator is

f̂FBP = Q′Γ−1QΨ′h. (3.51)

Since A−1 and V −1 are both diagonal matrices, their multiplications have O(J) time

complexity.

3.3.4 Experiments

The experiments used a 2 × 2 3D position-sensitive CZT detector array, with

2 mm gaps between crystals. Each crystal in the array was 2 cm × 2 cm × 1.5 cm,

and had 11 × 11 pixels on the 2 × 2 cm2 anode surface. With a digital readout

technique [28, 37], the detector provides 0.3 mm sub-pixel resolution parallel to the

anode surface, 0.3 mm depth resolution perpendicular to the anode surface. With a

Cs-137 source, the energy resolution for all double-pixel events is 0.8% FWHM at 662

keV.

The maximum spherical harmonics degree L used in the DSHT was determined

by the intrinsic angular resolution of the imaging system. For our system L = 60
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Figure 3.10: Three source locations used in the adjusted FBP experiment.

was large enough to represent all frequency information. The 4π image space was

divided into a 60 × 120 uniform angular grid. Each sampling point on the grid

has a weight based on its corresponding area. The Compton scattering angle was

uniformly discretized into 180 bins, thus theoretically the number of subsets K =

60 × 120 × 180 = 1, 296, 000 for a given initial energy. Fortunately, as the list-mode

data was used in the reconstruction, it was not necessary to calculate all subsets.

To suppress measurement noise, a DSHT-based Wiener filter was applied, as de-

fined in (3.26) in the frequency domain. The parameter R(ω) was empirically selected

as a constant 10−7.

A 79 µCi Cs-137 point source was imaged from 3 different directions as shown in

Fig. 3.10. The distance from the source to the detector was 1 m. The Cs-137 source

was placed at (θ, φ) = (90◦, 92◦), (90◦, 185◦), and (61◦, 146◦) in each measurement.

The polar angle θ started from the +z axis, and the azimuth angle φ was counter-

clockwise from the +x axis direction. The distance between the source and the

detector was much larger than the size of the detector, hence the far-field condition

is satisfied.

To limit events to the photopeak, an energy window of 650 - 670 keV was used,
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assuming full energy deposition for the summed energy from all interaction sites of a

single event. Each measurement lasted 16 hours. The measurements for the sources

at (θ, φ) = (90◦, 92◦), (90◦, 185◦), and (61◦, 146◦) generated 276,543 multi-interaction

events, 146,256 multi-interaction events, and 95,378 multi-interaction events in the

energy window respectively. The detection efficiencies differed due to geometric non-

uniformity and solid angle. For each measurement, only 90,000 multi-interaction

events were used in reconstruction.

A simple comparison method [25] was applied to decide the sequence of interac-

tions, namely the higher energy interaction was first as long as the Compton condition

is satisfied. In each measurement, the direct and the adjusted methods were compared

with the same dataset and filtering settings. The direct methods used analytical sys-

tem matrix without geometric information of the detector, but the improved methods

considered the geometric non-uniformity of the detector.

When the source was placed in front of the cathode side, the PSF in direct SBP was

approximately isotropic and the direct filtering approach generated a round hotspot.

But when the source was placed at the side of the detector array, the PSF in direct

SBP was obviously anisotropic, thus direct filtering would lead to biased estimation.

However, the PSF in adjusted SBP showed a rotational invariance, and the adjusted

FBP was quite stable between different source directions.

Fig. 3.11 shows the reconstruction results where all measurements were combined

and reconstructed simultaneously. This is similar to measuring all three sources at

the same time. For each position, only 90,000 multi-interaction events were used.

In the image of direct SBP, the shapes of hotspots in different positions varied be-

cause of the geometric non-uniformity. The direct FBP could improve the FWHM of

hotspots. For the hotspot at (90◦, 185◦) or (61◦, 146◦), the polar resolution was finer

than the azimuth resolution. Thus the hotspot was biased with a non-uniform resolu-

tion. With the same data, the hotspots in the adjusted SBP became more isotropic.
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(a) (b)

(c) (d)

Figure 3.11:
Combined reconstruction of all three sources reconstructed simultane-
ously.

Compared with the direct FBP, the adjusted FBP provided a better performance in

FWHM with the same filtering settings. The resolution was nearly uniform along

different directions for each hotspot.

Fig. 3.12 shows the comparison between direct filtering and the new filtering

approaches with contour images, where each measurement was reconstructed indi-

vidually. The direct and the adjusted results were plotted in the same figure for

comparison. In each image, the contours from inside to outside indicated 80%, 50%,

and 20% of the peak value. Note that the SBP images and the FBP images had

different scales. (a) and (b) are SBP and FBP images obtained for a source placed at

(90◦, 92◦). The images were all nearly isotropic, and no obvious improvement was ob-

served from new methods. (c) and (d) are SBP and FBP images obtained for a source

placed at (90◦, 185◦). In both direct SBP and direct FBP, the impact of geometric

non-uniformity is visible as the horizontal elongation of the source. With the same
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data, the adjusted SBP and the adjusted FBP resulted in more symmetric images

and improved azimuthal resolution. (e) and (f) are SBP and FBP images obtained

for a source placed at (61◦, 146◦). In both direct SBP and direct FBP, the hotspots

tilted to the left because of geometric non-uniformity. With the same data, the ad-

justed SBP and the adjusted FBP resulted in more symmetric images and improved

azimuthal resolution.

3.4 Adaptive FBP

Another challenge in FBP is how to select the penalty parameter. For measure-

ments with fewer counts, the Gaussian assumption is less valid, so there is more noise

and stronger penalty parameter is desired. For measurements with more counts, the

Gaussian assumption is closer to the real Poisson distribution, so resolution should

be more focused and a weaker penalty is desired. However, it is neither convenient

nor accurate to let the user decide the penalty parameter for each measurement. The

adaptive FBP algorithm is proposed, which adaptively selects the penalty parameter

basis iteratively, balancing the noise and resolution of the FBP image without manual

intervention.

3.4.1 Penalty Parameter Computation

The power spectrum of the white Gaussian noise with variance σ2 is simply σ2.

Since hotspots are of interest, if define

M , max(f), (3.52)

then by the definition of power spectrum,

Pr(λ) = σ2 ∝M, (3.53)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12:
Zoomed in source profiles, illustrating the improvement of hotspots.
Note that the axes differ.
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Pf (λ) ∝M2. (3.54)

Thus the penalty parameter is

R(λ) =
Pr(λ)

Pf (λ)
=

C

M
= R, (3.55)

where C is a parameter related to detector property and incident photon energy.

Therefore the penalty parameter R can be selected adaptively from images.

Since M is a function of the true image f , it is not possible calculate the penalty

parameter R directly. However, it is reasonable to use FBP images instead of the true

image, and calculateM iteratively as shown in the following

Require: f̂ (0) = s

for k = 1 to K do

M (k) ← max(f̂ (k−1)) (Update M from previous FBP image)

f̂ (k) ← f̂FBP(R = C
M(k) ) (Use R = C

M(k) as the parameter to do FBP)

end for

return f̂ (K) (Resulting image)

3.4.2 Comparison with Empirical Penalty Parameters

Experiments were done to test the performance of the adaptive FBP. For the

detector used in the measurement, C = 10−5 was selected for 356 keV photopeak of

Ba-133 point source. Fig. 3.13, Fig. 3.14 and Fig. 3.15 show the performance of

the adaptive FBP in different statistics with fixed penalty parameter. In each figure,

the top row shows the spectrum and the selected energy window, middle left shows

the SBP image, middle right shows the adaptive FBP image, bottom left shows the

FBP image with R = 10−3, and bottom right shows the FBP image with R = 10−7.

