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Abstract—Filtered backprojection is an image reconstruction
technique for Compton imaging that provides reasonably high
resolution at much lower computational costs when compared to
iterative methods. This work applies a Wiener filter that has been
derived for spherical harmonics on Compton imaging using the
OrionUM pixelated CdZnTe imaging-spectrometer. To regularize
the filter, an investigation is made into the power spectral density
of the signal and noise to develop an appropriate spectral signal-
to-noise ratio model for the restoration process. Experimental
measurements were conducted with two 228Th sources placed
30◦ apart. The resulting filtered image of the two sources have
an average full-width-at-half-maximum (FWHM) of 9.8◦ or 7.5◦

when using a mean squared error and structural similarity
optimization approach respectively; an improvement from the
29.0◦ FWHM image when using simple backprojection.

Index Terms—Gamma-ray imaging, filtered backprojection,
spherical harmonics, Wiener filter

I. INTRODUCTION

Compton imaging is a technique for estimating the direc-
tional origin of incoming gamma rays and has found applica-
tions in many fields such as astronomy [1] and medicine [2].
There are many image reconstruction techniques, including
both iterative and non-iterative methods. Filtered backprojection
offers an alternate image reconstruction technique to simple
backprojection and is advantageous in scenarios where high
resolution is desired while remaining computationally cheap
when compared to iterative techniques such as maximum
likelihood expectation-maximization [3].

Various approaches have been developed to filter Compton
images. Cree and Bones [4] derived the first inversion formula
for the conical Radon transform and has been followed by
other formulas with various assumptions of cone sets and
detector geometry [5]–[7]. Basko et al. developed an analytical
inversion method to reconstruct planar projections from cone-
surfaces via spherical harmonic expansions which can then
be further filtered [8]. Parra [9] then extended the model
to use all possible scattering angles with the Klein-Nishina
cross-section taken into account. That approach, however, did
not consider that the Compton camera is unlikely to detect
the entire set of scatter angles. Therefore, Parra’s technique
was augmented by Tomitani and Hirasawa [10] to limit the
potential angles used in the analytical point spread function
(PSF). In the aforementioned citations, the filtering process was
accomplished via a truncated inverse filter approach. Haefner et
al. [11] introduced a filtering approach that places a 4π sphere
in a 3D Cartesian space and used 3D Radon transforms to

complete the filtering process with a Tikhonov regularization
method.

Chu et al. applied the Wiener filter on backprojected rings
that were weighted by the probability of them occurring [3]. The
weighting scheme was applied to reduce the effects of the shift-
variant point spread function (PSF). We build on that work as
they did not account for proper spherical harmonic properties in
the filter design. Next, we model a power spectral density of the
signal and noise to regularize the process. Section II overviews
the OrionUM CdZnTe imaging system and Section III discusses
the general imaging model. Section IV derives the Wiener
filter for spherical harmonics while Section V explores the
behavior of the signal-to-noise ratio that is used to regularize
the filter. Section VI describes how the simulated PSF model
was developed and Section VII applies the proposed technique
on experimental data using a 228Th source.

II. THE UNIVERSITY OF MICHIGAN ORIONUM 4π
COMPTON IMAGER

The current University of Michigan CdZnTe platform is
named OrionUM and is composed of nine 2 × 2 × 1.5 cm3

CdZnTe crystals arranged in a 3×3×1 array [12]. Each crystal
has a planar cathode and an 11 × 11 pixelated anode array
with a 1.72 mm pixel pitch. The depth-of-interaction can be
estimated via the cathode-to-anode ratio, or drift time. This
allows for the 3-D position reconstruction of each interaction.

This study uses the 3 MeV dynamic range mode that has a
single-pixel resolution better than 0.4% FWHM at 662 keV,
which is a degradation from the 0.35% when using the 700 keV
dynamic range.