The adaptive R is selected closer to 10−3 with poor statistics and to 10−7 with good

statistics.
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Figure 3.13: FBP with 103 counts in Ba-133 photopeak.
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Figure 3.14: FBP with 104 counts in Ba-133 photopeak.
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Figure 3.15: FBP with 105 counts in Ba-133 photopeak.
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3.4.3 Adaptive Parameter Computation

Given a detector, the adaptive parameter C is a function of incident photon energy

C = C(E), (3.56)

where E is the incident photon energy. It is possible to measure the properties of

a detector system and generate a empirical function C(E). Thus for a FBP using

photons in a photopeak, C(E) can be used to calculate penalty parameter R and

apply the Wiener filter adaptively.

Define

w = − log10R, (3.57)

X = log10M. (3.58)

Because R(E) = C(E)
M

,

− log10R = log10M − log10C(E), (3.59)

so w and X have linear relationship. Define

w = a(E)X + b(E), (3.60)

where a(E) and b(E) are parameters related to photopeak energy E. So for each

photopeak energy E, as long as parameters a(E) and b(E) are known, it is possible

to calculate the penalty parameter using X or M .

Fig. 3.16 shows the linear relationship between w and X empirically. In this

experiment, a Cs-137 point source was placed in three positions around the detector,

distinguished by different dot colors. Each data point was generated by resampling

the dataset, then choosing the w that could maximize signal-to-noise ratio.
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Figure 3.16: Linear relationship between w and X.
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3.5 Summary

In this chapter, I propose the adjusted FBP and the adaptive FBP, making the

FBP method more accurate and practical. Due to the detector non-isotropic geome-

try, the conventional FBP has shift-variant PSF, leading to a non-isotropic resolution.

Therefore, I developed the adjusted FBP, which weights the rings based on the ge-

ometry and corrects the PSF to be shift-invariant. Another challenge for FBP is

the selection of the denoising parameter. As the FBP uses Gaussian detection to

approximate Poisson detection, a denoising filter should be applied whose parameter

is related to the image statistics. Therefore, the adaptive FBP has been developed in

this thesis, which considers the current statistics of the image and selects the Wiener

parameter adaptively.

However, current adaptive method is based on the point source model, which

may not be valid if the source is extended. The adaptive parameter selection in the

scenarios with extended sources is an interesting topic and worth studying in future.
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CHAPTER IV

Iterative Reconstruction Algorithms

Direct reconstruction algorithms are inapplicable in many imaging problems, such

as the image estimation with Poisson measurements. Thus iterative reconstruction

algorithms are required. This chapter will discuss the Maximum-Likelihood (ML)

method for Poisson measurements, introduce its natural extension in energy-imaging

integrated space as Energy-Imaging Integrated Deconvolution (EIID), and propose

the accelerated method: Energy Decremental Integrated Deconvolution (EDID).

4.1 Maximum-Likelihood

Experimental measurements have Poisson distribution for detections, thus a sim-

plified Gaussian noise model may introduce error in reconstruction if the statistics is

not sufficient. To efficiently apply all information in the image reconstruction, the ML

method is used to estimate image variables with Poisson observation. However, since

there is no analytical solution for ML estimation problems in Poisson measurements,

iterative algorithms are developed to estimate a solution given a set of observation.
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4.1.1 Imaging Model

The general discrete imaging model in matrix-form is

ḡ = Tf , (4.1)

where f is the image vector with length J , ḡ is the expected observation vector with

length I, and T is the I × J system matrix with each row corresponding to a single

back-projected Compton cone.

Assume the observations are mutually independent Poisson variables,

gi ∼ Poisson(ḡi), (4.2)

where i = 1, 2, ..., I is the index of observation vector. The logarithmic likelihood

function is

L(g|f) = lnP(g|f)

= ln
I∏
i=1

P(gi|f)

=
I∑
i=1

lnP(gi|f)

=
I∑
i=1

(−ḡi + gi ln ḡi − ln gi!)

≡
I∑
i=1

(−ḡi + gi ln ḡi)

=
I∑
i=1

φi(ḡi),

(4.3)

where φi(x) , gi lnx − x, “≡” indicates that the constants independent of f are
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neglected, and

ḡi =
J∑
j=1

tijfj. (4.4)

The classical expectation-maximization algorithm for solving the ML estimation

problem has the updating equation

f
(k+1)
j =

f
(k)
j

sj

I∑
i=1

tijgi
ḡi(f (k))

, (4.5)

where j = 1, 2, ..., J is the index of image pixel, k is the iteration number, ḡi(f) is

the expected observation defined as

ḡi(f) =
J∑
j=1

tijfj, (4.6)

and sj is the sensitivity defined as

sj =
I∑
i=1

tij. (4.7)

This is the famous Richardson-Lucy [55, 56] iterative procedure and is also known

as the MLEM method for Poisson measurements.

4.1.2 Derivation

There are several possible derivations of the MLEM algorithm. Here one of them

using the optimization transfer principles [57] is discussed. Although this is not

how MLEM was derived originally, it may be the simplest rigorous derivation which

illuminates the monotonicity properties of MLEM.

If f
(k)
j > 0 ∀j = 1, 2, ..., J , the expected observation is

ḡi(f) =
J∑
j=1

tijfj =
J∑
j=1

tijf
(k)
j

ḡ
(k)
i

· fj
f

(k)
j

· ḡ(k)
i , (4.8)
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where ḡ
(k)
i , ḡi(f

(k)). f is strictly positive, thus the equation is well defined. Because

φi(x) , gi lnx− x is concave, by the convexity inequality,

L(g|f) =
I∑
i=1

φi(ḡi)

=
I∑
i=1

φi

(
tijf

(k)
j

ḡ
(k)
i

· ḡ
(k)
i fj

f
(k)
j

)

> Q(f ;f (k)) ,
I∑
i=1

J∑
j=1

tijf
(k)
j

ḡ
(k)
i

φi

(
ḡ

(k)
i fj

f
(k)
j

)

≡
J∑
j=1

Qj(fj;f
(k)),

(4.9)

where

Qj(fj;f
(k)) =

I∑
i=1

tijf
(k)
j

ḡ
(k)
i

(
gi ln

ḡ
(k)
i fj

f
(k)
j

− ḡ
(k)
i fj

f
(k)
j

)

=
I∑
i=1

(
tijf

(k)
j

ḡ
(k)
i

gi ln fj +
tijf

(k)
j

ḡ
(k)
i

gi ln
ḡ

(k)
i

f
(k)
j

− tijfj
)

≡
I∑
i=1

tijf
(k)
j

ḡ
(k)
i

gi ln fj − sjfj.

(4.10)

The maximization for the separable surrogate function Q reduces into the form

f
(k+1)
j = arg max

fj>0
Qj(fj;f

(k)). (4.11)

Take the partial derivative

∂

∂fj
=

I∑
i=1

tijf
(k)
j

ḡ
(k)
i

gi
fj
− sj, (4.12)
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equating to zero and considering the non-negativity constraint yields

f
(k+1)
j =

f
(k)
j

sj

I∑
i=1

tijgi

ḡ
(k)
i

, (4.13)

which is the updating equation of MLEM for Poisson measurements.

4.1.3 List-Mode MLEM

In real measurement, the size of observation vector g is extremely large so that

I is much larger than the number of events and it is not efficient to build the whole

system matrix T explicitly. Instead, a list-mode system matrix can be built to solve

the list-mode likelihood problem.

Denote T̃ as the N×J list-mode system matrix, where N is the number of events.

With a list of index {i1, i2, ..., iN},

t̃nj = tinj, n = 1, 2, ..., N, (4.14)

where t̃nj is an element of T̃ . Similarly, define

g̃n = ḡin = ḡin(f) (4.15)

as the expected observation for the n-th event. Since each row represent one event,

the equivalent observation is always 1, so the updating equation can be rewritten as

f
(k+1)
j =

f
(k)
j

sj

I∑
i=1

tijgi

ḡ
(k)
i

=
f

(k)
j

sj

N∑
n=1

t̃nj

g̃
(k)
n

, (4.16)

where all gi = 0 items are removed, and gi > 0 items are split into several events.