Fig. 1 illustrates the coordinate system along with the
detector layout. The detector’s isocenter, which is normal to
the cathode, is located at (θ, φ) = (90◦, 90◦).

III. INTRODUCTION TO FILTERED BACKPROJECTION

A general linear model for Compton imaging measurements
can be made as

E [o] = Tf , (1)

where f is the unknown true source vector of length J that
is to be estimated, E [o] is the expected observation vector of
length I , and T is an I × J sized system matrix. For ‘binned
mode’ data, I is the number of detection bins.
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Fig. 1: Diagram of the 3 × 3 × 1 crystal OrionUM system.
The normal of the cathode is pointed towards (90◦, 90◦), or
ŷ. The diagram depicts a source with a yellow star located
at (θ, φ) with a Compton cone (red dotted line) and Compton
ring (solid purple ellipse) projected onto it. The gamma ray is
emitted from the source, scatters in a location labeled with a
‘S’ red dot, and then absorbed in the location labeled by the
‘A’ red dot. The green squiggly line portrays the gamma-ray’s
trajectory. The blue dashed arrow represents the lever arm and
is a vector from ‘A’ to ‘S’. The spacing between each crystal
is 2.5 cm center-to-center from the neighbouring crystal.

A. Simple Backprojection

The simple backprojection (SBP) process can be modeled
as

f̂SBP = T′o. (2)

The apostrophe ′ represents the transpose of the matrix. We are
interested in analyzing the PSF of this method by examining
its expectation

E
[
fSBP

]
= T′E [o] = T′Tf = Bf , (3)

where B = T′T and represents the J × J matrix of point
spread functions. In B, the jth column is the PSF for a source
located in the jth image pixel. However, in most imaging
systems including OrionUM, T is not an orthogonal matrix
yielding a biased SBP estimator as T′T = B 6= I and does not
provide a shift-invariant PSF, where I represents an identity
matrix. Section VI discusses the construction of B.

B. Filtered Backprojection

Filtered backprojection, or FBP, is designed to recover the
true signal by removing the blur and noise introduced by the
measurement system [13]. An example is the inverse filter,

used in Compton imaging by [9], [14], [15]. Using the model
described in (2), the SBP image can be filtered as

f̂FBP = B−1f̂SBP. (4)

We analyze the PSF of the filtered image with the expectation

E
[
fFBP] = B−1E

[
fSBP] = B−1T′Tf = f . (5)

The structure of T implies that each row is a Compton cone
in the image space. Therefore, T is a very large matrix as
there is a huge number of possible interaction permutations a
gamma ray can undertake while being attenuated in the detector.
Therefore, we result to use list-mode reconstruction techniques
to construct the observation matrix.

In practice, filtering with B−1 could amplify noise when B
has very small values. Therefore, an advanced filter is required
to perform a more practical reconstruction. This work uses the
Weiner filter, which is designed to minimize the mean square
error (MSE) during the restoration process [16].

IV. FILTERED BACKPROJECTION USING A SPHERICAL
HARMONIC WIENER FILTER

Spherical harmonics (SH) can be used to define a function
f(θ, φ) = f(Ω) on a 4π spherical surface using a set of basis
functions and therefore present a natural choice with which to
perform the filtering processes for far-field Compton Imaging.
The spherical harmonics Y ml (Ω) are a function of degree l and
order m. For each degree, there are 2l + 1 orders with range
−l ≤ m ≤ l. The following represents an orthonormalized SH
function:

Y ml (Ω) =

√
(2l + 1)

4π
· (l −m)!

(l +m)!
Pml (cos θ)eimφ. (6)

There are three main components to the SH. First, the square
root term represents the normalization element. This study uses
the orthonormalized SH such that 〈Y m′

l′ |Y ml 〉 = δl−l′δm−m′ ,
where δl−l′ is a Kronecker delta. The second component,
Pml (cos θ), is the associated Legendre polynomials [17]. The
last component is a complex exponential. There are many
different normalizations [18], each with different properties.