Note that the sensitivity term sj =
∑I

i=1 tij is still the sum of rows of T , not the sum

of rows of T̃ .
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4.1.4 Regularization

One variation of MLEM algorithm is to add regularization, which is a effective

method to introduce prior information and enhance the quality of reconstructed im-

ages. The general form of cost function is

Ψ(f) = −L(g|f) + βR(f), (4.17)

where −L(g|f) is the negative log-likelihood, R(f) is the penalty function, and β

is the hyper-parameter that determines the strength of penalty. Typical penalties

include sparseness and smoothness.

The sparse penalty using the L-2 norm is

R(f) = ||f ||2 =
( J∑
j=1

f 2
j

) 1
2 , (4.18)

which is also called power penalty. Similarly, the sparse penalty using the L-1 norm

is

R(f) = ||f ||1 =
J∑
j=1

|fj|. (4.19)

The smooth penalty using the L-2 norm is

R(f) = ||∇2f ||22, (4.20)

where ∇2 gives the 2D gradient of the image f . Similarly the smooth penalty using

L-1 norm is

R(f) = ||∇2f ||1. (4.21)

More sophisticated penalty functions [58] were investigated and probably have

better performance.
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4.1.5 Block Iteration

There are many variations of ML method to accelerate the convergence rate, in-

cluding grid refinement [59, 60, 61], raise powers [62, 63, 64, 65, 66], over-relaxation

[67, 68, 62, 69, 70, 71, 72, 73], and line search [59, 72, 74]. None of them gained wide

popularity, either due to potential algorithm instabilities, inconvenience of implemen-

tation, and/or the paltry resulted gains [53]. However, block iterative method is the

variation that gets widely used, and the Ordered-Subsets Expectation-Maximization

(OSEM) [75] has the greatest impact to the medical imaging field.

The basic idea of block iterative method is to update the image in each sub-

iteration using a batch of input data. Although the sub-iterations may not have the

best performance, the convergence direction is roughly the same with the iteration

using the whole input dataset. The key is that the convergence direction is not the

most significant target in each iteration, but can be adjusted in future iterations.

Thus, the block iterative method achieves convergence with a batch of input data in

each sub-iteration, leading to higher convergence rate.

It is possible to apply the block iterative method in the list-mode MLEM for

Compton imaging using the similar concept. For a given list of events with indices

{1, 2, ..., N}, divide the indices into M subsets {S1,S2, ...,SM} randomly and aver-

agely. Then the updating equation becomes

f
(k+m/M)
j =

f
(k+(m−1)/M)
j

sj/M

∑
n∈Sm

t̃nj

g̃
(k+(m−1)/M)
n

, (4.22)

for m = 1, 2, ...,M , where f (k+1) = fk+M/M . Note that the sensitivity sj is divided

by M because the size of each subset is only 1
M

of the original list size.

In a real reconstruction, it is natural to divide the data by equal time intervals

because the measurement in each time interval is basically equivalent, as all photon

detections are random. With this property, the reconstruction can be accelerated
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using block iterative method and images can be updated online.

4.2 EIID and EDID

Previous algorithms focus on the reconstruction using photopeak events, which

is based on the full-energy deposition assumption. However, in real measurements

there always exist Compton escaping events, leading to partial-energy deposition and

Compton continuum. Thus a system model considering the system response in both

spatial domain and spectral domain has a better description of the physical process.

EIID, formalized by Dr. Dan Xu, aimed to solve the partial-energy deposition

problem by the deconvolution in the spatial-spectral integrated domain [30]. How-

ever, due to the extremely large number of pixels in the spatial-spectral integrated

domain, it is a great challenge to implement EIID in reasonable time. To solve this

problem, the essence of EIID is analyzed and the EDID is proposed to accelerate the

convergence rate.

4.2.1 Imaging Model

The radiation image is defined in the energy-imaging integrated domain, with the

energy domain defined as E and the imaging domain defined as X . The continuous

integrated domain is

E × X , (4.23)

and the radiation image as

f = f(e,x), (4.24)

where e ∈ E is the incident photon energy, and x ∈ X is the source location vector.

Most of the time the energy domain is 1D, and the imaging domain is a 2D spherical

space.

In practice, a discretized domain is used in computation. A general discrete imag-
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ing space is defined as J = {1, 2, ..., J}, which are the indices of pixels. The pixelated

image is

f [j] =

∫
e∈rj

∫
x∈aj

f(e,x)dedx, (4.25)

where j ∈ J , rj is the energy range of the j-th pixel, and aj is the solid angle area

of the j-th pixel. The image vector can be represented as f , where fj = f [j] and

j = 1, 2, ..., J .

Since the detection space does not change, the observation vector is still g with

length I, so the imaging model is

ḡ = Tf , (4.26)

where the system matrix T has size I × J and elements {tij}.

4.2.2 System Model

To calculate the system matrix element tij, one need to consider the probability

that a photon with energy in range rj emitted from solid angle aj is detected as event

type i.

tij = P(event i | photon from pixel j) = P(event i | rj, aj). (4.27)

If the deposited energy E0 of event i is in the range rj, then it is a photopeak event;

if E0 is below the range rj, then it is a Compton continuum event; if E0 is above the

range rj, then the probability is 0 since a photon cannot deposit more energy than

its initial energy. Refer to [30] for detailed calculation of the probabilities in system

matrices.

Fig. 4.1 shows the probability distribution in energy-imaging integrated domain

given an event using ideal detectors. The deposited energy is 400 keV, and the prob-

ability of full-energy deposition (purple) is significantly higher than partial-energy

deposition (blue). For each energy bin, the probability distribution is a Compton

ring in polar-azimuth 4π spherical space. Consider the Compton formula where mec
2
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Figure 4.1:
Normalized probability distribution in energy-imaging integrated domain
for a 400 keV event in an ideal point detector.

is the rest mass energy of an electron, the opening angle for a 2-pixel event is

θ = cos−1(1− mec
2E1

E0E2

), (4.28)

it is obvious that the higher the initial energy is, the smaller the ring radius is, which

makes the probability distribution in energy-imaging integrated domain horn shaped.

If the probability distribution is projected to energy domain, there will be a peak

of full-energy deposition and a low, but long, continuum of partial-energy deposition.

Fig. 4.2 shows the probability distributions of different events in the energy domain.

The true energy of incident photons is 662 keV from a Cs-137 source, but the recorded

energy can be as low as 300 keV because of photon escaping. The events are sorted

by their recorded energies. The full-energy deposition peaks dominate the probability

distribution, but there is still information contained in the partial-energy deposition
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Figure 4.2:
Probability distributions of different events, projected to energy domain.

tail.

4.2.3 Jiyang Bagel Phenomenon

An interesting phenomenon was observed using SBP imaging with full-energy

deposition assumption.

Usually, photopeak events are selected for SBP, which have a high probability of

full-energy deposition. If the original image is a point source, then a blurred hotspot

should be reconstructed, indicating the direction of the source. However, it is still

possible to get some information from the source using Compton continuum events.

As shown in Fig. 4.3 and Fig. 4.4, several different energy windows are selected for

a 4π image reconstruction of a simulated point source with 600 keV photon energy,

assuming full-energy deposition. A hotspot is reconstructed using the 600 ± 25 keV

energy window. As the energy of the window becomes lower and lower, the “hotspot

” becomes larger and larger and a hole appears at the center. This phenomenon was

named as the “Jiyang Bagel” by Professor Zhong He. Although it becomes a bagel
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instead of a hotspot in low energies, the center of the hole still indicates the direction

of the point source, and it is probable to extract information from partial-deposited

events.

A simple explanation of the Jiyang Bagel is shown in Fig. 4.5. Define the incident

photon direction as Ω, the deposited energy of the first Compton interaction as E1,

the scattering energy of the first Compton interaction as E2, and the scattering angle

as θ. The Compton formula gives

cos θ = 1− mec
2E1

(E1 + E2)E2

. (4.29)

However, the recorded energy may differ from the true energy. If the scattered photon

energy is recorded as E ′2 = E2, then θ′ = θ and the reconstructed ring intersect with

the true photon direction; if the scattered photon energy is recorded as E ′′2 < E2,

then θ′′ > θ and the reconstructed ring is larger than the expectation. Under the

full-energy deposition assumption, if photopeak events are used in SBP, then most

events will intersect with the true photon direction and a hotspot will be generated.

But if the partial-deposited events are used in SBP, then the back-projected rings

will precess around the true photon direction and a bagel will be generated.

David Goodman did an experiment using a Cs-137 point source with 662 keV

photopeak energy. Fig. 4.6 shows the SBP reconstructed image with 450 ± 25keV

energy window, where the bagel is clearly observed.

4.2.4 Algorithm and Acceleration Using EDID

Given the imaging model equation (4.26) with Poisson measurement assumption,

one can use MLEM iteration (4.5) to estimate the radiation image. However, a

typical EIID reconstruction in 4π spherical space and 0-2 MeV energy range has a

huge imaging domain. Due to the slow convergence rate of MLEM algorithm and the
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Figure 4.3: SBP in different energy windows.

Figure 4.4: SBP in different energy windows shown in 3D.
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Figure 4.5:
Left: The Compton cone with correct total energy and the Compton cone
with underestimated total energy. Middle: SBP rings with correct total
energies. Right: SBP rings with underestimated total energies.

Figure 4.6:
Jiyang Bagel observed in a real experiment using a Cs-137 point source.

80



large number of events, EIID is not practical.

4.2.4.1 Standard MLEM in Whole Space

Denote the number of energy bins as ne, the number of imaging bins as nx, the

number of all bins as J = ne × nx, the number of events as N , and the number of

iterations as K, then the MLEM algorithm is

Require: f (0): Non-zero initial image vector

for k = 1 to K do

for n = 1 to N do

g̃
(k)
n ←

∑J
j=1 t̃njf

(k−1)
j

end for

for j = 1 to J do

f
(k)
j ←

f
(k−1)
j

sj

∑N
n=1 t̃nj

g̃n

g̃
(k)
n

end for

end for

return f (K) (Resulting image)

where the time complexity for each iteration is O(NJ).

Assuming there are 90×180 imaging bins and 2000 energy bins, for a measurement

with 1× 104 events, the system matrix requires 2592 Gigabyte of memory using float

number, which is obviously too large for a modern computer system. Although on-

the-fly method is possible for the computation, it requires extra computing resource

and much slower. Typically 20 iterations are required to guarantee convergence, so

the system matrix has to be computed 20 times on-the-fly, which is not affordable in

practice. Thus it is critical to find some methods to help simplify the system model

and accelerate convergence.
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4.2.4.2 MLEM in Each Energy Bin

Consider the property of the system matrix. For an event with deposited energy

Edep, define the the incident energy as Einc and P(Edep = Einc) � P(Edep < Einc).

In other words, given an event, full-energy deposition is much more probable than

partial-energy deposition.

Fig. 4.7 shows the colored system matrix of EIID, where ne is the number of

energy bins, In is the number of events with deposited energy En, Jn is the number

of bins with incident energy En, T̃n1n2 is the block on the diagonal corresponding to

deposited energy En1 and incident energy En2 , fn is the image vector with incident

energy En, and g̃n is the observation vector with deposited energy En. The system

matrix is divided to blocks based on the deposited energy and incident energy. It

is known that the blocks on the diagonal, where deposited energy equals to incident

energy, has much larger value than the blocks on the upper triangle, where deposited

energy is smaller than incident energy. Since deposited energy can never be larger

than incident energy, the lower triangle blocks always have zero value.

A naive approach to simplify the system matrix is to ignore the probability of

partial-energy deposition on the upper triangle, and only consider the probability of

full-energy deposition on the diagonal blocks. As shown in Fig. 4.8, it is obvious to

have

g̃n = T̃nnfn, n = 1, 2, ..., ne, (4.30)

which means the images in different energy bins can be reconstructed separately, and

sub-iteration is allowed in each energy bin. Assume M sub-iterations are done for

each iteration, then the algorithm is

Require: f (0): Non-zero initial image vector

for k = 0 to K − 1 do

for n = 1 to ne do
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Figure 4.7:
System matrix of EIID. The diagonal blocks colored as purple have much
larger values than the upper triangle blocks colored as cyan.

τij ← i-row j-column element of T̃nn

fj ← j-th element of fn

gi ← i-th element of g̃n

sj ← sensitivity of fj

for m = 0 to M − 1 do

for i = 1 to In do

g′i ←
∑Jn

j=1 τijf
(k+m

M
)

j

end for

for j = 1 to Jn do

f
(k+m+1

M
)

j ← f
(k+m

M
)

j /sj ×
∑In

i=1 τij
gi
g′i

end for

end for

end for

end for
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Figure 4.8:
System matrix of EIID ignoring partial-energy deposition on the upper
triangle.

return f (K) (Resulting image)

where the time complexity for each iteration is

O(
ne∑
n=1

MInJn) = O(Mnx

ne∑
n=1

In) = O(NMnx), (4.31)

where Jn = nx, M � ne, so Mnx � J , and the time complexity of the simpli-

fied algorithm is much smaller than the standard MLEM in EIID. Although the

simplified algorithm achieves much smaller time complexity, it loses information be-

tween different energies and leads to a biased estimation. Actually this algorithm is

equivalent to doing image reconstructions in different energy bins without considering

partial-energy deposition.
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4.2.4.3 Energy-Decremental Integrated Deconvolution Algorithm

Is there a way to connect the information from different energy bins while preserve

the simplicity? Here I propose the Energy Decremental Integrated Deconvolution

(EDID) algorithm, which conducts sub-iterations decrementally from high energy

bins to low energy bins, preserves most of the partial-energy deposition information,

has the same time complexity as the standard MLEM with much faster convergence

rate, and provides an unbiased estimation in energy-imaging integrated space.

Consider the property of the system matrix. Since the deposited energy can never

be larger than the initial energy, the probabilities in lower triangle is always zero.

Also

P(Edep = Einc)� P(Edep < Einc). (4.32)

In another word, given an event, full-energy deposition is much more probable than

partial-energy deposition.

Let’s look into events with deposited energy Ene on the last row blocks. Because

Ene is the largest energy defined in our integrated space, these events only have

probability of full-energy deposition, so the reconstruction in energy bin Ene can

be done directly using the events with deposited energy Ene and M sub-iterations.

Although the events with lower deposited energy may contribute to the image in

the energy bin Ene , the information within the events with deposited energy Ene

dominates and the lower energy events are ignorable.

Next look into the events with deposited energy Ei, assuming the events with

deposited energy higher than Ei have been used and the images with initial en-

ergy higher than Ei have been reconstructed. As shown in Fig. 4.9, the images

{fi+1,fi+2, ...,fne} have been reconstructed, and the image fi is expected to recon-

struct using the Ii events with deposited energy Ei and M sub-iterations. Since

{fi+1,fi+2, ...,fne} have been determined by previous steps, only fi gets updated in
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Figure 4.9:
System matrix used in EDID. In each energy bin, only consider the
influence from higher energy bins, and update the image under the current
energy bin.

each sub-iteration.