Similar to the Fourier series, a transform could be made
from the spherical function space to spectral space with

Fml =

∫
Ω

dΩf(Ω)Y m∗l (Ω), (7)

where Y m∗l represents the complex conjugate of Y ml . The
inverse transform is defined by

f(Ω) =

∞∑
l=0

l∑
m=−l

Fml Y
m
l (Ω). (8)

A. Notes on Spherical Harmonics

Convolution (~) in spherical space differs from that in
Fourier space [19]. First, the kernel (k(Ω)) in the convolution
must be circularly symmetric about the North Pole (θ = 0).



Next, the spherical harmonic transform (SHT) of the convolu-
tion is

SHT {f(Ω) ~ k(Ω)} = 2π

√
4π

2l + 1
Fml K

0
l , (9)

where capital letters describe the SHT of spherical functions
presented in lower case. Note the loss of order for (K0

l ) which
is the SHT {k(Ω)} = Km

l with m = 0. Appendix A presents
a further discussion on convolution in spherical harmonics and
expands on the circularly symmetric convolution kernel.

Spherical harmonics are also Hermitian functions with the
following property [20]:

Y −ml = (−1)l(Y ml )∗. (10)

Therefore, only m ≥ 0 SH coefficients are presented in this
study. The toolbox utilized to complete the SH transforms is
the SHTns library [21].

B. Spherical Harmonic Wiener Filtering

The objective of the Wiener filter (g) is to estimate the
original signal f(Ω) by a linear convolution method that
minimizes the mean squared error:

MSE = E
[∣∣∣f(Ω)− f̂FBP(Ω))

∣∣∣2] , (11)

where the estimated signal is modeled as f̂FBP(Ω) = (f̂SBP ~
g)(Ω). The blurred observed image is modeled as f̂SBP =
(f ~ h)(Ω) + n(Ω), with h denoting the PSF and n is the
additive noise. Next, Parseval’s Theorem (25) is used to convert
the estimated FBP image to spherical harmonics:

F̂FBP
l,m = 2π

√
4π

2l + 1
GlF̂

SBP
l,m , (12)

where F̂ SBP
l,m and F̂FBP

l,m are the SHT of the image estimates
using simple and filtered backprojection techniques respectively,
and Gl is the SHT of the Wiener filter that deblurrs the simple
backprojection image with the following form:

Gl =
H∗l

2(2π)3

2l+1 |Hl|2 +R−1
l

;R−1
l =

NPSD
l

SPSD
l

, (13)

where SPSD
l and NPSD

l denote the power spectral density as a
function of l and Hl denotes the SHT of the PSF. Next, R−1

l

represents a regularizer that is related to the inverse of the
spectral-signal to spectral-noise ratio, which Section V further
discusses.

Note the 2(2π)3/(2l + 1) factor in the denominator that
represents the main difference between the filter derived for
Fourier space and spherical harmonics. Appendix B derives the
spherical harmonics Wiener filter while Appendix C discusses
Parseval’s theorem.

V. MODELING OF THE SIGNAL TO NOISE RATIO
REGULARIZER

The regularizer in the Wiener filter is often referred to as the
inverse of the signal to noise ratio (SNR). It is a function of the
object being imaged and the characteristics of the environment
and system. In this study, it represents the inverse ratio of the
power spectral density (PSD) of the signal SPSD

l and noise
NPSD
l , modeled as:

SPSD
l = Ql

l∑
m=−l

|Fml |2; NPSD
l = Ql

l∑
m=−l

|Nm
l |2, (14)

where Ql represents the inner product of the spherical harmon-
ics (1 in this study). Note that there are multiple definitions
of the PSD in spherical harmonics. Liu et al. [22] include a
1/(2l + 1) factor to normalize the summation over all orders
m, while others do not [18]. The definition in (14) arises from
convenience when deriving the Wiener filter (see Appendix B).
This section details the model chosen for the power spectra to
formulate the regularizer.