In summary, the EDID algorithm conducts reconstructions from high energy bins

to low energy bins. In each energy bin, the images with energy higher than or equal

to current energy are considered in the forward-projection step, but only the image

with current energy is updated in each sub-iteration. The algorithm is

Require: f (0): Non-zero initial image vector

for k = 0 to K − 1 do

for n = 1 to ne do

τij ← i-row j-column element of [T̃n,n, T̃n,n+1, ..., T̃n,ne ]

fj ← j-th element of [fn;fn+1; ...;fne ]

gi ← i-th element of g̃n

sj ← sensitivity of fj

Un ←
∑ne

l=n Jl = (ne − n+ 1)nx

86



for i = 1 to In do

w
(k)
ni ←

∑Un
j=Jn+1 τijf

(k)
j

end for

for m = 0 to M − 1 do

for i = 1 to In do

g′i ←
∑Un

j=1 τijf
(k+m

M
)

j =
∑Jn

j=1 τijf
(k+m

M
)

j + w
(k)
ni

end for

for j = 1 to Jn do

f
(k+m+1

M
)

j ← f
(k+m

M
)

j /sj ×
∑In

i=1 τij
gi
g′i

end for

end for

end for

end for

return f (K) (Resulting image)

Note that g′i is split into two parts: the first part is updated in each sub-iteration,

and the second part w
(k)
ni is fixed given n. For each iteration, computing g′i requires

O(
∑ne

n=1MInJn) = O(NMnx) time complexity. Updating fj requires the same time

complexity O(NMnx). Computing wni requires

O(
ne∑
n=1

Un∑
j=Jn+1

In) = O(
ne∑
n=1

In(ne − n)nx) ≤ O(
ne∑
n=1

Innenx) = O(NJ). (4.33)

Since M � ne, Mnx � nenx = J , so the total time complexity is O(NJ), which is

the same as the standard MLEM. However, M sub-iterations are conducted in every

k-th iteration, therefore a much faster convergence rate is achieved.

The negative log likelihood is defined as

N = −L(g|f) ≡ −
I∑
i=1

φi(
J∑
j=1

t̃ijfj), (4.34)
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Figure 4.10: Negative log likelihood of the iterations in 8000 ms.

where φi(x) , gi lnx−x. A smaller negative log likelihood indicates a better conver-

gence to the desired image.

A convergence rate comparison was done among the standard EIID and the EDID

with different numbers of sub-iterations using the negative log likelihood of each

reconstructed image. All algorithms started from the same initial SBP image, as

shown in Fig. 4.10 and Fig. 4.11. In the plots, each data point represents one

iteration with its completion time and negative log likelihood. The standard EIID is

equivalent to EDID with M = 1. When an appropriate M is selected, such as 32 in

this experiment, the EDID method can converge 10 times faster than the standard

EIID method.

4.2.5 Experiments

Several experiments were done to show the performance of EIID. As shown in

Fig. 4.12, a Ba-133 point source, a Na-22 point source, and a Cs-137 point source
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Figure 4.11:
Negative log likelihood of the iterations in 2000 ms, showing more details
of the early iterations.

were placed around the detector. The raw spectrum had large continuum, especially

in the low energy region. After the deconvolution in the energy-imaging integrated

space, the directional spectrum was generated, and the three isotopes were clearly

identified. The spatial distribution of the sources were also reconstructed and nor-

malized. Standard EIID and EDID gave basically the same results, but EDID was

nearly ten times faster than standard EIID.

4.3 Summary

To reconstruct with more accurate statistics, iterative reconstruction algorithms

were studied. As a natural extension of the conventional MLEM in every energy

bin, the EIID is the ultimate solution for Compton imaging in the energy-imaging

integrated space. However the speed of EIID significantly limits its usage, thus EDID
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Figure 4.12:
Top: Raw spectrum. Middle: Directional spectrum identified as different
isotopes. Bottom: Spatial distribution of different isotopes.
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has been developed in this thesis to accelerate the convergence rate. The essence of

EDID is to use the conditional probability distribution in energy space, such that the

images in high-energy bins are firstly reconstructed, and the images in low-energy

bins are gradually reconstructed, considering the possible sources in current energy

bin and in higher energy bins. The EDID can converge 10 times faster than the EIID,

and generate roughly the same images in the energy-imaging integrated space.
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CHAPTER V

3D Image Reconstruction Algorithms

The 3D space is a natural extension of the 4π spherical space in Compton imaging.

The 4π spherical space cannot distinguish the intensities in the same angular direction.

Therefore for a complicated environment, it is not sufficient to reveal the source

location only with 2D reconstruction. Thus 3D reconstruction is required to eliminate

the ambiguities. Also it is more intuitive to map sources in a 3D space to the real

space where human-beings live. So people always have great interest in 3D image

reconstruction. Although 3D Compton image reconstructions have been previously

studied [76, 77, 78, 79], there are still many misunderstandings to clarify and problems

to solve.

A single Compton event is not able to locate the source in a 3D space directly.

Hence parallax must be provided, which is the most significant difference between 3D

imaging and 4π imaging. This chapter will discuss the model of 3D imaging, solve its

major problems, and show the reconstructed results using the real data from a CZT

detector mounted on a robot.
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5.1 Model of 3D Imaging

5.1.1 Imaging Model

Usually a Cartesian coordinate system is used for a 3D space. Define the 3D

Cartesian space as P , then the continuous source distribution is

f = f(x) = f(x, y, z), (5.1)

where x is the location vector defined in P , x , y and z indicate the three dimensions

of the space P . Practically, discrete imaging space is used. Generally define the the

indices of voxels as J = {1, 2, ..., J}, where the j-th pixel has 3D volume vj and

centers at position xj. The total intensity within a voxel is defined as

f [j] =

∫
vj

f(x)dx ≈ |vj|f(xj), (5.2)

where the approximation is valid if f(x) does not change rapidly within vj, which is

usually true if |vj| is sufficiently small. The 3D space is not necessarily cuboid but

can be any arbitrary shape, as long as there are finite number of voxels and the voxels

do not intersect.

However, the cuboid 3D space with the orthogonal voxel grid is still most widely

used because of its simplicity and memory efficiency. In such case

J = Jx × Jy × Jz, (5.3)

where Jx = {1, 2, ..., Jx}, Jy = {1, 2, ..., Jy}, and Jz = {1, 2, ..., Jz}.

f [j] = f [jx, jy, jz] ≈ f(xjx , yjy , zjz)∆x∆y∆z, (5.4)
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where jx ∈ Jx, jy ∈ Jy, jz ∈ Jz, with fixed voxel dimensions ∆x, ∆y, and ∆z.

The general discrete imaging model is still

ḡ = Tf , (5.5)

where f is the length-J image vector, ḡ is the length-I expected observation vector,

and T is the I × J system matrix with each row as a Compton back-projection cone.

5.1.2 System Model

The system model of 3D imaging needs to consider the absolute location of each

interactions in one event. Compared to the 4π imaging, which only need to consider

the relative location of interactions in one event, 3D imaging requires more informa-

tion and hence more complicated. Also because the number of voxels in a 3D space

is usually much larger than the number of pixels in a 4π spherical space, 3D imaging

is more computationally intensive.

For a sufficiently small voxel far away from the detector, it is reasonable to assume

a point voxel and a point detector. Also Gaussian radius blur is assumed for the

Compton cones to simplify the analysis. The system matrix T has elements

tij = P(event i | photon from voxel j). (5.6)

Denote the distance between the voxel j and the detector as r,

tij ∝
1

r2
, (5.7)

because for a photon isotropically emitted from voxel j, the probability that the

photon will intersect with the detector is σc
4πr2 , where σc is the cross section of the

detector.
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The event i has a Compton cone with scattering angle θ. Define the angle between

the lever arm of the Compton ring and voxel-vertex line as α,

β = |α− θ|, (5.8)

where β represents the angular distance from the voxel to the Compton cone, and

tij ∝ e−
β2

2σ2 , (5.9)

which is similar to the Gaussian radius blur used in the 4π imaging, and σ is the

standard deviation of the blurring kernel, as shown in Fig. 5.1. The unnormalized

probability can be calculated as

tij =
1

r2
ij

e
−
|αij−θi|

2

2σ2
i , (5.10)

where rij and αij are determined by i and j, θi and σi are determined by i. Fig. 5.2

and Fig. 5.3 show a probability distribution of a Compton scattering event in a 3D

space. The r−2 effect is shown in Fig. 5.2, and the radius blur is shown in Fig. 5.3.

It is also possible to include the attenuation and other effects in the system model.

However, the distance parameter and the Compton cone dominate the information

containing in a Compton event, hence a simplified model is used in our research. The

more accurate model is left to study in the future.