A. Modeling of the Signal Power Spectral Density (S
PSD
l )

From (14), the power spectrum is related to the object being
measured, f(Ω). This spectrum could be modeled after the
true object if prior information is available, but presents a
challenge when the source is unknown. Therefore, several
spectral responses were calculated for Kronecker delta impulses
at different locations. Fig. 2 plots them and presents a nearly
linear trend as a function of degree l. We therefore model the
PSD of the signal to be linear as follows:

SPSD
l = csl, (15)

where cs is a constant that is a function of the source intensity
and distribution. Although the plots only represent power
spectral densities of point sources, they can be applied to
more complex sources as spherical harmonics exhibit additive
linearity property [23]. Therefore, we model the PSD of the
signal as a linear combination of those linear PSDs.

B. Modeling of the Noise Power Spectral Density (N
PSD
l )

The noise in this study is referred to as additive noise present
in the observed signal f̂SBP(Ω) and we model it as ‘white’. In
SH, there exist several interpretations of white noise. In some
geophysics applications, a signal is white if the average power
is constant for every degree of freedom (l,m) [24]. There,
Nm
l = σ, where σ is a constant representative of noise in

the system and results in a power spectrum that is scaled by
(2l + 1). Another interpretation [25] is that the spectral power
is constant in l, and we choose to model the noise as such in
this study:

NPSD
l = σ. (16)



Fig. 2: Power spectra of delta impulses located in different
positions on the sphere all exhibiting a nearly linear trend with
degree l. Note that only m ≥ 0 are considered here.

C. Ratio of the Signal and Noise Power Spectral Densities

In summary, the signal power spectrum is assumed to be a
linear function of l in this study whereas the noise is assumed
to be white and constant through l. Taking the ratio between
the two assumptions gives:

R−1
l =

NPSD
l

SPSD
l

=
σ

csl
=
c

l
, (17)

where c is a constant determined via an optimization process
described in Sec. VII. The implications of (17) entail that the
filter will attenuate the signal more heavily for larger degrees
l.

VI. POINT SPREAD FUNCTION MODEL

The point spread function (PSF) is the image response to
a given point source. There exist several techniques to model
the PSF [3], [9], [10], [14], [26]. This study models the PSF
from a Geant4 simulation [27]. A 2.6 MeV point source was
modeled in the North Pole of a single 2× 2× 2 cm3 crystal,
which was chosen to reduce the effects of the shift-variant PSF.
Fig. 3 presents the reconstructed simple backprojection image.
As noted before, we assume that the PSF is shift-invariant even
though the OrionUM does not have that property.

Fig. 4 shows a SHT of the SBP image and that it is mainly
composed of zonal spherical harmonics (SH with m = 0). Due
to the nature of spherical convolution, where the convolution
kernel is required to be circularly symmetric about the North
Pole, we model the PSF with only zonal spherical harmonics.
This function is then stored in memory and is used during
the filtering process. In principle, the modeled PSF can also
be a function of energy to account for the different physical
processes in different energies.

VII. RESULTS FROM APPLYING THE FILTER

This section presents results from an experimental measure-
ment using the OrionUM detector system and a 20 µCi 228Th

Fig. 3: Simple backprojection image of a simulated 2.6 MeV
point source located at the North Pole of a single 2×2×2 cm3

crystal. This image is used as the PSF model in the filtering
process.

Fig. 4: Spherical harmonic transform of the simple backpro-
jection image for a source at the North pole that is presented
in Fig. 3. Note that the most significant coefficients are zonal
and only the first 30 degrees are presented.

source, that emits a 2.6 MeV gamma ray. The experiment
involved placing the same source 85 cm away from the iso-
center and offset 22.8 cm from it at two different times, as two
sources of equal intensity were not available. This implies
that there is a 30◦ separation between them when placed
at (75◦, 90◦) and (105◦, 90◦). Each measurement location
culminated in a 6 day measurement, and the two data sets
were concatenated to emulate a two source setup.