5.1.3 Sensitivity

In many cases, multiple detectors or moving detectors are used to provide sufficient

parallax in a 3D space. In the ideal point detector model, the total sensitivity can be

calculated by the convolution between the stationary sensitivity and the integral of

detector’s position over time.
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Figure 5.1: The angular distance from the voxel to the Compton cone.

Figure 5.2:
Probability distribution of a Compton scattering event in a 3D space.
The vertex is removed to avoid extremely large value.
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Figure 5.3: A small piece of the Compton cone showing the radius blur.

For a fixed energy window, the stationary sensitivity of a point detector is

b(x) =
σcε

|x|2
, (5.11)

where σc is the cross section of the detector, and ε is the absorption efficiency of the

detector. The stationary sensitivity map looks like a ball cloud as shown in the left

of Fig. 5.4. Since the stationary sensitivity is isotropic, the FFT is used to compute

the total sensitivity quickly.

Denote the path weight of the detector d at time t is pd(x, t), then the total path

weight of all D detectors is

p(x) =
D∑
d=1

T∫
0

pd(x, t)dt, (5.12)

where the measurement starts at time 0 and ends at time T . In real measurement,

the total path weight is the 3D histogram of the detector locations in different time.
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Figure 5.4:
The stationary sensitivity (left) convolve with the total path weight (mid-
dle) and generate the total sensitivity (right).

The total sensitivity is the convolution between the stationary sensitivity and the

total path weight

s(x) = b(x) ∗ p(x), (5.13)

where the FT pairs are 
s(x)←→ S(ω)

b(x)←→ B(ω)

p(x)←→ P (ω)

, (5.14)

and

S(ω) = B(ω)× P (ω). (5.15)

FFT can be used to accelerate the computation. The convolution is shown in Fig.

5.4.

5.2 Solving 3D Imaging Problems

Theoretically 3D imaging problems and 2D imaging problems can be solved using

same methods. However, there are unique issues in 3D imaging, and they need to be
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treated carefully. First of all, since the imaging space is much larger for 3D imaging,

more events are required to provide sufficient statistics, and the reconstruction is

more computationally intensive. Secondly, serious corner artifacts may appear if the

imaging space is not selected properly.

5.2.1 Online Updating Algorithm

The 3D image reconstruction is computationally intensive, because of its extremely

large imaging space and huge number of events. However, real-time or pseudo real-

time 3D imaging is required in many scenarios. Thus the online updating algorithm

is proposed to do image reconstruction in real-time. There are two concepts in the

online updating algorithm: batching and weighting.

5.2.1.1 Batching

The observation data stream comes in with time, and more accumulated data

leads to better statistics. However, it is inefficient to wait for the data to accumulate.

Instead, reconstructions can be conducted whenever there is a new batch of data

coming in.

The algorithm has a similar essential idea as the ordered-subsets methods [75].

However, the subsets of data are not ordered by viewing angle but ordered by times-

tamps. Another difference is that traditional ordered-subsets methods use one subset

in each iteration, but the online updating algorithm uses all accumulated dataset

in each iteration to achieve as best statistics as possible. In each iteration, K sub-

iterations are done to help converge. The batching-only version of the online updating

algorithm is

Require: f (0): Non-zero initial image vector

Require: {T1,T2, ...,TN}: batches of system matrix ordered by time

for n = 1 to N do
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T = [T1;T2; ...;Tn]

for k = 1 to K do

f (n−1+ k
K

) ← MLEM(f ((n−1+ k−1
K

)),T )

end for

end for

return f (N) (Resulting image)

5.2.1.2 Weighting

In the batching-only version, older datasets are iterated more times than newer

datasets, which may cause the problem that the new data is not updated into the

image timely. Another problem is that the algorithm becomes slower and slower as

more and more data is accumulated. To solve these problems, weighting method is

introduced, which defines the life cycle and weight of each event.

The weighting factor should be a function of time and event quality. For event i,

its weighting factor wi at time t is

wi(t) = wi(t− ti, li) = wi(∆ti, li), (5.16)

where ti is the timestamp of the event i, ∆ti , t− ti, and li is the lever arm length of

the event i. As a naive approach, the lever arm length is chosen as the representation

of event quality for simplicity, and there could be more accurate ways to represent

the event quality. Typically the weighting factor should penalize the events with long

life cycles and short lever arms, as shown in Fig. 5.5. Since the weighting factor is

monotonically decreasing with ∆t, when an event gets a weighting factor 0, it can be

removed from the dataset forever.

The online updating algorithm with batching and weighting is

Require: f (0): Non-zero initial image vector
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Figure 5.5:
A possible weighting factor function. The fresher events with longer lever
arm have larger weighting factors.
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Require: {T1,T2, ...,TN}: batches of system matrix ordered by time

for n = 1 to N do

T = [T1;T2; ...;Tn]

w = [w(n− 1,T1);w(n− 2,T2); ...,w(0,Tn)]

for k = 1 to K do

f (n−1+ k
K

) ← MLEM(f ((n−1+ k−1
K

)),T ,w)

end for

end for

return f (N) (Resulting image)

5.2.2 Corner Artifacts

Corner artifacts were first observed in reconstructions in a spherical space. If the

field of view is not 4π, then the image is very likely to converge to the corners of the

imaging space, which are strong artifacts that affect the detection of real sources. The

image reconstructions in a 3D space also suffer from the corner artifacts. As shown in

Fig. 5.6, although the point source is at the center of the imaging space, the corners

of the space become hottest after several iterations, leading to an unexpected image.

An explanation for the corner artifacts in a 3D imaging space is that the detector

is out of the image space or the image space is too sparse, such that the Compton

cone is not fully represented. If the estimated ring width uncertainty is smaller than

the true ring width uncertainty, the back-projected cone may not well intersect with

the source position. When the detector is in the image space, the whole cone will

always be preserved and the weights of wrong pixels are trivial. However, when the

detector is out of the image space, the cone may have some extremely large weights

at the corners / edges of the image space. This contributes to the corner artifacts.
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Figure 5.6: Corner artifacts in a 3D imaging space.
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Figure 5.7:
Gaussian distribution with σ2 = 0.5. Left: x axis from 0 to 3. Right: x
axis from 3 to 6.

The Compton cone is blurred with a Gaussian kernel

y =
1√

2πσ2
e−

x2

2σ2 , (5.17)

where σ is the standard deviation, and

|y
′

y
| = x

σ2
, (5.18)

which means that the relative decreasing speed is faster when x goes larger, as shown

in Fig. 5.7.

Fig. 5.8 shows several Compton cones that only partially intersect with the imag-

ing space and have large values at corners and edges, contributing most to the corner

artifacts.

A simple way to avoid the corner artifacts is to extend the imaging space, such

that the detector is within it and the Compton cones are fully intersect with it. If

this is not possible, one may add penalty in the cost function and suppress the partial

Compton cones.
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Figure 5.8:
The Compton cones only partially intersect with the imaging space and
have large values at corners and edges.

5.3 Experiments Using Moving Detectors

Joint experiments were done with the group from Carnegie Mellon University. A

Polaris-H [80] detector with one 20 × 20 × 15 cm3 CZT crystal was mounted on a

Lilred robot, as shown in Fig. 7. The robot can be controlled by a joystick or do

path search autonomously. The position and orientation information is provided by

the robot, while the radiation information is provided by the CZT detector. Data

packets were received and combined by the robot in real-time, then saved for further

reconstruction while the robot is moving. Several measurements with various settings

were done, and 3D source images were reconstructed using the collected data.

Fig. 5.10 shows the reconstruction of four sources in a small room: Ba-133 (pur-

ple), Cs-137 (red), Co-60 (orange), and Na-22 (green). The path of the robot is shown

as the red curve. The room is shown as a 3D point cloud map in green. The true

source locations are marked as spheres, and the reconstructed source locations are

marked as cubes. All three sources are successfully reconstructed with no more than

10 cm uncertainty.

Fig. 5.11 shows the reconstruction of three sources in a large room. Co-60 (green)

and Na-22 (red) are successfully detected, but the Cs-137 data has too poor statistics

and is not able to reveal the source location.
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Figure 5.9: The Lilred robot with a Polaris-H mounted on its shoulder.
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Figure 5.10: Reconstruction of four sources in a small room.
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Figure 5.11: Reconstruction of three sources in a large room.
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5.4 Summary

Current work is trending to 3D image reconstruction. Compared to 4π spherical

imaging, 3D imaging has an imaging space with a huge number of voxels, and relies on

the parallax of different viewing angles to the sources, hence there are more challenges

in reconstruction speed. To implement 3D imaging in pseudo real-time, the online

updating algorithm has been proposed. By batching the incoming data the algorithm

will update the image gradually with time. By weighting the events by quality and

time, the algorithm always has a memory of previous data and is able to generate the

image in the whole measurement period. A joint experiment has shown the feasibility

and capability of 3D imaging using moving detectors.

However, there is still a lot of work to be done in 3D imaging. Current sensitivity

assumes an ideal point detector, which could be improved by integrating the attenu-

ation into the sensitivity map. The optical camera could also help by excluding some

voxels, such as air, thus reducing the size of the imaging space. In addition, it could

be very interesting to combine the source detection and imaging with the autonomous

control, plan the searching route based on known information and increase searching

efficiency.
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CHAPTER VI

UMIS Development

6.1 Introduction

The research and applications of radiation imaging require tools with more and

more capabilities. For example, in some scenarios people need extremely high recon-

struction speed to support real-time imaging, in some scenarios people attempt to

compare different reconstruction algorithms using the same raw data, and in some

scenarios people want to develop their own algorithms by adapting existing code.

Thus a well-designed imaging software is necessary.

Previously UMImaging [81] was developed as the toolkit for research, which at-

tempts to provide a framework for the analysis in a general manner that will allow

use by different detector designs and applications. However, UMImaging has a top-

down design that integrates all libraries in its main structure, which increases the

difficulty of extension and reimplementation. Also some functions in UMImaging are

over-designed such that it is very complicated to achieve fast development iteration.

To conquer these problems, University of Michigan Imaging System (UMIS) was

designed and developed. The principle is to keep the code fast, simple, reusable, and

suitable for research. Unlike UMImaging, UMIS has a bottom-up design, and focuses

on the data flow instead of the code components. To track the development history

and help collaboration, Git was used for version control. This chapter will introduce
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Figure 6.1: Code architecture of UMIS.

the architecture, libraries and kernel of the code, and discuss some reconstruction

algorithms implemented, which are followed by example usages.

6.2 Architecture Overview

The code architecture is dataflow driven, as shown in Fig. 6.1. Raw data is

passed from the detector side and turned into brewed data, reconstructed data and

image data sequentially. The whole process is controlled by the event controller,

reconstruction controller display controller, which have their own threads and form

the kernel of the program. There are also several services providing global functions.

To improve robustness, every class has its own testing class. The testing classes are

used to examine the time complexity of algorithms, the boundary conditions and the

responses to error inputs and any internal problems.

A detailed architecture is shown in Fig. 6.2. Gray cells represent classes. Anything
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under a class cell is contained by it. The table within a cell represents a subclass

derived from the base class. The keywords are explained in Table 6.1.

Keyword Explanation

thread This class has its own thread.

data A memory consuming dataset.

ptr A pointer.

cptr A constant pointer.

var A variable instance within a class.

func A function within a class.

virtual A virtual function which will be implemented by a subclass.

Table 6.1: Explanation of the keywords in Fig. 6.2.

6.3 Code Kernel

Event controller, reconstruction controller and display controller are the kernel of

the code. Each controller has its own thread and communicates with each other by

signal/slot mechanism provided by Qt. Actually each controller does not know the

existence of other controllers and information can only be passed indirectly, which is

designed to keep these controllers decoupled. Thus the code architecture is clearer.

As shown in Fig. 6.3, user commands are sent to event controller. After the event

controller brews the data, a ready signal will trigger the reconstruction controller.

When the data is reconstructed or any image settings are changed a ready signal

will trigger the display controller, then the image will be updated. Note that event

controller has full access to raw data and brewed data; reconstruction controller

has full access to reconstructed data but only read access to brewed data; display

controller has full access to image data but only read access to reconstructed data.
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Figure 6.2: Detailed code architecture of UMIS.

Figure 6.3: Signal/slot mechanism in the kernel.

113



6.3.1 Motherboard

The mother board is the entrance and carrier of the code. The motherboard is

initialized at the start of the program, then loads the options and connects all of the

controllers.

6.3.2 Event Controller

The event controller receives data via Internet or reads data from disks, then

cleans the data before sending it to the next stage.

The incoming data is first received by the event receiver. If the data comes from

Internet, the event receiver will establish the TCP/IP connection and handle any

possible errors. Each data package is processed immediately and passed to the next

stage. If the data comes from disks, the event receiver will treat the data file as one

data package, read all of them, and pass it to the next stage. If any error happens,

such as losing connection or invalid file, the event controller will stop data feeding

and send a message to the user.

The next stage is the event brewer. When the raw data is passed from the event

receiver to the event brewer, it will be parsed with the given method and turned to

brewed data. For example, some raw data only contains detector numbers and local

coordinates of events, so the event brewer needs to transfer the local coordinate system

to the global coordinate system according to the predefined geometry file. After the

event brewer, the data becomes standard format, where each event is made of one

interaction or several interactions, and each interaction has its global coordinate,

deposited energy, time, and other useful information.

Finally the data is passed to the event purifier. In some scenarios not all the data

is necessary, so only a subset of data will be used in reconstruction. The condition is

set in the option file, read by the event purifier, and is used to filter the data. Also the

event purifier will check the integrity and validity of data, remove corrupted events,
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and send a message to the user if any error occurs.

6.3.3 Reconstruction Controller

The reconstruction controller is the core of the code, which controls the recon-

struction algorithm and handles its input data and output data.

There are three layers between data and the algorithm. The first layer is the

reconstruction controller itself. It grabs the data from the event controller, instanti-

ates the output datacube, and communicates with the display controller. The second

layer is the reconstruction helper. It initializes the algorithm instance based on the

option file, coordinates the data references, and controls the algorithm. The third

layer is the algorithm. The protocol between algorithm and data is well-defined, and

the algorithm only needs to deal with its own work. The purpose of the three-layer

design is to decouple the code and increase the reusability.

6.3.4 Display Controller

The display controller reads reconstructed images from the reconstruction con-

troller and displays or prints the images to users with the given methods. It also

controls the Graphical User Interface (GUI), and sends the commands from the GUI

to the motherboard.

The GUI has been developed, tested, and integrated into the code. In the main

window, the left column shows options and selectable bins. The bottom area contains

the logs and a simple control panel. The image and the spectrum are shown as a tab.

One can add more tabs to visualize the datacube. Currently it supports spectrum,

surface view, and volume view of datacube. Options are shown at the left of the main

window, logs are shown at the bottom, and the images are shown at the center as

tabs. See Fig. 6.4 and Fig. 6.5 for examples.
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Figure 6.4:
Left: Spectrum and surface view. Right: Tilted surface view. One can
select different energy windows to show the sum of image slices.

Figure 6.5:
Left: volume view. Right: volume view with changed transparency. One
can show the datacube in 3D space and get slices in all dimensions. The
slices are shown on the right of the 3D image, or can be displayed directly
in 3D space. To see the details inside the cube or show shapes more
clearly, one can modify the alpha multiplier to change transparency.
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6.4 Data Structure

There are several major data structures used in reconstruction.

6.4.1 EventArray

The EventArray is used to keep events. The events are stored as a vector. Initially

all events are sorted by time created, and are capable to be sorted on any given

parameter as long as the parameter is sortable. Quick sort is used, which provides an

average time complexity O(n log n), where n is the number of events.