Fig. 5 presents a simple backprojection using energies
between 2.55 − 2.69 MeV and utilized only two and three
pixel events. Side-neighbouring events were removed and
events with an opening angle less than 50◦ were cut as they
might represent pair-production, charge sharing, or events with
Bremsstrahlung X-rays [28]. Composed of 1.24× 105 events,



Fig. 5: Simple backprojection of two 228Th check sources
placed 15◦ above and below the isocenter of the detector.

Fig. 6: Spherical harmonic transform of Fig. 5. Note that the
l = 0 SH is removed from this plot as it is the ‘breathing’
harmonic and represents a DC offset.

the average FWHM of the SBP image is about 29.0◦, as
calculated via a double Gaussian fit of the bi-modal distribution
when considering φ = 90◦±1. The averaged FWHM is referred
to as the mean FWHM of each of the two sources.

A. Filtered Backprojection

When applying the Wiener filter in the spectral space, there
is an associated regularizer that is tied to the signal-to-noise
ratio of the measurement. In this study, the optimized parameter
(c from (15)) is identified by the value that provides the
best MSE or structural similarity (SSIM) [29]. The SSIM
image metric was applied as an index to measure the structural
similarity of two images (the estimated and true image) with
the addition of perception-based metrics by accounting for pixel
inter-dependencies [29]. The parameter c is iterated through
and the image metrics are calculated with a synthetic reference
where two Kronecker deltas are modeled at each of the source
locations.

Fig. 7: Image metrics associated with the filtering process
displaying the (a) full-width-at-half-maximum (FWHM) (b)
mean squared error (MSE) and (c) structural similarity (SSIM)
for different 1/c values.

Fig. 7 presents the image metrics associated with the
reconstructed images. The x-axis in the plots is associated
with the inverse of the slope parameter (1/c). The FWHM
plot, which is the average of the two peaks calculated via
geometric interpolation, presents the resolution improving with
larger (1/c) and plateauing to around 7.5◦.

With lessened regularization, the Wiener filter will percolate
the spectra at larger degrees and produce a high-frequency
noise. Therefore, additional image metrics were considered,
such as the mean squared error that has optimized the filter
with a 1/c = 3.3×105 to result in a FWHM of 7.5◦. The SSIM
index, which takes additional metrics into account to quantify
structural patterns, selects a parameter of 1/c = 7, 000 and
results in a FWHM of 9.8◦. Table I summarizes the different
image metrics calculated for each optimization technique.

Fig. 8 plots the SSIM and MSE optimized images while
Fig. 9 plots the power spectral densities of the resulting images.
As SSIM takes structured noise into account, it is perhaps
more conservative in the filtering process, which is visible
when comparing Fig. 8a and b. The MSE optimized image
yields more ringing structures emanating and surrounding the
two sources. The MSE optimized image, however, produces
a higher resolution image, with an average FWHM of 7.5◦.
Fig. 10 presents the SH coefficients of the filtered image when
using the SSIM maximization criteria.

TABLE I: Image metric results from the two source experiment.

Technique 1/c FWHM◦ MSE ×10−5 SSIM
SBP ∼ 29.0 3.14 0.9909

SSIM (FBP) 7,000 9.8 3.06 0.9979
MSE (FBP) 339,100 7.5 3.04 0.9976



Fig. 8: Filtered backprojection images as optimized using the
(a) SSIM and (b) MSE criteria.

Fig. 9: Power spectral density of the simple backprojection and
filtered backprojection optimized with the different optimization
criteria.

Fig. 10: Spherical harmonic coefficients of a filtered backpro-
jection image using the SSIM maximization criteria.