6.4.2 DenseData

Most of the reconstructions will generate an nD datacube, which has orthogonal

grid and should be stored in the DenseData. Technically the data is stored as a 1D

vector in memory, but we should be able to access data by its nD coordinate or 1D

index, as shown in Fig. 6.6. We have

index =
D−1∑
d=0

nd

d−1∏
i=1

Ni, (6.1)

where D is the number of dimensions, Ni is the number of samples in dimension i,

and nd is the coordinate in dimension d. Obviously it takes O(D) time complexity to

do this transform.

Slicing and projection are very important functions required by datacube. The-

oretically it can be done in O(m), where m is the number of values involved in the

operation, as shown in Fig. 6.7 and Fig. 6.8.

6.4.3 SparseData

In many cases we need to store data sparsely. In SparseData, data points are

stored as coordinate-value pairs (x, y, z, ...)→ v. SparseData can be easily converted
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Figure 6.6:
Left: Data is stored as a 1D vector in memory, which can be accessed
by its index. Right: Data is represented as an nD cube, which can be
accessed by its coordinate.

Figure 6.7:
A data slice or a data block can be taken from a datacube, then we can
project to a low-dimensional space.

Figure 6.8:
Projection to 1D or 2D space is widely used and optimized in the code.
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from DenseData, but not reverse. Just like what we do in EventArray, which can be

viewed as a special SparseData, we can quick sort the discrete points in SparseData

on a given dimension with an average time complexity O(n log n). SparseData can

also be sliced or projected in O(n).

6.4.4 Data Organization

In UMIS, the whole dataset is divided into several packages on time series. This

design is used because the incoming events are delivered as pulse packages. In each

data package, a bin structure is defined to collect and bin events. Note that this bin

structure is only based on the parameters before reconstruction. Any reconstruction

is performed within one bin. In this bin, events can be sorted by a given parameter,

and a datacube can be generated by a given reconstruction algorithm. A datacube is

a multi-dimensional array. Finally, the binned datacubes are provided as the recon-

structed result. Fig. 6.9 shows the diagram of the data organization.

6.5 Arguments and Options

A command line arguments parser was implemented, which is helpful in running

a script. The usage is shown in Table 6.2.

-h --help Displays help.

-v --version Displays version information.

-a --auto Runs automatically.

-o --option <file-path> Assigns <file-path> as the option file.

-d --default Assigns DefaultOptions.json as the option file.

Table 6.2: Usage of UMIS under command line.

If the option file is not assigned, an option selector dialog will be opened to help
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Figure 6.9: Diagram of the data organization.
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Figure 6.10:
Left: Annotated header file of a class. Right: generated documentation
for this class in HTML format. PDF format is also available.

the user select an option file. Option files use JSON format, describing most of the

options used in the reconstruction. Refer to DefaultOptions.json contained in the

source code of UMIS for instance.

6.6 Documentation

Most of the classes have been annotated and documented through Doxygen, which

is the de facto standard tool for generating documentation from annotated C++

sources, as shown in Fig. 6.10.
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CHAPTER VII

Summary and Future Work

7.1 Summary

3D position-sensitive large-volume pixelated semiconductor detectors demonstrated

advantages in radiation imaging over other systems, including good energy resolution,

sub-pixel spatial resolution, 4π field of view, and portability while at room temper-

ature. Thus better image reconstruction algorithms are requested to make full use

of the information provided by detector systems. This dissertation has presented a

number of new image reconstruction algorithms that improve the combined perfor-

mance of information efficiency and reconstruction speed. Also, software has been

designed and developed to help research and implement the algorithms.

The essence of image reconstruction is to solve the inverse problem: given the

detected interactions, how can the image parameters be generated accurately, effec-

tively, and efficiently? The inverse problem needs a predefined imaging space, which

should be carefully selected depending on the problem we want to solve. In addition,

a reasonable system model is necessary for the inverse problem, which should neither

be too complicated to be efficient, nor too simple to be practical.

Since people always need real-time imaging, direct reconstruction algorithms were

studied. Although SBP is quite simple to implement and robust to noise, its poor

resolution limits its usage in many scenarios, making FBP a better choice than SBP.
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Due to the detector non-isotropic geometry, the conventional FBP has a shift-variant

PSF, leading to a non-isotropic resolution. Therefore, I developed the adjusted FBP,

which weights the rings based on the geometry and corrects the PSF to be shift-

invariant. Another challenge for FBP is the selection of the denoising parameter. As

the FBP uses Gaussian detection to approximate Poisson detection, a denoising filter

should be applied whose parameter is related to the image statistics. Therefore, the

adaptive FBP has been developed in this thesis, which considers the current statistics

of the image and selects the Wiener parameter adaptively. These modifications make

FBP more applicable in real measurements.

To reconstruct with more accurate statistics, iterative reconstruction algorithms

were studied. As a natural extension of the conventional MLEM in every energy

bin, the EIID is the ultimate solution for Compton imaging in the energy-imaging

integrated space. However the speed of EIID significantly limits its usage, thus EDID

has been developed in this thesis to accelerate the convergence rate. The essence of

EDID is to use the conditional probability distribution in energy space, such that the

images in high-energy bins are firstly reconstructed, and the images in low-energy

bins are gradually reconstructed, considering the possible sources in current energy

bin and in higher energy bins. The EDID can converge 10 times faster than the EIID,

and generate roughly the same images in the energy-imaging integrated space.

Current work is trending to 3D image reconstruction. Compared to 4π spherical

imaging, 3D imaging has an imaging space with a huge number of voxels, and relies on

the parallax of different viewing angles to the sources, hence there are more challenges

in reconstruction speed. To implement 3D imaging in pseudo real-time, the online

updating algorithm has been proposed. By batching the incoming data the algorithm

will update the image gradually with time. By weighting the events by quality and

time, the algorithm always has a memory of previous data and is able to generate the

image in the whole measurement period. A joint experiment has shown the feasibility
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and capability of 3D imaging using moving detectors.

To implement the algorithms and help research, UMIS has been designed and

developed. The principle of design is to keep the code fast, simple, reusable, and

suitable for research. The fundamental libraries have been made as decoupled as

possible. The structure of the code is designed to focus on the data stream rather

than the code itself, so that people have more control on the data storing and pro-

cessing. The kernel of the code has three controllers: event controller, reconstruction

controller, and display controller. In event controller, data is received and cleaned. In

reconstruction controller, the events are turned into image data using an algorithm,

which is easy to develop and plug into the code. In display controller, the image

data is printed to file or displayed in the GUI. With the help of UMIS, the research

of image reconstruction algorithms is accelerated, and the usage of the algorithms is

greatly simplified.

7.2 Future Work

There are several topics not addressed in this work, and future work may make

incremental improvements in the combined performance of information efficiency and

reconstruction speed.

7.2.1 Model Improvements

Many of the algorithms use a simplified system model to conduct mathematical

analysis or achieve faster reconstruction speed, at a sacrifice of model accuracy. One

possible direction of future work is to model more system parameters, including ge-

ometry attenuation, electronics, and environment, while still preserving a reasonable

reconstruction speed.
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7.2.2 Filtered Back-Projection

Currently the adaptive FBP focuses on the hottest source in the field of view, thus

the denoising parameter may not be optimized for the weaker sources. A possible way

to solve the problem is to do filtering using different parameters in different spatial

regions.

7.2.3 3D Imaging

Obviously there is a lot of work to be done in 3D imaging. Current sensitivity

assumes an ideal point detector, which could be improved by integrating the attenu-

ation into the sensitivity map. The optical camera could also help by excluding some

voxels, such as air, thus reducing the size of the imaging space. In addition, it could

be very interesting to combine the source detection and imaging with the autonomous

control, plan the searching route based on known information and increase searching

efficiency.

7.2.4 UMIS

The development of UMIS is not yet finished. There is much space for code

optimization and refactoring. Based on the code structure, more algorithms could

be coded into the system, and more plotting methods could be developed. Since the

code is designed to be usable under the command line interface, more complicated

script can be made to do image reconstruction automatically and continuously. In

fact, UMIS can be viewed as a combination of library, engine, and GUI, where the

code can be easily reused and generate more productivities.
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