VIII. DISCUSSION

A. Shift Variant Point Spread Function

This work does not address issues arising from the shift-
variant nature of the point spread function, a property that the
Wiener filter cannot accommodate. Moreover, the convolution
process in spherical harmonics requires a circularly symmetric
convolution kernel. However, the OrionUM system, and perhaps
other imagers, experience local shift-invariance. So sources near
a localized region, especially near the iso-center of the detector,
do not experience great PSF deformation. Fig. 8 shows this
when the sources are 15◦ off the isocenter as the reconstructed
sources are very circular.

Table II index the FWHM values associated with the azimuth
and the altitude of sources located at various locations using
simulated 2.6 MeV data. This demonstrates the shift-variant
nature of the OrionUM detector. The ‘acceptability’ of using
the shift-invariant assumption should be based on the user’s
desired tolerance level.

TABLE II: Azimuth and altitude FWHM characteristics of SBP
images for sources at different locations in the image space.
This demonstrates the shift-variant nature of OrionUM’s PSF.

Source Location θ FWHM◦ φ FWHM◦

(90◦, 90◦) 20.2 20.1
(90◦, 135◦) 19.5 23.6
(90◦, 180◦) 17.4 30.9

B. Future Work for More Complex Sources

The proposed filter is designed to provide the minimized
mean squared error of the signal. Since FBP is a linear
process, we do not expect results to be fiercely different for
extended sources. If different counting statistics were to be
used, the inverse SNR regularizer should scale appropriately.



Adaptive parameters could be developed that models the
counting statistics that will select the optimized regularization
parameters.

If there were to be multiple sources in the field of view with
different intensities, the filter will attempt to reconstruct the
minimized mean squared error of all the sources. However,
if one wishes to develop a locally optimized image for a
single source, then a more adaptive filter may be desired. One
could also achieve this by reconstructing images on partial
spheres resulting in interesting future work on partial sphere
convolutions.

Further investigation is required to model actual noise
characteristics of the imager and its Poisson nature as it may
not be white. Finally, all the analysis in this work was done for
a stationary camera. One should give careful consideration to
the coordinates should the work be applied to a mobile camera.

IX. CONCLUSION

This work applies a Wiener filter that was derived for
spherical harmonics in Compton imaging on the OrionUM
pixelated CdZnTe detector. In the process, the power spectral
densities of the signal and noise were modeled to regularize
the filter during the reconstruction process. Experimental
measurements using two 228Th sources placed 30◦ apart
resulted in a filtered image with an average FWHM resolution
of 9.8◦ and 7.5◦ when using an MSE and SSIM optimization
approach respectively. This is down from the 29.0◦ FWHM
when using simple backprojection.

APPENDIX A
ADDITIONAL NOTES ON CONVOLUTION IN SPHERICAL

HARMONICS

Convolution is a mathematical operation that modifies a
function with a kernel to express the amount of overlap between
the two [30]. Given by the ‘Convolution Theorem’, the Fourier
transform of the convolution of two functions in the time or
Euclidean domain is simply the product of their respective
Fourier transforms [23].

The comparable SH convolution for functions on the two-
dimensional sphere differs from that in Euclidean space. It
takes the form

SHT {f(Ω) ~ k(Ω)} = 2π

√
4π

2l + 1
Fml K

0
l , (18)

where (~) represents the convolution operator, f(Ω) and k(Ω)
represent the function and convolution kernel on the sphere
whereas the capital letters reflect their spherical harmonic
transform (SHT). The major difference is the additional term
that is a function of order l and the fact that the kernel is reduced
to only zonal components K0

l . Note that the convolution in
(18) is for orthonormalized SH.

A. Invalidity of the Standard Convolution Theorem in Spherical
Harmonics

The first difference between the Fourier and SH case is the
2π
√

4π/(2l + 1) term which originates from the Funk-Hecke

theorem [20], [31]. This implies that the standard Convolution
Theorem does not apply in SH:

(f ~ k)(Ω) 6= SHT−1 {SHT {f(Ω)} · SHT {k(Ω)}} . (19)

B. Circular Symmetric Convolution Kernel (K0
l )

In (18), the kernel (k(Ω)) loses all m 6= 0 components
and becomes ‘zonal’ (K0

l ). A function composed of only
zonal spherical harmonics is circularly symmetric about the
North Pole [32]. This symmetry can be seen as a surface of
revolution, where a function is traced out in the intensity-
θ plane and rotated about the ẑ-axis/North Pole over all φ.
Therefore, latitudinal lines represent iso-lines. If the kernel k(Ω)
is not circularly symmetric, such convolution would yield a
poor result. In this work, the kernel is the Wiener filter, Gl
in (12).

Fig. 3 presents an example of a near circularly invariant
function by projecting the image of a source placed in the
North Pole. Fig. 4 presents the spherical harmonics transform
of Fig. 3 and is mainly composed of zonal spherical harmonics
with minimal influence from m 6= 0 spherical harmonics.

The reduction to a zonal kernel implies that convolution
in SH is not commutative (f(Ω) ~ k(Ω) 6= k(Ω) ~ f(Ω)).
Therefore, an assumption must be made that one of the
elements is zonal and circular symmetric over the North Pole.
A derivation of the spherical harmonic convolution theorem is
available in Theorem 2 of Driscoll and Healy [19].

APPENDIX B
DERIVATION OF THE WIENER FILTER FOR THE SPHERICAL

HARMONIC CASE

This section derives the Wiener Filter [16] for deconvolution
in spherical harmonic space. We begin with the following
definitions:

f̂SBP = (f ~ h)(Ω) + n(Ω),

f̂FBP(Ω) = (f̂SBP ~ g)(Ω),
(20)

where f(Ω) is the object being imaged, f̂SBP and f̂FBP are
the simple backprojection and filtered estimates, h(Ω) is the
blurring impulse function, and n(Ω) is the additive noise. The
goal is to recover the signal via deconvolution with filter g(Ω).
The convolutions are conducted such that the convolution kernel
is the Wiener filter.

Convolution in spherical harmonics can be accomplished as:

SHT {f(Ω) ~ h(Ω)} = MlF
m
l H

0
l . (21)

The Ml coefficient for an orthonormalized SH is [19]:

Ml = 2π

√
4π

2l + 1
. (22)

Therefore, the SHT of (20) is:

F̂ SBP
l,m = MlHlF

m
l +Nm

l ,

F̂FBP
l,m = MlGlF

SBP
l,m

= MlGl [MlHlF
m
l +Nm

l ] .

(23)



The objective of the Wiener filter is (F̂FBP
l,m ) to estimate the

original signal (Fml ) with a filter that minimizes the mean
squared error:

MSE = E
[∣∣∣f(Ω)− f̂FBP(Ω))

∣∣∣2] , (24)

Next, we utilize Parseval’s Theorem [33] in SH [34],∫
Ω

|f(Ω)|2 dΩ =

∞∑
l=0

Ql

l∑
m=−l

|Fml |
2
, (25)

where Ql is a factor that is dependent on the normalization of
the spherical harmonics. Appendix C derives (25).

In the following transform of the MSE, the l subscript is
removed for all the variables that do not have an order m
dependence, and F̂FBP

l,m is shortened to F̂ml . The MSE in terms
of (l,m) is:

=

∞∑
l=0

[
Ql

l∑
m=−l

∣∣∣Fml − F̂ml ∣∣∣2
]

=

∞∑
l=0

[
Ql

l∑
m=−l

|Fml |2 − Fml F̂m∗l − Fm∗l F̂ml + |F̂ml |2
]
,

plugging in the definition for F̂FBP
l,m from (23), we continue

with

=

∞∑
l=0

[
Ql

l∑
m=−l

|Fml |2 − Fml
[
M2GHFml +MGNm

l

]∗
−Fm∗l

[
M2GHFml +MGNm

l

]
+ |M2GHFml |2

+MGHFml [MGNm
l ]∗ + [MGHFml ]∗MGNm

l

+ |MGNm
l |2

]
.

We assume that the noise is independent of the signal,

E [Fml N
m∗
l ] = E [Fm∗l Nm

l ] = 0,

and continue with the MSE derivation:

=

∞∑
l=0

[
Ql

l∑
m=−l

|Fml |2 − Fml
[
M2GHFml

]∗
− Fm∗l

[
M2GHFml

]
+ |M2GHFml |2 + |MGNm

l |2
]
.

Let SPSD
l = Ql

∑l
m=−l |Fml |2 and NPSD

l =

Ql
∑l
m=−l |Nm

l |2 represent the power spectrum for the
signal and noise, respectively. We remind ourselves that the
objective of the Wiener filter is to minimize the MSE. In this
case, we will want to derive Gl such that it minimizes the
MSE for a given l. As several variables might be complex,
including Gl, define the complex function Gl = Grl + iGil and

take the derivative of the MSE derivation with respect to the
real and complex parts and set them equal to zero:

Grl =
SPSD
l Re {H}

M2H2Sl + NPSD
l

,

Gil = − SPSD
l Im {H}

M2H2Sl + NPSD
l

.

We therefore can solve for the final Wiener filter in spherical
harmonics by adding the real and complex components:

Gl =
H∗l

2(2π)3

2l+1 |Hl|2 +R−1
l

, (26)

with R−1
l =

NPSD
l

SPSD
l

. The filtered image is therefore:

F̂FBP
l,m = 2π

√
4π

2l + 1
GlF̂

SBP
l,m

= 2π

√
4π

2l + 1

H∗l
2(2π)3

2l+1 |Hl|2 +R−1
l

F̂ SBP
l,m .

(27)

APPENDIX C
DERIVATION OF THE PARSEVAL’S THEOREM IN THE

SPHERICAL HARMONIC CASE

Parseval’s theorem slightly differs for SH and the chosen
normalization. Let us start with the integral of the square of
the function: ∫

Ω

|f(Ω)|2 dΩ. (28)

We use (8) for the following derivation:∫
Ω

|f(Ω)|2 dΩ =

∫
Ω

∣∣∣∣∣
∞∑
l=0

l∑
m=−l

Fml Y
m
l (Ω)

∣∣∣∣∣
2

dΩ

=

∫
Ω

∣∣∣∣∣
∞∑
l=0

F−ll Y −ll + F−l+1
l Y −l+1

l

+ F−l+2
l Y −l+2

l + · · ·+ F ll Y
l
l

∣∣∣∣∣
2

dΩ

=

∫
Ω

∣∣F 0
0 Y

0
0 + F−1

1 Y −1
1 + F 0

1 Y
0
1

+ F 1
1 Y

1
1 + · · ·+ F ll Y

l
l

∣∣∣∣∣
2

dΩ.

Next, we expand the quadratic and remind ourselves of the
following orthogonality identity∫

Ω

Y m
′∗

l′ (Ω)Y ml (Ω)dΩ = Qlδl−l′δm−m′ , (29)

where Ql is a factor that depends on the chosen SH normal-
ization. Therefore, all elements l′ 6= l and m′ 6= m will be
zeroed (as they are all orthogonal). All we are left with is:

=
[
Ql
∣∣F 0

0

∣∣2 +Ql
∣∣F−1

1

∣∣2 +Ql
∣∣F 0

1

∣∣2 +Ql
∣∣F 1

1

∣∣2 + · · ·
]

=

∞∑
l=0

Ql

l∑
m=−l

|Fml |
2
.



Therefore, Parseval’s theorem for SH is:∫
Ω

|f(Ω)|2 dΩ =

∞∑
l=0

Ql

l∑
m=−l

|Fml |
2
. (30)
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